JPH0739630B2 - Vacuum deposition equipment - Google Patents

Vacuum deposition equipment

Info

Publication number
JPH0739630B2
JPH0739630B2 JP3922886A JP3922886A JPH0739630B2 JP H0739630 B2 JPH0739630 B2 JP H0739630B2 JP 3922886 A JP3922886 A JP 3922886A JP 3922886 A JP3922886 A JP 3922886A JP H0739630 B2 JPH0739630 B2 JP H0739630B2
Authority
JP
Japan
Prior art keywords
vacuum
chamber
susceptor
substrate
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3922886A
Other languages
Japanese (ja)
Other versions
JPS62199769A (en
Inventor
久直 尾形
武夫 根本
和正 藤岡
直行 田村
謙雄 金井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3922886A priority Critical patent/JPH0739630B2/en
Publication of JPS62199769A publication Critical patent/JPS62199769A/en
Publication of JPH0739630B2 publication Critical patent/JPH0739630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は真空蒸着装置に係り、特に室温以下の温度にお
いて薄膜を形成するに好適な真空蒸着装置に関する。
TECHNICAL FIELD The present invention relates to a vacuum vapor deposition apparatus, and more particularly to a vacuum vapor deposition apparatus suitable for forming a thin film at a temperature of room temperature or lower.

〔従来の技術〕[Conventional technology]

従来の真空蒸着装置には、レジユーオブ サイエンテイ
ツク インスツルメンツ、56巻9号(1985年)第1799頁
から第1803頁(Review of Scienfic Instruments,Volum
e 56,No.9(1985)PP1799〜1803)において示されもの
がある。
The conventional vacuum vapor deposition apparatus includes Review of Scientific Instruments, Vol. 56, No. 9 (1985), pages 1799 to 1803 (Review of Scienfic Instruments, Volume).
e 56, No. 9 (1985) PP1799 to 1803).

また、実開昭59−91734号には半導体等の基板冷却装置
が示されている。
Further, Japanese Utility Model Laid-Open No. 59-91734 discloses a substrate cooling device for semiconductors and the like.

〔発明が解決しようとする問題点〕 上記従来の技術では、基板を交換するためにはいつたん
真空環境を大気圧に戻して作業せざるを得ず、再度高真
空環境を作るには数時間以上を要し、作業能率が劣ると
いう問題があつた。また、真空容器力の装置主要部を大
気圧にさらす時水分の付着等がおこるのを避けるため、
基板温度が室温以下の場合、これを室温に回復させるた
めの時間も必要であつた。
[Problems to be Solved by the Invention] In the above-mentioned conventional technique, in order to replace the substrate, it is unavoidable to return the vacuum environment to the atmospheric pressure and work, and it takes several hours to create the high vacuum environment again. Since the above is required, there is a problem that work efficiency is poor. In addition, in order to avoid water adhesion when exposing the main part of the vacuum container force to atmospheric pressure,
When the substrate temperature was below room temperature, it also took time to recover it.

本発明の目的は、上記問題点を克服し、真空環境中で、
基板冷却手段を低温に保持したままで、基板交換が可能
な真空蒸着装置を提供することにある。
An object of the present invention is to overcome the above-mentioned problems, and in a vacuum environment,
An object of the present invention is to provide a vacuum vapor deposition apparatus capable of exchanging substrates while keeping the substrate cooling means at a low temperature.

〔問題を解決するための手段〕[Means for solving problems]

上記目的は、熱伝導性の第1の部材と第2の部材が少な
くとも基板方向に相対的に移動可能で、かつ両部材間に
形成される部屋を伸縮自在にシールする手段と、前記第
1の部材と第2の部材に熱を供給する手段と、前記部屋
に冷媒を供給する手段と、サセプタを前記第1の部材に
着脱自在に保持する手段と、サセプタの他方の面と前記
第2の部材とを密着させるように第2の部材を移動させ
る手段と、真空容器と仕切り弁を介して接続される予備
真空室と、真空容器と予備真空室とを往来して基板の着
脱操作をするマニピユーレータとを設けることにより達
成される。
The above-mentioned object is that the first member and the second member having heat conductivity are relatively movable at least in the direction of the substrate, and means for elastically sealing the chamber formed between both members is provided. Means for supplying heat to the member and the second member, means for supplying the refrigerant to the chamber, means for detachably holding the susceptor on the first member, the other surface of the susceptor, and the second member. The means for moving the second member so as to be in close contact with the member, the preliminary vacuum chamber connected to the vacuum container through the partition valve, and the vacuum container and the preliminary vacuum chamber are traversed to attach and detach the substrate. It is achieved by providing a manipulator which operates.

〔作用〕[Action]

基板装着の時は、予備真空室で基板を固着したサセプタ
をマニピユレータによつて正伝置に案内する。第1の部
材、第2の部材及びシール手段で形成された部屋は真空
状態にしておき、サセプタを保持手段で第1の部材に装
着した後、部屋に冷媒を供給する。冷媒の供給によつて
部屋は内圧を受けシール手段が伸びて第2の部材とサセ
プタは密着し、第2の部材をサセプタ間の接触熱抵抗が
低下する。このため、基板は冷媒によつて冷却される。
又、基板の冷却温度は熱を供給する手段の供給熱量によ
り任意の温度に変更できる。次に、基板をサセプタから
離脱させる時は、冷媒を排出して部屋を真空にし、第2
の部材とサセプタ間の接触圧をなくすことによつてサセ
プタを保持手段から容易にはずれるようにし、マニピユ
レータによつてサセプタを予備真空室に移送するもので
ある。
When the substrate is mounted, the susceptor to which the substrate is fixed in the preliminary vacuum chamber is guided by the manipulator to the normal transmission. The chamber formed by the first member, the second member, and the sealing means is kept in a vacuum state, the susceptor is attached to the first member by the holding means, and then the refrigerant is supplied to the room. Due to the supply of the refrigerant, the chamber receives the internal pressure, the sealing means expands, the second member and the susceptor come into close contact with each other, and the contact thermal resistance between the second member and the susceptor decreases. Therefore, the substrate is cooled by the coolant.
Further, the cooling temperature of the substrate can be changed to an arbitrary temperature depending on the amount of heat supplied by the means for supplying heat. Next, when removing the substrate from the susceptor, the refrigerant is discharged to make the chamber vacuum, and the second
By removing the contact pressure between the member and the susceptor, the susceptor can be easily disengaged from the holding means, and the manipulator transfers the susceptor to the preliminary vacuum chamber.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図及び第2図により説明
する。第1図は真空蒸着装置の概略図で、1は真空容器
で、弁2を経由して真空排気系3に接続し、真空容器内
部4を高真空に維持する。5は真空容器1に設けられた
仕切り弁で、予備真空室6と真空容器内部4とを区分し
ている。予備真空室6には別の真空排気系7及び基板導
入機構8(マニピユレータ)が設けてあり、大気中との
基板の出し入れが可能である。9は装置主要部その詳細
は第2図にて説明する。10は基板(後述する)を一方の
面に貼りつけたサセプタで蒸発源11から異なる物質を蒸
発させ、シヤツター12により蒸着量の制御を行う。装置
主要部9は、第1の冷媒13を貯蔵する室14及び第2図の
冷媒15を貯蔵する室16(図示せず)、冷媒用のフレキシ
ブル配管17,18,19,20,及び室16の回転機構21と上下動機
構22より構成されている。なお、23は、液体窒素等で冷
却されたシユラウドで、真空維持の一役を担う。
An embodiment of the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a schematic diagram of a vacuum vapor deposition apparatus, in which a vacuum container 1 is connected to a vacuum exhaust system 3 via a valve 2 to maintain a high vacuum inside a vacuum container 4. A sluice valve 5 is provided in the vacuum container 1, and separates the preliminary vacuum chamber 6 from the inside of the vacuum container 4. The preliminary vacuum chamber 6 is provided with another vacuum evacuation system 7 and a substrate introducing mechanism 8 (manipulator) so that the substrate can be taken in and out of the atmosphere. The main part 9 of the apparatus will be described in detail with reference to FIG. Reference numeral 10 is a susceptor having a substrate (described later) attached to one surface thereof, which evaporates different substances from an evaporation source 11 and controls a deposition amount by a shutter 12. The device main part 9 includes a chamber 14 for storing the first refrigerant 13, a chamber 16 (not shown) for storing the refrigerant 15 in FIG. 2, flexible pipes 17, 18, 19, 20, and chamber 16 for the refrigerant. It is composed of a rotating mechanism 21 and a vertical moving mechanism 22. Reference numeral 23 is a shroud cooled with liquid nitrogen or the like and plays a role in maintaining a vacuum.

24は液体窒素などの第2の冷媒を供給する貯槽、25は液
体窒素などの第1の冷媒を供給するためのガス又は液体
の容器、26は容器25とは別種のガス又は液体の容器,27
は真空排気ポンプ、28は流量計、29は圧力計、30,31,3
2,33は弁である。
24 is a storage tank for supplying a second refrigerant such as liquid nitrogen, 25 is a container for gas or liquid for supplying the first refrigerant such as liquid nitrogen, 26 is a container for gas or liquid different from the container 25, 27
Is a vacuum pump, 28 is a flow meter, 29 is a pressure gauge, 30, 31, 3
2,33 are valves.

次に装置要部9を第2図によつて詳述する。シリコンや
ガリウムひ素、石英等からなる基板35はインジウム、ガ
リウム、半田等で銅製のサセプタ10に貼り付けてある。
サセプタ10には外周上に溝36が彫つてあり、バヨネツト
37(保持手段)によりブロツク37(第1の部材)に連結
される。ブロツク38の下部には室14を形成するためサセ
プタ10と対接する冷却ステージ39(第2部材)がベロー
ズ40を(伸縮自在なシール手段)を介して気密に取り付
けてある。ブロツク38及び冷却ステージ39は銅、アルミ
ニウム、しんちゆう、ステンレス鋼等がよい。またブロ
ツク38には、電気的に絶縁されたヒータ41(熱を供給す
る手段)が熱的に接続してある。42はヒータ41のリード
線で、電気的な絶縁が施されている。ヒータ41及びリー
ド線42として、外側をステンレス鋼のケースで完全に被
覆して真空容器1の外へ引き出せば、ヒータ線や絶縁材
からの放出ガスを問題にしなくてよい。ヒータ41と38と
の熱的接続は冷やしばめ、焼ばめ,ろう付、溶接などで
行う。
Next, the main part 9 of the apparatus will be described in detail with reference to FIG. The substrate 35 made of silicon, gallium arsenide, quartz or the like is attached to the copper susceptor 10 with indium, gallium, solder or the like.
The susceptor 10 has a groove 36 engraved on the outer circumference,
37 (holding means) connects to the block 37 (first member). A cooling stage 39 (second member) that is in contact with the susceptor 10 to form the chamber 14 is airtightly attached to the lower portion of the block 38 via a bellows 40 (expandable sealing means). The block 38 and the cooling stage 39 are preferably made of copper, aluminum, Shin Yu, stainless steel, or the like. An electrically insulated heater 41 (means for supplying heat) is thermally connected to the block 38. 42 is a lead wire of the heater 41, which is electrically insulated. When the heater 41 and the lead wire 42 are completely covered with a stainless steel case and drawn out of the vacuum container 1, the gas emitted from the heater wire and the insulating material does not matter. The thermal connection between the heaters 41 and 38 is made by cold fitting, shrink fitting, brazing, welding or the like.

第1の冷媒13の供給配管19は第2の冷媒15を貯めた室16
中には導きらせん管43を経て室14に至る。冷却ステージ
39の室14側の表面には溝44を加工して放熱面積を増や
す。あるいは、この溝44のかわりに、沸騰熱伝達を促進
するような多孔状表面を形成してもよい。排出配管20は
望ましくは第2の冷媒15熱交換しないようにして外へ出
した方がよい。45は室16、室14の中心軸上に設けた軸
で、外部より回転又は上下動を加えるのに使う。
The supply pipe 19 for the first refrigerant 13 is a chamber 16 in which the second refrigerant 15 is stored.
Inside, it leads to the chamber 14 via the guiding spiral tube 43. Cooling stage
Grooves 44 are formed on the surface of 39 on the chamber 14 side to increase the heat dissipation area. Alternatively, instead of the groove 44, a porous surface that promotes boiling heat transfer may be formed. It is desirable that the discharge pipe 20 should be exposed to the outside without heat exchange with the second refrigerant 15. Reference numeral 45 is a shaft provided on the central axes of the chambers 16 and 14, and is used to rotate or vertically move from the outside.

第3は、第2図とほとんど同一構成であるが、希土類元
素などを主成分とした永久磁石46をブロツク38に貼り付
けた点が異なる。なお、ヒータ41としてはセラミツク基
板にヒータ材をコートしたものを示してある。
Thirdly, the structure is almost the same as that shown in FIG. 2 except that a permanent magnet 46 containing a rare earth element as a main component is attached to the block 38. As the heater 41, a ceramic substrate coated with a heater material is shown.

第2図及び第3図には、室14とブロツク38を固定する手
段として配管19と20のみを示したが、強度確保のため、
複数本の支持棒を付加してもよい。ただし、これらはす
べてステンレス鋼などの低熱伝導性の材料を使用し、か
つ断面積を小さくして熱リークを少なくする。
2 and 3 show only the pipes 19 and 20 as a means for fixing the chamber 14 and the block 38, but in order to secure the strength,
A plurality of support rods may be added. However, all of them use a material having low thermal conductivity such as stainless steel, and have a small cross-sectional area to reduce heat leakage.

冷却ステージ39とサセプタ10の接触する表面(他方の
面)には両面とも金をメツキしておく。接触面の酸化を
防ぎかつ接触熱抵抗を小さくするためである。
Gold is plated on both surfaces (the other surface) where the cooling stage 39 and the susceptor 10 are in contact with each other. This is to prevent oxidation of the contact surface and reduce contact heat resistance.

第4図は第2図に示したバヨネツト37の付近を分解して
示す斜視図である。冷却ステージ39はベローズ40に溶接
して一体化してある。バヨネツト37には下部につめ47が
内周上に複数個設けてあり、サセプタ10の外周上の上記
つめ47と対応した位置に溝48が彫つてある。
FIG. 4 is an exploded perspective view showing the vicinity of the bayonet 37 shown in FIG. The cooling stage 39 is welded to and integrated with the bellows 40. The bayonet 37 is provided with a plurality of pawls 47 on its inner periphery at the lower portion, and a groove 48 is carved on the outer periphery of the susceptor 10 at a position corresponding to the pawls 47.

この動作はつぎのようになる。まず、予備真空室6で装
置したサセプタ10は基板導入機構8の先端に設けた保持
器49に溝50の部分で支持され、冷却ステージ39の下部ま
で搬送される。この状態で回転機構21及び上下動機構22
を操作してバヨネツトのつめ47とサセプタの溝48を合致
させ、はめこむ。その後、バヨネツト側を回転させ、つ
め47をサセプタの溝36に入れ、サセプタ10が落下しない
ようにする。この操作を行う間は、室14は真空に排気し
ておく。冷却ステージ39とサセプタ10は室14の内外の圧
力差がない場合、適当な間隙を有して回転に対して相互
に自由なようにあらかじめ製作しておく。サセプタ10の
設定が終つたら、保持器49を引き抜き、室14にガスを導
入する。導入によつて室14の内外に圧力差が生じ、こり
れによる力が冷却ステージ39をサセプタ10に押しつけ
る。基板35を液体窒素温度近辺にまで冷却する必要があ
るときは、第1の冷媒13及び第2の冷媒15を液体窒素と
し、容器25より窒素ガスを一定流量で供給する。図示し
ていないが、冷却ステージ39に取り付けられた温度計の
指示を監視して流量を調節する。ヒータ41を使つて温度
調節を行うこともできる。とくに温度レベルを高くする
場合は、第1の冷媒13の供給を停止する。あるいは第2
の冷却15の温度レベルを上げ、不凝縮性のガスを容器26
より一定流量で供給してもよい。
This operation is as follows. First, the susceptor 10 installed in the preliminary vacuum chamber 6 is supported by the holder 49 provided at the tip of the substrate introducing mechanism 8 at the groove 50 and is conveyed to the lower part of the cooling stage 39. In this state, the rotation mechanism 21 and the vertical movement mechanism 22
Align the tab 47 of the bayonet with the groove 48 of the susceptor by operating, and insert it. Then, the bayonet side is rotated so that the pawl 47 is inserted into the groove 36 of the susceptor so that the susceptor 10 does not drop. The chamber 14 is evacuated during this operation. If there is no pressure difference between the inside and the outside of the chamber 14, the cooling stage 39 and the susceptor 10 are preliminarily manufactured with a proper gap so that they can freely rotate with respect to each other. After the setting of the susceptor 10 is completed, the holder 49 is pulled out and gas is introduced into the chamber 14. Due to the introduction, a pressure difference is generated between the inside and the outside of the chamber 14, and the force due to the dust presses the cooling stage 39 against the susceptor 10. When it is necessary to cool the substrate 35 to a temperature close to the liquid nitrogen temperature, the first refrigerant 13 and the second refrigerant 15 are liquid nitrogen, and nitrogen gas is supplied from the container 25 at a constant flow rate. Although not shown, the flow rate is adjusted by monitoring the instruction of a thermometer attached to the cooling stage 39. The heater 41 can also be used to adjust the temperature. Especially when the temperature level is raised, the supply of the first refrigerant 13 is stopped. Or second
Increase the temperature level of the cooling 15 and add non-condensable gas to the container 26
It may be supplied at a more constant flow rate.

蒸着作業を終えて、基板35を交換する場合は、室14を真
空排気して、保持器49をサセプタ10にセツトし、回転機
構21と上下動機構22によりサセプタ10をバヨネツト37か
らはずし、保持器49を予備真空室6に引き込み弁5を閉
じて予備真空室6を大気開放してサセプタ10を取り出
し、基板35を交換すればよい。真空容器1の内部4は大
気にさらされることがないので、新しい基板を導入して
一時的に真空度が劣化しても短時間で高真空に回復す
る。
When the substrate 35 is replaced after the vapor deposition work, the chamber 14 is evacuated, the holder 49 is set on the susceptor 10, and the rotation mechanism 21 and the vertical movement mechanism 22 remove the susceptor 10 from the bayonet 37 and hold it. The container 49 may be drawn into the preliminary vacuum chamber 6, the valve 5 may be closed, the preliminary vacuum chamber 6 may be opened to the atmosphere, the susceptor 10 may be taken out, and the substrate 35 may be replaced. Since the inside 4 of the vacuum container 1 is not exposed to the atmosphere, even if a new substrate is introduced and the degree of vacuum is temporarily deteriorated, the high vacuum is restored in a short time.

第5図は、第2図に示した実施例の変形例である。特徴
は第1の冷媒と第2の冷媒を同一としたことである。す
なわち、供給配管19を冷媒15を貯蔵する室16の底に開口
させ、室16の圧力を上げて冷媒15を室14に供給すること
ができる。室14で気化し、温度上昇した冷媒は、管51の
中を通り断熱した排出配管20より外へ放出される。冷媒
15の補給は供給配管17より常時又は間欠的に行われる。
室16と室14を固定するために複数本の低熱導性の支持体
52が用いてある。又、第2図と異なり、冷却ステージ39
とサセプタ10は平板状をなしている。
FIG. 5 is a modification of the embodiment shown in FIG. The feature is that the first refrigerant and the second refrigerant are the same. That is, the supply pipe 19 can be opened at the bottom of the chamber 16 that stores the refrigerant 15, and the pressure of the chamber 16 can be increased to supply the refrigerant 15 to the chamber 14. The refrigerant that has been vaporized in the chamber 14 and has increased in temperature passes through the pipe 51 and is discharged to the outside from the heat-insulated discharge pipe 20. Refrigerant
The supply of 15 is continuously or intermittently performed through the supply pipe 17.
Multiple low thermal conductivity supports to secure chamber 16 and chamber 14
52 is used. Also, unlike FIG. 2, the cooling stage 39
The susceptor 10 has a flat plate shape.

第6図は、第5図に示した実施例の別の実施例である。
外部とつながる供給配管19、排出配管20のかわりに、冷
媒15を貯蔵する室16の底部に開口をもつ複数本の細管5
2,53を設ける。冷却ステージ39とベローズ40のかわり
に、たわみ部54を有するダイヤフラム55を用いている。
又、ヒータ41のかわりに、タングステン線等からなる加
熱用のフイラメント56を用い、セラミツクの基板57に固
定された電流端子58に取り付けられている。59はキヤツ
プで、電流導線60は絶縁して引き出され、絶縁端子61を
通して外部へ引き出される。この実施例では、冷媒15は
室14中へ自然循環で供給される。試料の温度を上げると
きは、フイラメント55に通電してその軸射熱でブロツク
38を加熱し、細管52,53を冷媒15の蒸気でブロツクす
る。又は、冷媒15を供給配管17の底から抜きとつてもよ
い。ダイアフラム55は銅やステンレス鋼の薄肉0.1mm〜1
mm)の板で形成しているので、室14に圧力が加わつた状
態ではサセプタ10への密着性が良くなり、接触による熱
抵抗が少ない。
FIG. 6 is another embodiment of the embodiment shown in FIG.
Instead of the supply pipe 19 and the discharge pipe 20 connected to the outside, a plurality of thin pipes 5 having an opening at the bottom of the chamber 16 for storing the refrigerant 15
Provide 2,53. Instead of the cooling stage 39 and the bellows 40, a diaphragm 55 having a flexure 54 is used.
Further, instead of the heater 41, a filament for heating 56 made of a tungsten wire or the like is used and is attached to a current terminal 58 fixed to a substrate 57 of the ceramic. Reference numeral 59 is a cap, and the current conducting wire 60 is insulated and drawn out, and is drawn out through the insulating terminal 61 to the outside. In this embodiment, the refrigerant 15 is supplied to the chamber 14 by natural circulation. When raising the temperature of the sample, energize filament 55 and block it with its axial heat.
38 is heated and the thin tubes 52, 53 are blocked with the vapor of the refrigerant 15. Alternatively, the refrigerant 15 may be removed from the bottom of the supply pipe 17. Diaphragm 55 is a thin wall of copper or stainless steel 0.1 mm ~ 1
mm) plate, the adhesion to the susceptor 10 is improved in the state where pressure is applied to the chamber 14, and the thermal resistance due to contact is small.

第7図は、第2図に示す実施例とは別の実施例を示す。
特徴は、室16と室14とが、連結部61で熱的に接続されて
いて、更に室14中には冷媒15で凝縮することのないガス
を細管60より導入し、くし歯状にかみ合つたブロツク38
と冷却ステージ39が狭い間隙62より熱的につながれてい
る。この場合、ブロツク38及び冷却ステージ39は熱伝導
率の良い材料、例えば鋼などが好ましく連結部61は中程
度の熱伝導性を有するステンレス鋼やしんちゆうが良
い。間隙62の大きさは約10μm〜100μmとしつ室14中
に導入するガスはヘリウムが好ましい。こうすれば、基
板35を冷却するときは、ヒータ41を切り、連結部61及び
ブロツク38中の熱伝導、並びに間隙62でのヘリウムの熱
伝導により、冷却ステージ39を冷却する。加熱する場合
は、連結61が熱抵抗となつて室16と室14間に温度差をつ
ける。サセプタ10を着脱するときは、室14内を真空にし
て、ベローズ40の復元力により冷却ステージ39をサセプ
タ10から離せばよい。
FIG. 7 shows an embodiment different from the embodiment shown in FIG.
The feature is that the chamber 16 and the chamber 14 are thermally connected by a connecting portion 61, and a gas that does not condense with the refrigerant 15 is introduced into the chamber 14 through the thin tube 60, and is comb-shaped. Combined block 38
And the cooling stage 39 is thermally connected through a narrow gap 62. In this case, the block 38 and the cooling stage 39 are preferably made of a material having a high thermal conductivity, for example, steel or the like, and the connecting portion 61 is preferably made of stainless steel or shinchi which has a medium thermal conductivity. The size of the gap 62 is about 10 μm to 100 μm, and the gas introduced into the chamber 14 is preferably helium. In this way, when the substrate 35 is cooled, the heater 41 is turned off, and the cooling stage 39 is cooled by the heat conduction in the connecting portion 61 and the block 38 and the heat conduction of helium in the gap 62. In the case of heating, the connection 61 acts as a thermal resistance to provide a temperature difference between the chamber 16 and the chamber 14. When attaching or detaching the susceptor 10, the chamber 14 may be evacuated and the cooling stage 39 may be separated from the susceptor 10 by the restoring force of the bellows 40.

〔発明の効果〕〔The invention's effect〕

本発明によれ、高真空環境下で基板を着脱することが可
能となり、作業能率が著しく改善されるという効果があ
る。
According to the present invention, it is possible to attach and detach the substrate in a high vacuum environment, and there is an effect that work efficiency is significantly improved.

【図面の簡単な説明】[Brief description of drawings]

第1図から第7図は本発明に係る真空蒸着装置の説明図
で、第1図は実施例の概略図、第2図は装置主要部の断
面図、第3図は他の実施例の装置主要部の断面図、第4
図は保持手段の分解斜視図、第5図は更に他の実施例の
装置主要部の断面図、第6図は更に他の実施例の装置主
要部の断面図、第7図は更に他の実施例の装置主要部の
断面図である。 1……真空容器、8……基板導入機構(マニピユレー
タ)、9……装置主要部、10……サセプタ、38……ブロ
ツク(第1の部材)、39……冷却ステージ(第2の部
材)、40……ベローズ(伸縮自在なシール手段)、19,2
0……細管、37……バヨネツト(保持手段)、46……永
久磁石、54……ダイアフラム、56……フイラメント。
1 to 7 are explanatory views of a vacuum vapor deposition apparatus according to the present invention. FIG. 1 is a schematic view of an embodiment, FIG. 2 is a sectional view of a main part of the apparatus, and FIG. 3 is a view of another embodiment. Sectional view of the main part of the device, No. 4
FIG. 5 is an exploded perspective view of the holding means, FIG. 5 is a sectional view of a main part of the apparatus of yet another embodiment, FIG. 6 is a sectional view of a main part of the apparatus of yet another embodiment, and FIG. It is sectional drawing of the apparatus main part of an Example. 1 ... Vacuum container, 8 ... Substrate introduction mechanism (manipulator), 9 ... Main part of apparatus, 10 ... Susceptor, 38 ... Block (first member), 39 ... Cooling stage (second member) , 40 …… Bellows (expandable sealing means), 19,2
0 …… Small tube, 37 …… Bayonet (holding means), 46 …… Permanent magnet, 54 …… Diaphragm, 56 …… Filament.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田村 直行 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 金井 謙雄 山口県下松市東豊井794番地 株式会社日 立製作所笠戸工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoyuki Tamura 502 Jinritsucho, Tsuchiura-shi, Ibaraki Hiritsu Seisakusho Co., Ltd. (72) Inventor Keno Kanai 794 Higashitoyoi Higashitoyo, Kumamatsu-shi, Yamaguchi Hiritsu Seisakusho Co., Ltd. Inside the factory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】真空容器,真空容器内部を真空にする手
段、基板を一方の面に搭載するサセプタ、蒸着源又は分
子線源を有し、基板に薄膜を形成する真空蒸着装置にお
いて、熱伝導性の第1の部材と第2の部材とが少なくと
も基板方向に相対的に移動可能で、かつ両部材間に形成
される部屋を伸縮自在にシールする手段と、前記第1の
部材は第2の部材に熱を供給する手段と、前記部材に冷
媒を供給する手段と、サセプタを前記第1の部材に着脱
自在に保持する手段と、サセプタの他方の面と前記第2
の部材とを密着させるように第2の部材を移動させる手
段と、真空容器と仕切り弁を介して接続する予備真空室
と、真空容器と前記予備真空室とを往来して基板の着脱
操作をする。マニピユレータを設けることを特徴とする
真空蒸着装置。
1. A vacuum vapor deposition apparatus for forming a thin film on a substrate, comprising a vacuum container, a means for evacuating the interior of the vacuum container, a susceptor for mounting a substrate on one surface, a vapor deposition source or a molecular beam source, and thermal conduction. Of the flexible first member and the second member are relatively movable in at least the direction of the substrate, and a means for elastically sealing the chamber formed between the two members, and the first member is the second member. Means for supplying heat to the member, means for supplying the refrigerant to the member, means for detachably holding the susceptor on the first member, the other surface of the susceptor and the second member.
Means for moving the second member so as to bring the member into close contact with the other member, a preliminary vacuum chamber connected to the vacuum container through a partition valve, and a vacuum container and the preliminary vacuum chamber are moved back and forth to attach and detach the substrate. To do. A vacuum vapor deposition device characterized by being provided with a manipulator.
【請求項2】第2の部材に永久磁石を設けることを特徴
とする特許請求の範囲第1項記載の真空蒸着装置。
2. The vacuum vapor deposition apparatus according to claim 1, wherein a permanent magnet is provided on the second member.
JP3922886A 1986-02-26 1986-02-26 Vacuum deposition equipment Expired - Lifetime JPH0739630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3922886A JPH0739630B2 (en) 1986-02-26 1986-02-26 Vacuum deposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3922886A JPH0739630B2 (en) 1986-02-26 1986-02-26 Vacuum deposition equipment

Publications (2)

Publication Number Publication Date
JPS62199769A JPS62199769A (en) 1987-09-03
JPH0739630B2 true JPH0739630B2 (en) 1995-05-01

Family

ID=12547268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3922886A Expired - Lifetime JPH0739630B2 (en) 1986-02-26 1986-02-26 Vacuum deposition equipment

Country Status (1)

Country Link
JP (1) JPH0739630B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9102052U1 (en) * 1991-02-21 1991-06-13 Hauzer Holding B.V., Venlo Indirectly cooled evaporator with quick change system
EP0512456B1 (en) * 1991-05-08 1997-06-18 Balzers Aktiengesellschaft Process for fitting and removal of a target plate in a vacuum processing chamber, fitting therefor, target plate and vacuum chamber

Also Published As

Publication number Publication date
JPS62199769A (en) 1987-09-03

Similar Documents

Publication Publication Date Title
TW495827B (en) A cylindrical carriage sputtering system
US4938815A (en) Semiconductor substrate heater and reactor process and apparatus
TW552307B (en) Heated and cooled vacuum chamber shield
JP3246708B2 (en) Trap device and unreacted process gas exhaust mechanism using the same
US5704214A (en) Apparatus for removing tramp materials and method therefor
JPH0714472B2 (en) High vacuum equipment
JP2000505152A (en) Thermally conductive chuck for vacuum processing equipment
TW322592B (en)
US20080314320A1 (en) Chamber Mount for High Temperature Application of AIN Heaters
US4891335A (en) Semiconductor substrate heater and reactor process and apparatus
US6652655B1 (en) Method to isolate multi zone heater from atmosphere
JPH0739630B2 (en) Vacuum deposition equipment
JPH07201956A (en) Wafer cooling apparatus
JP3617860B2 (en) Substrate processing method and substrate processing apparatus
JPS6314858A (en) Vacuum deposition device
US3288700A (en) Sputtering apparatus including a folded flexible conveyor
JP2713956B2 (en) Low temperature dry etching equipment
JP2951876B2 (en) Substrate processing method and substrate processing apparatus
JP4165745B2 (en) Semiconductor wafer holding device
GB1004739A (en) Improvements in or relating to vacuum deposition apparatus
JPH02111873A (en) Knudsen-type vaporization source device for vapor deposition device
JP2000208083A (en) Sample cooling device for electron microscope
JP2579490B2 (en) Method for forming ohmic contact electrode layer and apparatus used therefor
Robins et al. An all-metal bakeable ultrahigh vacuum system for nucleation studies
JP2797111B2 (en) Sputtering equipment