JPH0739931B2 - Grating interference displacement detector - Google Patents
Grating interference displacement detectorInfo
- Publication number
- JPH0739931B2 JPH0739931B2 JP19093791A JP19093791A JPH0739931B2 JP H0739931 B2 JPH0739931 B2 JP H0739931B2 JP 19093791 A JP19093791 A JP 19093791A JP 19093791 A JP19093791 A JP 19093791A JP H0739931 B2 JPH0739931 B2 JP H0739931B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- scale
- diffraction
- grating
- diffraction grating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Optical Transform (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は、格子干渉型変位検出装
置に関する。詳しくは、光源からの光束を2波に分岐し
てスケールの回折格子上の同一回折点に入射させ、その
回折点で生成された複数の光束の混合波を電気信号とし
て検出する格子干渉型変位検出装置に係り、特に、光源
への戻り光を防止したものに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a grating interference type displacement detecting device. Specifically, a grating interference type displacement in which a light beam from a light source is split into two waves and is made incident on the same diffraction point on the scale diffraction grating, and a mixed wave of a plurality of light beams generated at the diffraction point is detected as an electric signal. The present invention relates to a detection device, and more particularly, to a device that prevents light returning to a light source.
【0002】[0002]
【背景技術】従来の光電型エンコーダの高分解能化を図
ったものの1つとして、スケールにホログラフィの技術
を用いて微細なピッチ(通常、1μm程度)の目盛りを
形成し、その目盛りを回折格子として利用して相対変位
を高精度に検出する格子干渉型変位検出装置が知られて
いる。これは、光源からの光束を2波に分岐してスケー
ルの回折格子上の1または2つの回折点に入射させ、そ
の回折点で生成された複数の光束の混合波を電気信号と
して検出するもので、反射型回折格子を用いたものと、
透過型回折格子を用いたものとに分類できる。BACKGROUND ART As one of the ones aiming at higher resolution of a conventional photoelectric encoder, a scale having a fine pitch (usually about 1 μm) is formed on a scale by using a holographic technique, and the scale is used as a diffraction grating. There is known a grating interference type displacement detection device which utilizes the above to detect relative displacement with high accuracy. This is a method in which a light beam from a light source is split into two waves, made incident on one or two diffraction points on the diffraction grating of the scale, and a mixed wave of a plurality of light beams generated at the diffraction points is detected as an electric signal. Then, with the one using a reflection type diffraction grating,
It can be classified into one using a transmission type diffraction grating.
【0003】前者の反射型回折格子を用いた格子干渉型
変位検出装置としては、図4に示す如く、図中左右方向
へ変位可能に設けられかつその変位方向に沿って反射型
回折格子2Aを有する反射型スケール1Aと、レーザ光
源11と、このレーザ光源11から出射されたレーザビ
ームを2波A,Bに分岐するハーフミラー24と、各分
岐光束A,Bを反射してスケール1Aの回折格子2A上
の同一回折点Pにそれぞれ対称方向から入射させる一対
のミラー23A,23Bと、回折点Pで真上へ出射され
た1次回折光A1,B1 を真下に反射させるミラー32
と、その反射光をスケール1A、ミラー23A,23B
およびハーフミラー24を通じて混合させた混合波を電
気信号に変換する検出器41とから構成されている。こ
こで、前記ハーフミラー24および一対のミラー23
A,23Bから光束分岐手段21が、前記ハーフミラー
24、一対のミラー23A,23Bおよびミラー32か
ら光束混合手段31がそれぞれ構成されている。As the former grating interference type displacement detecting device using the reflection type diffraction grating, as shown in FIG. 4, a reflection type diffraction grating 2A is provided so as to be displaceable in the left and right directions in the figure and along the displacement direction. The reflective scale 1A, the laser light source 11, the half mirror 24 that splits the laser beam emitted from the laser light source 11 into two waves A and B, and the branched light fluxes A and B are reflected to diffract the scale 1A. A pair of mirrors 23A and 23B which are incident on the same diffraction point P on the grating 2A from symmetrical directions respectively, and a mirror 32 which reflects the first-order diffracted lights A1 and B1 emitted right above at the diffraction point P right below.
And the reflected light from the scale 1A and the mirrors 23A and 23B.
And a detector 41 for converting the mixed wave mixed through the half mirror 24 into an electric signal. Here, the half mirror 24 and the pair of mirrors 23
A luminous flux splitting means 21 is constituted by A and 23B, and a luminous flux mixing means 31 is constituted by the half mirror 24, a pair of mirrors 23A and 23B, and a mirror 32.
【0004】従って、レーザ光源11からのレーザビー
ムは、ハーフミラー24によって2分される。各分岐光
束A,Bは、各ミラー23A,23Bで反射された後、
スケール1Aの回折格子2A上の同一回折点Pにそれぞ
れ対称方向から入射される。すると、その回折点Pで各
分岐光束A,Bの1次回折光A1,B1 が生成される。各
1次回折光A1,B1 は、ミラー32、スケール1A、一
対のミラー23A,23Bで順次反射された後、ハーフ
ミラー24で混合され、検出器41へ導かれる。検出器
41では、ハーフミラー24で混合された混合波の偏光
方向を偏光板によって一致させて干渉させた後、受光素
子によって電気信号に変換する。これにより、検出器4
1からは、スケール1Aが回折格子2Aの1ピッチ分だ
け変位したとき、2周期分の完全正弦波信号φAが得ら
れる。Therefore, the laser beam from the laser light source 11 is divided into two by the half mirror 24. After each of the branched light fluxes A and B is reflected by each of the mirrors 23A and 23B,
The light is incident on the same diffraction point P on the diffraction grating 2A of the scale 1A from symmetrical directions. Then, the first-order diffracted lights A1 and B1 of the respective branched light beams A and B are generated at the diffraction point P. The first-order diffracted lights A1 and B1 are sequentially reflected by the mirror 32, the scale 1A, and the pair of mirrors 23A and 23B, then mixed by the half mirror 24, and guided to the detector 41. In the detector 41, the polarization directions of the mixed waves mixed by the half mirror 24 are matched by the polarizing plates to cause interference, and then converted into electric signals by the light receiving element. As a result, the detector 4
From 1, when the scale 1A is displaced by one pitch of the diffraction grating 2A, a complete sine wave signal φA for two cycles is obtained.
【0005】後者の透過型回折格子を用いた格子干渉型
変位検出装置としては、図5に示す如く、図中左右方向
へ変位可能に設けられかつその変位方向に沿って透過型
回折格子2Bを有する透過型スケール1Bと、レーザ光
源11と、このレーザ光源11から出射されたレーザビ
ームをその偏向方向に従って2波A,Bに分岐する偏光
ビームスプリッタ22と、各分岐光束A,Bを反射して
スケール1Bの回折格子2B上の同一回折点Pにそれぞ
れ対称方向から入射させる一対のミラー23A,23B
と、回折点Pで生成された1次回折光A1,B1 を真上に
反射させるミラー32と、その反射光を混合させるビー
ムスプリッタ34と、その混合波を電気信号に変換する
検出器41A,41Bとから構成されている。ここで、
前記偏光ビームスプリッタ22および一対のミラー23
A,23Bから光束分岐手段21が、前記ミラー32お
よびビームスプリッタ34から光束混合手段31がそれ
ぞれ構成されている。As the latter grating interference type displacement detecting device using the transmission type diffraction grating, as shown in FIG. 5, a transmission type diffraction grating 2B is provided so as to be displaceable in the left and right direction in the figure and along the displacement direction. The transmission type scale 1B has, a laser light source 11, a polarization beam splitter 22 that splits a laser beam emitted from the laser light source 11 into two waves A and B according to the deflection direction thereof, and reflects each branched light flux A and B. And a pair of mirrors 23A and 23B which are incident on the same diffraction point P on the diffraction grating 2B of the scale 1B from symmetrical directions respectively.
, A mirror 32 for directly reflecting the first-order diffracted light A1, B1 generated at the diffraction point P, a beam splitter 34 for mixing the reflected light, and detectors 41A, 41B for converting the mixed wave into an electric signal. It consists of and. here,
The polarization beam splitter 22 and the pair of mirrors 23
A and 23B constitute a light beam splitting means 21, and the mirror 32 and the beam splitter 34 constitute a light beam mixing means 31, respectively.
【0006】従って、レーザ光源11からのレーザビー
ムは、偏光ビームスプリッタ22の偏向方向に従って2
分される。各分岐光束A,Bは、各ミラー23A,23
Bで反射された後、スケール1Bの回折格子2B上の同
一回折点Pにそれぞれ対称方向から入射される。する
と、その回折点Pで各分岐光束A,Bの1次回折光A1,
B1 が生成される。各1次回折光A1,B1 は、ミラー3
2によって真上に反射され、続いて、ビームスプリッタ
34で混合された後、検出器41A,41Bへ導かれ
る。一方の検出器41Aでは、ビームスプリッタ34で
混合された一方の混合波の偏光方向を偏光板によって一
致させて干渉させた後、受光素子によって電気信号に変
換する。他方の検出器41Bでは、ビームスプリッタ3
4で混合された他方の混合波を1/4波長板によって前
記一方の検出器41Aに入射される混合波に対して位相
を90度遅らせ、続いて、混合波の偏光方向を偏光板に
よって一致させて干渉させた後、受光素子によって電気
信号に変換する。これにより、各検出器41A,41B
からは、スケール1Bが回折格子2Bの1ピッチ分だけ
変位したとき、90度位相差の異なる2周期分の完全正
弦波信号φA,φBが得られる。Therefore, the laser beam from the laser light source 11 is divided into two beams according to the polarization direction of the polarization beam splitter 22.
Be divided. The respective branched light fluxes A and B are transmitted to the respective mirrors 23A and 23
After being reflected by B, they are respectively incident on the same diffraction point P on the diffraction grating 2B of the scale 1B from symmetrical directions. Then, at the diffraction point P, the first-order diffracted light A1, of each branched light flux A, B
B1 is generated. The first-order diffracted lights A1 and B1 are reflected by the mirror 3
It is reflected right above by 2 and then mixed by the beam splitter 34 and then guided to the detectors 41A and 41B. In the one detector 41A, the polarization directions of one of the mixed waves mixed in the beam splitter 34 are matched by the polarizing plates to cause interference, and then converted into an electric signal by the light receiving element. In the other detector 41B, the beam splitter 3
The other mixed wave mixed in 4 is delayed in phase by 90 degrees with respect to the mixed wave incident on the one detector 41A by the quarter wavelength plate, and then the polarization direction of the mixed wave is matched by the polarizing plate. After making them interfere with each other, they are converted into electric signals by the light receiving element. Thereby, each detector 41A, 41B
From the above, when the scale 1B is displaced by one pitch of the diffraction grating 2B, complete sine wave signals φA and φB for two periods having different 90 ° phase differences are obtained.
【0007】[0007]
【発明が解決しようとする課題】ところが、上述した格
子干渉型変位検出装置のいずれもが、分岐光束A,Bを
スケール1A,1Bに対して斜めから入射させ、スケー
ル1A,1Bに対して直角方向へ反射回折させる光学系
であるため、レーザ光源11への戻り光が存在する。こ
れを除去するためには、偏光素子や波長板などが必要で
ある上、これらを備えたとしても戻り光を完全に除去す
ることは困難であるから、レーザ光源からの出力が不安
定になるという欠点がある。However, in any of the above-mentioned grating interference type displacement detecting devices, the branched light beams A and B are obliquely incident on the scales 1A and 1B and are perpendicular to the scales 1A and 1B. Since it is an optical system that reflects and diffracts light in the direction, there is return light to the laser light source 11. In order to remove this, a polarizing element, a wave plate, etc. are required, and even if these are provided, it is difficult to completely remove the return light, so the output from the laser light source becomes unstable. There is a drawback that.
【0008】また、スケール1A,1Bに対して、斜め
から光束A,Bが入射し、かつ、直角方向へ1次回折光
A1,B1 が出射する系であるから、光学素子の配置がこ
れらの系に制約される。特に、後者の透過型回折格子2
Bの場合、スケール1Bを挟んで、レーザ光源11、光
束分岐手段21、光束混合手段31および検出器41
A,41Bなどの光学系とは反対側にミラー32を配置
しなければならないから、装置への組み込みが困難であ
るという問題がある。Further, since the light beams A and B are obliquely incident on the scales 1A and 1B and the first-order diffracted lights A1 and B1 are emitted in the right angle direction, the optical elements are arranged in these systems. Be constrained to. In particular, the latter transmission type diffraction grating 2
In the case of B, the laser light source 11, the light flux splitting means 21, the light flux mixing means 31, and the detector 41 are sandwiched across the scale 1B.
Since the mirror 32 must be arranged on the side opposite to the optical system such as A and 41B, there is a problem that it is difficult to incorporate it into the device.
【0009】ここに、本発明の目的は、このような従来
の欠点を解消し、光源への戻り光を完全に除去すること
ができるとともに、従来と異なる光学的配置ができる
上、装置への組み込みも容易な格子干渉型変位検出装置
を提供することにある。The object of the present invention is to solve the above-mentioned drawbacks of the prior art, to completely eliminate the return light to the light source, and to provide an optical arrangement different from the conventional one, and to provide the device. It is to provide a grating interference type displacement detection device that can be easily incorporated.
【0010】[0010]
【課題を解決するための手段】そのため、本発明の格子
干渉型変位検出装置は、透過型回折格子を有するスケー
ルと、光源と、この光源からの光束を2波に分岐しかつ
その各分岐光束を前記スケールの回折格子上の同一回折
点に入射させる光束分岐手段と、前記回折格子上の回折
点で生成された複数の光束を混合させる光束混合手段
と、この光束混合手段によって混合された混合波を電気
信号に変換する検出器とを備えた格子干渉型変位検出装
置において、前記スケールの片側に、前記光源、光束分
岐手段、光束混合手段および検出器をそれぞれ配置する
とともに、そのスケールの回折格子に対する前記分岐光
束の入射面とは反対面側に前記回折点で生成された光束
を反射させる光反射面を形成した、ことを特徴とする。Therefore, the grating interference type displacement detecting apparatus of the present invention is configured such that a scale having a transmission type diffraction grating, a light source, and a light beam from this light source are branched into two waves, and each of the branched light beams. Light beam splitting means for making the light incident on the same diffraction point on the diffraction grating of the scale, a light beam mixing means for mixing a plurality of light beams generated at the diffraction points on the diffraction grating, and a mixture mixed by the light beam mixing means. In a grating interference type displacement detection device provided with a detector for converting a wave into an electric signal, the light source, the light beam splitting means, the light beam mixing means and the detector are respectively arranged on one side of the scale, and diffraction of the scale is performed. It is characterized in that a light reflecting surface for reflecting the light flux generated at the diffraction point is formed on the surface opposite to the incident surface of the branched light flux with respect to the grating.
【0011】[0011]
【作用】光源からの光束は、まず、分岐手段によって2
波に分岐された後、透過型スケールの回折格子上の同一
点に入射される。すると、その回折点で互いに逆方向へ
位相シフトされた1次回折光が生成される。このとき、
回折点で生成される1次回折光の光路と透過光の光路と
が異なるように設定しておき、1次回折光を光束混合手
段によって混合させた後検出器に入射される角度で、ま
た、透過光を1次回折光とは異なる角度でかつ光源に入
射しない角度で、それぞれスケールの光反射面で反射す
るようにしておけば、光源への戻り光を除去できる。The luminous flux from the light source is first divided into two by the branching means.
After being split into waves, it is incident on the same point on the diffraction grating of the transmissive scale. Then, first-order diffracted light whose phases are shifted in opposite directions at the diffraction point is generated. At this time,
The optical paths of the 1st-order diffracted light generated at the diffraction point and the optical path of the transmitted light are set to be different from each other, and the 1st-order diffracted light is mixed by the light flux mixing means and then is incident on the detector. If the light is reflected by the light reflection surface of the scale at an angle different from that of the first-order diffracted light and at an angle at which the light is not incident on the light source, the return light to the light source can be removed.
【0012】また、回折格子上の同一点で生成される1
次回折光は、互いに逆方向へ位相シフトされた後、スケ
ールの光反射面で各分岐光束の入射方向へ反射されるか
ら、つまり、入射光束と反射光束とが同方向であるか
ら、従来の反射型格子干渉型変位検出装置とは異なる光
学的配置ができる。しかも、スケールの片側に、光源、
光束分岐手段、光束混合手段および検出器などの全ての
光学系を配置した構成であるから、装置への組み込みが
容易である。Further, 1 generated at the same point on the diffraction grating
The second-order diffracted light is phase-shifted in the opposite directions, and then reflected in the incident direction of each branched light flux on the light reflecting surface of the scale, that is, the incident light flux and the reflected light flux are in the same direction. An optical arrangement different from that of the grating interferometric displacement detection device is possible. Besides, on one side of the scale, the light source,
Since all the optical systems such as the light beam splitting means, the light beam mixing means, and the detector are arranged, they can be easily incorporated into the apparatus.
【0013】[0013]
【実施例】以下、本発明に係る格子干渉型変位検出装置
について好適な実施例を挙げ、添付の図面を参照しなが
ら詳細に説明する。なお、以下の説明に当たって、前述
した図4および図5と同一構成要件については、同一符
号を付し、その説明を省略もしくは簡略化する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the grating interference type displacement detector according to the present invention will be described below in detail with reference to the accompanying drawings. In the following description, the same components as those in FIGS. 4 and 5 described above will be designated by the same reference numerals, and the description thereof will be omitted or simplified.
【0014】図1に本実施例の格子干渉型変位検出装置
を示す。同格子干渉型変位検出装置では、前記透過型ス
ケール1Bの片側つまり回折格子2B側に、前記レーザ
光源11、光束分岐手段21、光束混合手段31および
検出器41A,41Bがそれぞれ配置されているととも
に、その透過型スケール1Bの回折格子2Bに対する前
記分岐光束A,Bの入射面とは反対面側に前記回折点P
で生成された1次回折光A1,B1を反射させる光反射
面4が形成されている。FIG. 1 shows a grating interference type displacement detector of this embodiment. In the same grating interference type displacement detection device, the laser light source 11, the light beam splitting means 21, the light beam mixing means 31, and the detectors 41A and 41B are respectively arranged on one side of the transmission type scale 1B, that is, on the diffraction grating 2B side. , The diffraction point P on the side opposite to the incident surface of the branched light fluxes A and B with respect to the diffraction grating 2B of the transmissive scale 1B.
A light reflecting surface 4 that reflects the first-order diffracted lights A1 and B1 generated in 1. is formed.
【0015】ここでは、前記光束分岐手段21および光
束混合手段31が一体のプリズム51によって構成され
ている。プリズム51の内部中央位置には、前記レーザ
光源11からのレーザビームをその偏向方向に従って2
波A,Bに分岐する光束分岐手段21を構成する偏光ビ
ームスプリッタ22と、前記光束混合手段31を構成す
るビームスプリッタ34とがそれぞれ設けられている。
また、両側面には、前記偏光ビームスプリッタ22で分
岐された分岐光束A,Bを前記スケール1Bの回折格子
2B上の同一回折点Pに入射させるとともに、その回折
点Pで生成されかつ光反射面4で反射された光束を前記
ビームスプリッタ34へ反射させるミラー23A,23
Bが形成されている。Here, the light beam splitting means 21 and the light beam mixing means 31 are formed by an integral prism 51. At the center position inside the prism 51, the laser beam from the laser light source 11 is moved according to its deflection direction.
A polarization beam splitter 22 constituting a light beam splitting means 21 for splitting into the waves A and B and a beam splitter 34 constituting a light flux mixing means 31 are provided respectively.
Further, on both side surfaces, the branched light beams A and B branched by the polarization beam splitter 22 are made incident on the same diffraction point P on the diffraction grating 2B of the scale 1B, and the light beams are generated and reflected at the diffraction point P. Mirrors 23A, 23 for reflecting the light beam reflected on the surface 4 to the beam splitter 34
B is formed.
【0016】前記光反射面4は、図2(A)に示す如
く、透過型回折格子2Bとスケール基板3B−1との間
に形成されている。この場合、スケール基板3B−1の
材質は、ガラスなどの透光性を有する材質に限らず、金
属などでも用いることができる。あるいは、前記光反射
面4は、図2(B)に示す如く、スケール基板3B−2
の透過型スケール2Bとは反対の片面側に形成されてい
る。この場合、スケール基板3B−2の材質は、ガラス
などの透光性を有する材質であることが必要である。The light reflecting surface 4 is formed between the transmission type diffraction grating 2B and the scale substrate 3B-1 as shown in FIG. 2 (A). In this case, the material of the scale substrate 3B-1 is not limited to a translucent material such as glass, but may be a metal or the like. Alternatively, the light reflecting surface 4 is formed on the scale substrate 3B-2 as shown in FIG.
Is formed on the one surface side opposite to the transmissive scale 2B. In this case, the material of the scale substrate 3B-2 needs to be a translucent material such as glass.
【0017】このような構成であるから、レーザ光源1
1から出射されたレーザビームは、偏光ビームスプリッ
タ22によって2波A,Bに分岐される。各分岐光束
A,Bは、それぞれミラー23A,23Bによって反射
された後、スケール1Bの回折格子2B上の同一回折点
Pに入射される。すると、その回折点Pで各分岐光束
A,Bの1次回折光A1,B1 が生成される。各1次回折
光A1,B1 は、光反射面4で反射され、続いて、ミラー
23A,23Bで反射された後、ビームスプリッタ34
で混合される。Due to such a constitution, the laser light source 1
The laser beam emitted from No. 1 is split into two waves A and B by the polarization beam splitter 22. The branched light fluxes A and B are reflected by the mirrors 23A and 23B, respectively, and then are incident on the same diffraction point P on the diffraction grating 2B of the scale 1B. Then, the first-order diffracted lights A1 and B1 of the respective branched light beams A and B are generated at the diffraction point P. Each of the first-order diffracted lights A1 and B1 is reflected by the light reflecting surface 4 and subsequently by the mirrors 23A and 23B, and then the beam splitter 34.
Mixed in.
【0018】つまり、一方の1次回折光A1 の反射光と
他方の1次回折光B1 の透過光とが混合されるととも
に、一方の1次回折光A1 の透過光と他方の1次回折光
B1 の反射光とが混合される。その後、一方の混合波は
一方の検出器41Aへ導かれ、そこで、電気信号に変換
され正弦波信号φAとして取り出される。また、他方の
混合波は他方の検出器41Bへ導かれ、そこで、一方の
混合波に対して90度位相が遅らされた後、電気信号に
変換され正弦波信号φBとして取り出される。That is, the reflected light of one first-order diffracted light A1 and the transmitted light of the other first-order diffracted light B1 are mixed, and the transmitted light of one first-order diffracted light A1 and the reflected light of the other first-order diffracted light B1 are mixed. And are mixed. After that, the one mixed wave is guided to the one detector 41A, where it is converted into an electric signal and taken out as a sine wave signal φA. Further, the other mixed wave is guided to the other detector 41B, where the phase thereof is delayed by 90 degrees with respect to the one mixed wave, and then converted into an electric signal and taken out as a sine wave signal φB.
【0019】従って、本実施例によれば、レーザビーム
を2波に分岐させた後スケール1Bの回折格子2B上の
同一回折点Pに入射させる。すると、その回折点Pで互
いに逆方向へ位相シフトされた1次回折光A1,B1 が生
成される。このとき、回折点Pで生成される1次回折光
A1,B1 の光路と透過光の光路とが異なるように設定し
ておく。すると、1次回折光A1,B1 は、スケール1B
の光反射面4で反射された後、光束混合手段21によっ
て混合され、続いて、検出器41A,41Bに入射され
る。一方、透過光は、スケール1Bの光反射面4で1次
回折光A1,B1とは異なる角度で反射された後、ミラー
23A,23Bでレーザ光源11は異なる方向へ反射さ
れる結果、光源への戻り光を除去できる。Therefore, according to the present embodiment, the laser beam is split into two waves and then made incident on the same diffraction point P on the diffraction grating 2B of the scale 1B. Then, first-order diffracted lights A1 and B1 whose phases are shifted in opposite directions at the diffraction point P are generated. At this time, the optical paths of the first-order diffracted lights A1 and B1 generated at the diffraction point P and the optical path of the transmitted light are set to be different from each other. Then, the first-order diffracted lights A1 and B1 are converted into the scale 1B.
After being reflected by the light-reflecting surface 4, the light flux is mixed by the light flux mixing means 21 and subsequently incident on the detectors 41A and 41B. On the other hand, the transmitted light is reflected by the light reflecting surface 4 of the scale 1B at an angle different from that of the first-order diffracted lights A1, B1, and then reflected by the mirrors 23A, 23B in different directions. The return light can be removed.
【0020】また、回折格子2B上の回折点Pで生成さ
れる1次回折光A1,B1は、互いに逆方向へ位相シフ
トされた後、スケール1Bの光反射面4で各分岐光束
A,Bの入射方向へ反射されるから、つまり、入射光束
と反射光束とが同方向であるから、従来の反射型格子干
渉型変位検出装置とは異なる光学的配置ができ、設計の
自由度を拡大させることができる。しかも、スケール1
Bの片側に、光源11、光束分岐手段21、光束混合手
段31および検出器41A,41Bなどの全ての光学系
を配置した構成であるから、装置への組み込みも容易で
ある。Further, the first-order diffracted lights A1 and B1 generated at the diffraction point P on the diffraction grating 2B are phase-shifted in opposite directions, and then, on the light reflecting surface 4 of the scale 1B. Since the light is reflected in the incident direction, that is, the incident light beam and the reflected light beam are in the same direction, an optical arrangement different from that of the conventional reflection type grating interference type displacement detection device can be achieved, and the degree of freedom in design can be expanded. You can Moreover, scale 1
Since all the optical systems such as the light source 11, the light beam splitting unit 21, the light beam mixing unit 31, and the detectors 41A and 41B are arranged on one side of B, they can be easily incorporated into the apparatus.
【0021】また、光束分岐手段21や光束混合手段3
1を構成する光学素子、つまり、偏光ビームスプリッタ
22、ビームスプリッタ34およびミラー23A,23
Bなどを一体のプリズム51によって構成したので、1
つのプリズムによって主な検出系を構成することができ
る。このことは、部品点数の削減につながるから、組立
工数の削減にも寄与できる。The beam splitting means 21 and the beam mixing means 3 are also provided.
1, the polarization beam splitter 22, the beam splitter 34, and the mirrors 23A and 23.
Since B and the like are configured by the integral prism 51, 1
The main detection system can be configured by two prisms. This leads to a reduction in the number of parts, which can also contribute to a reduction in the number of assembling steps.
【0022】以上、本発明について好適な実施例を挙げ
て説明したが、本発明はこの実施例に限定されるもので
なく、本発明の要旨を逸脱しない範囲において種々の改
良並びに設計の変更が可能なことは勿論である。Although the present invention has been described with reference to the preferred embodiment, the present invention is not limited to this embodiment, and various improvements and design changes can be made without departing from the gist of the present invention. Of course it is possible.
【0023】例えば、上記実施例では、前記光束分岐手
段21および光束混合手段31を一体のプリズム51に
よって構成したが、図3に示す如く、これらを別体とし
て構成してもよい。この場合には、光束分岐手段21
は、レーザビームを水平方向へ2波A,Bに分岐する直
角反射面25A,25Bを有するミラー25と、このミ
ラー25によって分岐された各光束A,Bをスケール1
Bの透過型回折格子2B上の同一回折点Pに入射させる
一対のミラー26A,26Bと、この各ミラー26A,
26Bの反射光の光路上に挿入された偏光板27A,2
7Bとによって構成されている。また、光束混合手段3
1は、前記回折点Pで生成されかつ光反射面4で反射さ
れた1次回折光A1,B1 を反射させる一対のミラー35
A,35Bと、この各ミラー35A,35Bで反射され
た光束を混合させるビームスプリッタ34とによって構
成されている。For example, in the above embodiment, the luminous flux splitting means 21 and the luminous flux mixing means 31 are constituted by the integral prism 51, but they may be constituted separately as shown in FIG. In this case, the light beam splitting means 21
Is a scale 25 that includes a mirror 25 having right-angled reflecting surfaces 25A and 25B that split the laser beam into two waves A and B in the horizontal direction, and each of the light beams A and B split by the mirror 25.
A pair of mirrors 26A and 26B which are incident on the same diffraction point P on the transmission diffraction grating 2B of B, and the respective mirrors 26A and 26A,
Polarizing plates 27A and 2A inserted in the optical path of the reflected light of 26B.
7B and. Also, the light flux mixing means 3
Reference numeral 1 denotes a pair of mirrors 35 for reflecting the first-order diffracted lights A1, B1 generated at the diffraction point P and reflected by the light reflecting surface 4.
A and 35B and a beam splitter 34 that mixes the light fluxes reflected by the mirrors 35A and 35B.
【0024】このような構成にすれば、上記実施例で述
べた効果のほか、ミラー25の直角反射面25A,25
Bによってレーザ光源11からのレーザビームそのもの
を2波A,Bに分岐しているから、半透過性の光学素子
(例えば、ハーフミラーやビームスプリッタ)などを用
いることなく異なった光学的配置ができる。しかも、反
射面25A,25Bの角度を選択することにより、2波
に分岐する振り分け角度も自由に選択できるという利点
がある。これにより、従来のものに比べ、検出系も小型
化できる。With such a structure, in addition to the effects described in the above embodiment, the right angle reflecting surfaces 25A, 25 of the mirror 25 are provided.
Since the laser beam itself from the laser light source 11 is split into two waves A and B by B, different optical arrangements can be made without using a semi-transmissive optical element (for example, a half mirror or a beam splitter). . Moreover, by selecting the angles of the reflecting surfaces 25A and 25B, there is an advantage that the distribution angle for branching into two waves can be freely selected. As a result, the detection system can be downsized as compared with the conventional one.
【0025】また、上記実施例では、レーザ光源11、
光束分岐手段21、光束混合手段31および検出器41
A,41Bなどの光学系に対してスケール1Bが変位可
能に設けられていたが、スケール1Bに対して上記光学
系が変位するものでもよく、あるいは、両者が共に変位
するものでもよい。要は、スケール1Bと光学系とが相
対変位するもの全てに適用することができる。In the above embodiment, the laser light source 11,
Light flux splitting means 21, light flux mixing means 31, and detector 41
Although the scale 1B is provided so as to be displaceable with respect to the optical system such as A and 41B, the optical system may be displaced with respect to the scale 1B, or both may be displaced. The point is that it can be applied to all of those in which the scale 1B and the optical system are relatively displaced.
【0026】[0026]
【発明の効果】以上の通り、本発明の格子干渉型変位検
出装置によれば、スケールの片側に全ての光学系を配置
するとともに、そのスケールの回折格子に対する分岐光
束の入射面とは反対面側に回折点で生成された光束を反
射させる光反射面を形成したので、光源への戻り光を除
去できるとともに、入射光束と反射光束とを同方向にで
きるから、従来の反射型格子干渉型変位検出装置とは異
なる光学的配置ができ、しかも、スケールの片側に、光
源、光束分岐手段、光束混合手段および検出器などの全
ての光学系を配置した構成であるから、装置への組み込
みも容易である。As described above, according to the grating interference type displacement detecting device of the present invention, all the optical systems are arranged on one side of the scale, and the surface opposite to the incident surface of the branched light flux on the diffraction grating of the scale is arranged. Since a light reflecting surface that reflects the light flux generated at the diffraction point is formed on the side, the return light to the light source can be removed and the incident light flux and the reflected light flux can be in the same direction. It is possible to have an optical arrangement different from that of the displacement detection device, and moreover, since all optical systems such as the light source, the light beam splitting means, the light flux mixing means and the detector are arranged on one side of the scale, it can be incorporated into the device. It's easy.
【図1】本発明の格子干渉型変位検出装置の一実施例を
示す図である。FIG. 1 is a diagram showing an embodiment of a grating interference type displacement detection device of the present invention.
【図2】図1のスケール1Bの構成を示す図である。FIG. 2 is a diagram showing a configuration of a scale 1B of FIG.
【図3】本発明の格子干渉型変位検出装置の他の実施例
を示す図である。FIG. 3 is a view showing another embodiment of the grating interference type displacement detection device of the present invention.
【図4】従来の格子干渉型変位検出装置(反射型回折格
子を用いた)を示す図である。FIG. 4 is a diagram showing a conventional grating interference type displacement detection device (using a reflection type diffraction grating).
【図5】従来の格子干渉型変位検出装置(透過型回折格
子を用いた)を示す図である。FIG. 5 is a diagram showing a conventional grating interference type displacement detection device (using a transmission type diffraction grating).
1B 透過型スケール 2B 透過型回折格子 4 光反射面 11 レーザ光源(光源) 21 光束分岐手段 31 光束混合手段 41A,41B 検出器 1B Transmission type scale 2B Transmission type diffraction grating 4 Light reflecting surface 11 Laser light source (light source) 21 Light flux splitting means 31 Light flux mixing means 41A, 41B Detector
Claims (1)
と、この光源からの光束を2波に分岐しかつその各分岐
光束を前記スケールの回折格子上の同一回折点に入射さ
せる光束分岐手段と、前記回折格子上の回折点で生成さ
れた複数の光束を混合させる光束混合手段と、この光束
混合手段によって混合された混合波を電気信号に変換す
る検出器とを備えた格子干渉型変位検出装置において、 前記スケールの片側に、前記光源、光束分岐手段、光束
混合手段および検出器をそれぞれ配置するとともに、そ
のスケールの回折格子に対する前記分岐光束の入射面と
は反対面側に前記回折点で生成された光束を反射させる
光反射面を形成した、 ことを特徴とする格子干渉型変位検出装置。1. A scale having a transmissive diffraction grating, a light source, and a light beam splitting means for splitting a light beam from the light source into two waves and making each of the split light beams enter the same diffraction point on the diffraction grating of the scale. Displacement of grating interference type including: a light flux mixing means for mixing a plurality of light fluxes generated at the diffraction points on the diffraction grating; and a detector for converting the mixed wave mixed by the light flux mixing means into an electric signal. In the detection device, the light source, the light beam splitting means, the light flux mixing means and the detector are respectively arranged on one side of the scale, and the diffraction point is on the side opposite to the incident surface of the branched light flux with respect to the diffraction grating of the scale. A grating interference type displacement detection device characterized in that a light reflection surface for reflecting the light flux generated in (3) is formed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19093791A JPH0739931B2 (en) | 1991-07-04 | 1991-07-04 | Grating interference displacement detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19093791A JPH0739931B2 (en) | 1991-07-04 | 1991-07-04 | Grating interference displacement detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0510786A JPH0510786A (en) | 1993-01-19 |
JPH0739931B2 true JPH0739931B2 (en) | 1995-05-01 |
Family
ID=16266162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19093791A Expired - Lifetime JPH0739931B2 (en) | 1991-07-04 | 1991-07-04 | Grating interference displacement detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0739931B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117091513B (en) * | 2023-10-19 | 2024-01-02 | 中国科学院长春光学精密机械与物理研究所 | Grating interferometry device and measurement method based on large-size light spots |
-
1991
- 1991-07-04 JP JP19093791A patent/JPH0739931B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0510786A (en) | 1993-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9360347B2 (en) | Two-dimensional encoder system and method | |
US4979826A (en) | Displacement measuring apparatus | |
US7471397B2 (en) | Position-measuring device | |
JP2586120B2 (en) | encoder | |
JPH03148015A (en) | Position measuring apparatus | |
JPH01284715A (en) | Encoder | |
US7187451B2 (en) | Apparatus for measuring two-dimensional displacement | |
JP2001336952A (en) | Measuring apparatus | |
JPH046884B2 (en) | ||
JPH02138821A (en) | Rotary encoder | |
JPH0781817B2 (en) | Position measuring device | |
US5424829A (en) | Apparatus wherein diffracted light does not return to the source | |
JPH085328A (en) | Lattice-interference type displacement detector | |
JPH0739931B2 (en) | Grating interference displacement detector | |
JP3068408B2 (en) | Lattice interference displacement detector | |
JPH04130220A (en) | Encoder | |
JPH0739932B2 (en) | Grating interference displacement detector | |
CN113532279B (en) | Optical displacement sensor | |
JPH085324A (en) | Lattice-interference type displacement detector | |
JP3152330B2 (en) | Lattice interference displacement detector | |
JP2000018918A (en) | Laser interference apparatus for detecting moving quantity of movable body | |
JPH051926A (en) | Grating interference type displacement detecting device | |
JPH051923A (en) | Grating interference type displacement detecting device | |
EP2138808B1 (en) | Photoelectric encoder | |
JP2003035570A (en) | Diffraction interference type linear scale |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 19951024 |