JP2000208083A - Sample cooling device for electron microscope - Google Patents

Sample cooling device for electron microscope

Info

Publication number
JP2000208083A
JP2000208083A JP11011722A JP1172299A JP2000208083A JP 2000208083 A JP2000208083 A JP 2000208083A JP 11011722 A JP11011722 A JP 11011722A JP 1172299 A JP1172299 A JP 1172299A JP 2000208083 A JP2000208083 A JP 2000208083A
Authority
JP
Japan
Prior art keywords
sample
refrigerant
cooling
temperature
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP11011722A
Other languages
Japanese (ja)
Inventor
Isamu Ishikawa
勇 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP11011722A priority Critical patent/JP2000208083A/en
Publication of JP2000208083A publication Critical patent/JP2000208083A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a sample cooling device for an electron microscope wherein an exclusive-use helium cooling stage for cooling the sample in the electron microscope to a very low temperature (several K) by liquid helium, and then observing and analyzing it can be also used at a low temperature (several tens of K) as another cooling temperature by the use of liquid nitrogen. SOLUTION: This device is provided with: a sample holding member 40 in which a sample holding part 10 for holding a sample is formed at its central part, and a refrigerant reservoir for receiving a refrigerant for cooling the sample is formed in the outside periphery of the sample holding part 10; two refrigerant tanks 9, 15 for storing two kinds of refrigerants; and two capillaries for making the two refrigerant tanks 9, 15 with the refrigerant reservoir; and is also provided with a mechanism for selectively feeding the two kinds of refrigerants to the refrigerant reservoir.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電子顕微鏡を使用
して観察、分析する試料を冷却する試料冷却装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sample cooling device for cooling a sample to be observed and analyzed using an electron microscope.

【0002】[0002]

【従来の技術】一般に、電子顕微鏡で医学生物分野の試
料を観察する場合、試料に電子線を照射すると試料は、
構造が破壊され正常状態での観察することができない場
合がある。このような場合、試料を極低温に冷却してお
くと、電子線を照射しても壊れにくくなり、正常な状態
の試料を観察することが可能となる。そのため、試料を
液体ヘリウムで極低温(数K)に冷却して観察すること
が行われている。このような極低温(数K)に冷却する
試料導入方式としては、冷却効率を上げ保持するため
に、冷却部を常時真空中に形成する構造が有利であるこ
とより、トップエントリー方式が広く用いられる。この
トップエントリー方式は、対物レンズの上方からマニュ
ピュレターで試料を試料ステージの所定の位置に収める
方式で、機械的安定性に優れ、対物レンズのギャップを
小さくできることから、高分解能の観察に適している。
2. Description of the Related Art Generally, when observing a sample in the field of medicine and biology with an electron microscope, when the sample is irradiated with an electron beam, the sample becomes
In some cases, the structure is destroyed and observation in a normal state cannot be performed. In such a case, if the sample is cooled to an extremely low temperature, the sample is hardly broken even when irradiated with an electron beam, and the sample in a normal state can be observed. For this reason, it has been practiced to cool a sample to a very low temperature (several K) with liquid helium for observation. As a sample introduction method for cooling to extremely low temperature (several K), a top entry method is widely used because a structure in which a cooling unit is constantly formed in vacuum is advantageous in order to increase and maintain cooling efficiency. Can be This top entry method is a method in which a sample is placed in a predetermined position on the sample stage by a manual letter from above the objective lens. It has excellent mechanical stability and can reduce the gap between the objective lenses, making it suitable for high-resolution observation. ing.

【0003】従来より、その一例としてヘリウム冷却ス
テージを備えた電子顕微鏡装置が知られている。このヘ
リウム冷却ステージは、液体ヘリウムを溜め極低温冷却
できる試料保持部に、試料を装着した試料筒を密着挿入
し、熱伝導によって試料を極低温に冷却する機構を備え
ている。試料保持部には、液体ヘリウムタンクより液体
ヘリウムが補給されるようにキャピラリーが接続され、
極低温が保持される。
Conventionally, as one example, an electron microscope apparatus having a helium cooling stage has been known. The helium cooling stage is provided with a mechanism for closely inserting a sample tube having a sample mounted thereon into a sample holding portion capable of storing liquid helium and cooling at a very low temperature, and cooling the sample to a very low temperature by heat conduction. A capillary is connected to the sample holder so that liquid helium is supplied from the liquid helium tank,
Cryogenic temperatures are maintained.

【0004】この試料保持部は、熱絶縁部材を介して試
料ステージに組み込まれ水平2方向のX軸,Y軸に移動
ができる。これら極低温部(液体ヘリウムタンク、試料
保持部等)は、熱絶縁部材を介して液体窒素によって冷
却された部材に固定され、それらの部材は熱絶縁部材を
介して常温の試料室に接続されている。即ち、ヘリウム
冷却ステージは、極低温部(試料保持部、液体ヘリウム
タンク)と常温部(試料室壁等)との間に極低温と低温
の中間温度の熱絶縁材部−液体窒素冷却による低温部
(液体窒素タンク、試料ステージ、固定部材等)−低温
と常温の中間温度の熱絶縁部材からなる3段階の熱遮蔽
構造が設けられている。このような熱の遮蔽構造を持つ
ことにより、試料を極低温にて長時間にわたり安定に保
持できる。また、機械的には、高分解能観察のために試
料の振動を極力小さくするため、熱絶縁を保ちながら、
各部材の接合面を密着させて剛性を上げる機構が施され
ている。
[0004] The sample holding section is incorporated into a sample stage via a heat insulating member and can move in two horizontal X- and Y-axes. These cryogenic parts (liquid helium tank, sample holding part, etc.) are fixed to members cooled by liquid nitrogen via a heat insulating member, and these members are connected to a normal temperature sample chamber via the heat insulating member. ing. That is, the helium cooling stage is provided between the cryogenic part (sample holding part, liquid helium tank) and the room temperature part (sample chamber wall, etc.) at a temperature between the cryogenic temperature and the low temperature. Unit (Liquid Nitrogen Tank, Sample Stage, Fixed Member, etc.)-A three-stage heat shielding structure comprising a heat insulating member at an intermediate temperature between low temperature and normal temperature is provided. By having such a heat shielding structure, the sample can be stably held at an extremely low temperature for a long time. Mechanically, to minimize vibration of the sample for high-resolution observation, while maintaining thermal insulation,
A mechanism is provided to increase the rigidity by bringing the joining surfaces of the members into close contact.

【0005】ヘリウム冷却ステージは、前記のような構
造を持たすことが必要なため、試料室内に固定される。
Since the helium cooling stage needs to have the above-mentioned structure, it is fixed in the sample chamber.

【0006】[0006]

【発明が解決しようとする課題】ところで、このような
ヘリウム冷却ステージを備えた電子顕微鏡は、液体ヘリ
ウムを使用した数K程度の温度での試料観察及び、液体
ヘリウムを使用しない常温での試料観察はできるもの
の、その中間の数十K程度の温度での試料観察はできな
かった。
An electron microscope equipped with such a helium cooling stage is capable of observing a sample at a temperature of about several K using liquid helium and observing a sample at room temperature without using liquid helium. Although it was possible, the sample could not be observed at a temperature of about several tens K in the middle.

【0007】本発明は、上記の問題点を解決すべくなさ
れたものであり、試料の冷却温度を極低温以外の低温で
使用できる、電子顕微鏡の試料冷却装置を供給すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and has as its object to provide a sample cooling device for an electron microscope that can be used at a low cooling temperature other than the cryogenic temperature.

【0008】[0008]

【課題を解決するための手段】この目的を達成するため
の本発明は、試料を保持する試料保持部が中央部分に設
けられ、前記試料保持部の外周に前記試料を冷却する冷
媒を収容する冷媒溜が設けられた試料保持部材と、前記
冷媒を2種貯蔵するため2つの冷媒タンクと、前記2つ
の冷媒タンクと前記冷媒溜とを連通する2つのキャピラ
リーを備え、前記冷媒溜に前記2種の冷媒を選択供給す
る機構が設けられていることを特徴とする。
According to the present invention, a sample holding portion for holding a sample is provided at a central portion, and a coolant for cooling the sample is accommodated on an outer periphery of the sample holding portion. A sample holding member provided with a coolant reservoir, two coolant tanks for storing two kinds of the coolant, and two capillaries communicating the two coolant tanks and the coolant reservoir are provided. A mechanism for selectively supplying a kind of refrigerant is provided.

【0009】[0009]

【発明の実施の形態】以下、図面を参照して、本発明の
実施の形態を詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0010】図1は本発明にかかわる試料冷却装置の一
実施例を示す概略説明図である。図1において、電子顕
微鏡の対物レンズ1はヨーク2、下極ポールピース3お
よび上極ポールピース4を有している。ヨーク2の上部
には電子顕微鏡の外壁6がヨーク2の側面と側壁と一体
的に連結されており、外壁6の上端には仕切り壁7が連
結されている。外壁6および仕切り壁7の内側には真空
に保持された試料室5が形成されている。
FIG. 1 is a schematic explanatory view showing one embodiment of a sample cooling device according to the present invention. In FIG. 1, an objective lens 1 of an electron microscope has a yoke 2, a lower pole piece 3, and an upper pole piece 4. An outer wall 6 of the electron microscope is integrally connected to an upper portion of the yoke 2 with a side surface and a side wall of the yoke 2, and a partition wall 7 is connected to an upper end of the outer wall 6. A sample chamber 5 held in a vacuum is formed inside the outer wall 6 and the partition wall 7.

【0011】試料室5には、試料冷却装置の円筒状の固
定部材8が熱絶縁部材19を介してヨーク2に接続され
ている。固定部材8の上部には、液体窒素タンク9が設
けられている。液体窒素タンク9内には、液体窒素LN
2が貯蔵され、液体窒素LN2供給用のバルブ20が設
けられている。固定部材8は液体窒素タンク9に貯蔵さ
れている液体窒素LN2により冷却される。固定部材8
の内側には、熱絶縁部材12を介してリング状の液体ヘ
リウムタンク15が支持されている。液体ヘリウムタン
ク15内には液体ヘリウムLHeが貯蔵されている。
In the sample chamber 5, a cylindrical fixing member 8 of the sample cooling device is connected to the yoke 2 via a heat insulating member 19. Above the fixing member 8, a liquid nitrogen tank 9 is provided. The liquid nitrogen tank 9 contains liquid nitrogen LN
2 is stored, and a valve 20 for supplying liquid nitrogen LN2 is provided. The fixing member 8 is cooled by the liquid nitrogen LN2 stored in the liquid nitrogen tank 9. Fixing member 8
Inside, a ring-shaped liquid helium tank 15 is supported via a heat insulating member 12. Liquid helium LHe is stored in the liquid helium tank 15.

【0012】液体ヘリウムタンク15の下側のヨーク2
aの上面には、試料ステージ11が位置調整可能に支持
されている。試料ステージ11は熱伝導材の編組線18
を介して固定部材8に接続されて、冷却温度はほぼ固定
部材8の冷却温度と同じ程度に冷却されている。試料ス
テージ11の内側には、熱絶縁部材13を介して試料保
持部10が支持されている。
The lower yoke 2 of the liquid helium tank 15
A sample stage 11 is supported on the upper surface of a so that the position can be adjusted. The sample stage 11 is a braided wire 18 made of a heat conductive material.
The cooling temperature is substantially the same as the cooling temperature of the fixing member 8. A sample holder 10 is supported inside the sample stage 11 via a heat insulating member 13.

【0013】試料保持部10は、冷媒溜10aを有し、
その内側には略円筒形状で試料(図示せず)を保持する
試料筒16が密着挿入されている。冷媒溜10aには、
液体ヘリウムタンク15に接続されたキャピラリー
(A)14と、液体窒素タンク9からバルブ20を介し
てキャピラリー(B)31が接続されている。また、両
キャピラリー(A,B)14、31はコイル状になって
おり、試料ステージ11を移動させて試料保持部10を
位置調節する際、移動の障害とならないようになってい
る。
The sample holder 10 has a coolant reservoir 10a,
A sample cylinder 16 having a substantially cylindrical shape and holding a sample (not shown) is closely inserted into the inside thereof. In the refrigerant reservoir 10a,
The capillary (A) 14 connected to the liquid helium tank 15 and the capillary (B) 31 from the liquid nitrogen tank 9 via a valve 20 are connected. Further, both capillaries (A, B) 14 and 31 are formed in a coil shape so as not to hinder movement when the sample stage 11 is moved to adjust the position of the sample holding unit 10.

【0014】冷媒溜10aには排気管17がまたバルブ
20には排気管33が接続されている。排気管17、3
3の他端は試料室5外に配置された開閉バルブ(図示せ
ず)を介して真空ポンプ(図示せず)に接続されてい
る。また、液体窒素タンク9には、窒素ガス供給用の配
管32が接続されている。ガス供給用の配管32の他端
は試料室5外に配置された窒素ガスの圧力調整バルブ
(図示せず)を介して窒素ガスボンベ(図示せず)に接
続されている。
An exhaust pipe 17 is connected to the refrigerant reservoir 10a, and an exhaust pipe 33 is connected to the valve 20. Exhaust pipe 17, 3
The other end of 3 is connected to a vacuum pump (not shown) via an open / close valve (not shown) arranged outside the sample chamber 5. Further, a pipe 32 for supplying nitrogen gas is connected to the liquid nitrogen tank 9. The other end of the gas supply pipe 32 is connected to a nitrogen gas cylinder (not shown) via a nitrogen gas pressure adjusting valve (not shown) arranged outside the sample chamber 5.

【0015】一方、バルブ20は、弁本体21の側面に
設けられた流入穴26および流出穴25と、この流入穴
26と流出穴25とを遮断するための弁体24と、この
弁体24と弁本体21の上部との間に夫々固定された金
属ベローズ22と、金属ベーロ22を常圧においては常
に押し広げてるためのスプリング23から構成されてい
る。金属ベーロ22内の圧力が通常の大気圧状態におい
ては、弁体24が流出穴26を閉じているため、流入穴
26と流出穴25とが遮断される。また、ベローズ22
内を排気管33を通して真空ポンプにより減圧状態にす
ると、ベローズ22が収縮し弁体24が流出穴26より
持ち上がることにより、流入穴26と流出穴25とが開
放される。
On the other hand, the valve 20 has an inflow hole 26 and an outflow hole 25 provided on the side surface of the valve body 21, a valve body 24 for shutting off the inflow hole 26 and the outflow hole 25, and a valve body 24. And a metal bellows 22 fixed between the valve body 21 and an upper part of the valve body 21, and a spring 23 for constantly expanding the metal bellows 22 at normal pressure. When the pressure inside the metal vero 22 is in a normal atmospheric pressure state, since the valve body 24 closes the outflow hole 26, the inflow hole 26 and the outflow hole 25 are shut off. Bellows 22
When the inside is depressurized by a vacuum pump through the exhaust pipe 33, the bellows 22 contracts and the valve body 24 is lifted from the outlet hole 26, so that the inlet hole 26 and the outlet hole 25 are opened.

【0016】本試料冷却装置は、基本的に従来のヘリウ
ム冷却ステージと同様な熱遮蔽構造が設けられている。
即ち、熱的には、極低温部(液体ヘリウムタンク15,
試料保持部10)と常温部(ヨーク2)との間に極低温
と低温の中間温度の熱絶縁部(熱絶縁部材12,13)
−液体窒素冷却による低温部(液体窒素タンク9、試料
ステージ11,固定部材8)−低温と常温の中間温度の
熱絶縁部(熱絶縁部材19)からなる3段階の熱遮蔽構
造が設けられている。このような構成の動作について、
極低温(数K)でも用いる場合と低温(数十K)で用い
る場合について次に説明する。
This sample cooling device is provided with a heat shielding structure basically similar to that of a conventional helium cooling stage.
That is, thermally, the cryogenic portion (liquid helium tank 15,
Between the sample holding part 10) and the room temperature part (yoke 2), a heat insulating part (heat insulating members 12, 13) at an intermediate temperature between extremely low temperature and low temperature.
-A low-temperature part by liquid nitrogen cooling (liquid nitrogen tank 9, sample stage 11, fixing member 8)-A three-stage heat shielding structure including a heat insulating part (heat insulating member 19) at an intermediate temperature between low temperature and normal temperature is provided. I have. Regarding the operation of such a configuration,
Next, a description will be given of a case where the device is used at a very low temperature (several K) and a case where the device is used at a low temperature (several tens K).

【0017】1)試料を極低温(数K)にて冷却する場
合についての動作を説明する。
1) The operation when the sample is cooled at an extremely low temperature (several K) will be described.

【0018】図1に示すように、まず、はじめに試料筒
16内に試料(図示せず)を装着し、その試料筒16を
試料保持部10内に密着挿入する。次に、排気管17か
ら試料保持部10の冷媒溜10a内を排気して大気圧以
下に減圧する。減圧された冷媒溜10a内には、液体ヘ
リウムタンク15内の液体ヘリウムLHeがキャピラリ
(A)14を介して流入する。この際、液体ヘリウムL
Heは、キャピラリー(A)14内の管路抵抗によって
一定の流量制限を受けて冷媒溜10a内に流入される。
一方、冷媒溜10a内には液体窒素LN2供給用のキャ
ピラリー(B)が同時に接続されているが、液体窒素タ
ンク9内のバルブ20を閉じて置くことにより液体窒素
LN2は流入しない。
As shown in FIG. 1, first, a sample (not shown) is mounted in the sample tube 16, and the sample tube 16 is closely inserted into the sample holder 10. Next, the inside of the refrigerant reservoir 10a of the sample holding unit 10 is exhausted from the exhaust pipe 17 to reduce the pressure to the atmospheric pressure or less. The liquid helium LHe in the liquid helium tank 15 flows into the depressurized refrigerant reservoir 10a via the capillary (A) 14. At this time, liquid helium L
He flows into the refrigerant reservoir 10a under a certain flow rate restriction due to the pipe resistance in the capillary (A) 14.
On the other hand, a capillary (B) for supplying liquid nitrogen LN2 is connected to the refrigerant reservoir 10a at the same time, but the liquid nitrogen LN2 does not flow in by closing the valve 20 in the liquid nitrogen tank 9.

【0019】冷媒溜10a内ヘリウムは、大気圧以下に
減圧されていることにより沸騰現象を伴わない超流動状
態となる。冷媒溜10a内は液体ヘリウムLHeの蒸発
により温度が下り、大気圧での液体ヘリウムの沸点であ
る4.2K以下の1.5K程度の極低温に保持される。
その結果、試料筒16内の試料温度は、冷媒溜10aよ
り試料保持部10および試料筒16を介して熱伝導によ
り、極低温(数K)に冷却される。また、上述のような
3段階の遮蔽構造をもつことにより、試料を極低温(数
K)にて長時間にわたり安定に保持できる。
The helium in the refrigerant reservoir 10a is in a superfluid state without a boiling phenomenon due to the reduced pressure below the atmospheric pressure. The temperature in the refrigerant reservoir 10a is lowered by the evaporation of the liquid helium LHe, and is maintained at an extremely low temperature of about 1.5K, which is 4.2K or less, which is the boiling point of liquid helium at atmospheric pressure.
As a result, the temperature of the sample in the sample tube 16 is cooled to an extremely low temperature (several K) by heat conduction from the coolant reservoir 10a through the sample holding unit 10 and the sample tube 16. Further, by having the above-described three-stage shielding structure, the sample can be stably held at an extremely low temperature (several K) for a long time.

【0020】2)低温(数十K)にて観察する場合につ
いて動作を説明する。
2) The operation for observation at a low temperature (several tens of K) will be described.

【0021】試料は極低温(数K)の場合と同様に試料
筒16内に装着し、その試料筒16を試料保持部10内
に密着挿入する。試料筒16を低温(数十K)にするに
は、試料保持部10の冷媒溜10aに液体ヘリウムLH
eの代わりに液体窒素LN2を供給することにより、液
体窒素温度の約77Kが得られる。冷媒溜10aへの液
体窒素LN2の供給は、液体窒素タンク9のバルブ20
を開き、液体窒素タンク9に微圧を加えることにより行
う。バルブ20を開くには、ベローズ22内を排気管3
3を通して真空ポンプによって減圧する。これにより、
ベローズ22が収縮し弁体24が上がり流入穴26と流
出穴25とが開放される。また、液体窒素タンク9に微
圧を加えるには、窒素ガスボンベに接続されている圧力
調整バルブによって窒素ガスの圧力を調整し、配管32
を通して圧をかける。これらにより、液体窒素LN2
は、キャピラリー(B)を通して試料保持部10の冷媒
溜10a内に流入する。
The sample is mounted in the sample tube 16 as in the case of extremely low temperature (several K), and the sample tube 16 is closely inserted into the sample holder 10. In order to lower the temperature of the sample tube 16 (several tens of K), the liquid helium LH is stored in the refrigerant reservoir 10a of the sample holder 10.
By supplying liquid nitrogen LN2 instead of e, a liquid nitrogen temperature of about 77K is obtained. Supply of the liquid nitrogen LN2 to the refrigerant reservoir 10a is performed by the valve 20 of the liquid nitrogen tank 9.
Is opened and a slight pressure is applied to the liquid nitrogen tank 9. To open the valve 20, the exhaust pipe 3
The pressure is reduced by a vacuum pump through 3. This allows
The bellows 22 contracts, the valve body 24 rises, and the inflow hole 26 and the outflow hole 25 are opened. Further, in order to apply a slight pressure to the liquid nitrogen tank 9, the pressure of the nitrogen gas is adjusted by a pressure adjusting valve connected to the nitrogen gas cylinder, and
Apply pressure through. With these, liquid nitrogen LN2
Flows into the coolant reservoir 10a of the sample holder 10 through the capillary (B).

【0022】なお、液体ヘリウムは、圧力をかけて液体
窒素を流入させているため、冷媒溜10aには流入しな
い。
Note that liquid helium does not flow into the refrigerant reservoir 10a because liquid nitrogen is flowed under pressure.

【0023】冷媒溜10a内は、液体窒素LN2の蒸発
温度に冷却され、約77Kに保持される。その結果、試
料筒16内の試料温度は、冷媒溜10aより試料保持部
10および試料筒16を介して熱伝導により、約80K
前後に冷却される。
The inside of the refrigerant reservoir 10a is cooled to the evaporation temperature of the liquid nitrogen LN2 and is maintained at about 77K. As a result, the temperature of the sample in the sample tube 16 becomes approximately 80K due to heat conduction from the coolant reservoir 10a through the sample holding unit 10 and the sample tube 16.
Cooled back and forth.

【0024】本発明では、上記のような構造にすること
により、試料の冷却温度をヘリウムの極低温(数K)以
外に液体窒素の低温(数十K)でも使用できる機能を追
加することができた。
In the present invention, by adopting the above-described structure, it is possible to add a function that allows the cooling temperature of the sample to be used not only at the very low temperature of helium (several K) but also at the low temperature of liquid nitrogen (several tens of K). did it.

【0025】以上、本発明の実施の形態を説明したが、
本発明は上記の形態に限定されるものではない。例え
ば、液体窒素を用いる冷却温度は、液体窒素LN2の供
給用のキャピラリー(B)の中間部に供給電力量を制御
できるヒータを設け、このヒータの温度を制御すること
により、例えば80K〜120K程度の範囲で可変する
ことができる。
The embodiment of the present invention has been described above.
The present invention is not limited to the above embodiment. For example, the cooling temperature using liquid nitrogen can be set to, for example, about 80K to 120K by providing a heater capable of controlling the amount of power supply in the middle of the capillary (B) for supplying liquid nitrogen LN2 and controlling the temperature of the heater. Can be varied within the range.

【0026】[0026]

【発明の効果】以上の説明からあきらかのように、本発
明においては、試料を保持する試料保持部が中央部分に
設けられ、前記試料保持部の外周に前記試料を冷却する
冷媒を収容する冷媒溜が設けられた試料保持部材と、前
記冷媒を2種貯蔵するため2つの冷媒タンクと、前記2
つの冷媒タンクと前記冷媒溜とを連通する2つのキャピ
ラリーを備え、前記冷媒溜に前記2種の冷媒を選択供給
する機構が設けられている。その結果、試料の冷却温度
をヘリウムの極低温(数K)以外の液体窒素の低温(数
十K)でも使用できる機能を追加することができ、従来
では、個別の専用の電子顕微鏡を必要とされていたこと
が、一台の装置で観察および分析することができるよう
になった。
As apparent from the above description, in the present invention, the sample holding portion for holding the sample is provided at the center portion, and the refrigerant for cooling the sample is stored on the outer periphery of the sample holding portion. A sample holding member provided with a reservoir, two refrigerant tanks for storing two types of the refrigerant,
Two refrigerant tanks and two capillaries communicating the refrigerant reservoir are provided, and a mechanism for selectively supplying the two types of refrigerant to the refrigerant reservoir is provided. As a result, it is possible to add a function that can be used even at a low temperature of liquid nitrogen (several tens of K) other than the extremely low temperature of helium (several K) as the cooling temperature of the sample. Conventionally, a separate dedicated electron microscope is required. What has been done now can be observed and analyzed with a single device.

【0027】[0027]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の試料冷却装置の一実施例の構成図を示
す。
FIG. 1 shows a configuration diagram of an embodiment of a sample cooling device of the present invention.

【符号の説明】[Explanation of symbols]

1…対物レンズ、2…ヨーク、3…下極ポールピース、
4…上極ポールピース、5…試料室、6…外壁、7…仕
切り壁、8…固定部材、9…液体窒素タンク、10…試
料保持部、11…試料ステージ、12、13、19…熱
絶縁部材、14、31…キャピラリー(A、B)、15
…液体ヘリウムタンク、16…試料筒、17、33…排
気管、18…編組線、20…バルブ、32…配管、
1. Objective lens, 2. Yoke, 3. Lower pole piece,
4 upper pole piece, 5 sample chamber, 6 outer wall, 7 partition wall, 8 fixing member, 9 liquid nitrogen tank, 10 sample holder, 11 sample stage, 12, 13, 19 heat Insulating members, 14, 31 ... Capillary (A, B), 15
... liquid helium tank, 16 ... sample cylinder, 17, 33 ... exhaust pipe, 18 ... braided wire, 20 ... valve, 32 ... piping,

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】試料を保持する試料保持部が中央部分に設
けられ、前記試料保持部の外周に前記試料を冷却する冷
媒を収容する冷媒溜が設けられた試料保持部材と、前記
冷媒を2種貯蔵するため2つの冷媒タンクと、前記2つ
の冷媒タンクと前記冷媒溜とを連通する2つのキャピラ
リーを備え、前記冷媒溜に前記2種の冷媒を選択供給す
る機構が設けられていることを特徴とする電子顕微鏡の
試料冷却装置。
A sample holding member provided at a center portion for holding a sample, a sample holding member provided with a coolant reservoir for containing a coolant for cooling the sample on an outer periphery of the sample holding portion, Two refrigerant tanks for storing seeds, and two capillaries communicating the two refrigerant tanks and the refrigerant reservoir, wherein a mechanism for selectively supplying the two refrigerants to the refrigerant reservoir is provided. A sample cooling device for electron microscopes.
【請求項2】請求項1記載の電子顕微鏡の試料冷却装置
において、前記冷媒溜に前記2種の冷媒を選択供給する
機構は、該冷媒溜内を減圧するための配管と、前記2つ
の冷媒タンクのうち少なくとも1つのタンクからの冷媒
の供給を継続するための弁と、該弁を介して送液すべき
冷媒タンク内の圧力を上げるためのガス供給配管とから
構成されることを特徴とする電子顕微鏡の試料冷却装
置。
2. A sample cooling device for an electron microscope according to claim 1, wherein the mechanism for selectively supplying the two types of refrigerant to the refrigerant reservoir includes a pipe for reducing the pressure in the refrigerant reservoir, and the two refrigerants. A valve for continuing the supply of the refrigerant from at least one of the tanks, and a gas supply pipe for increasing the pressure in the refrigerant tank to be fed through the valve. Electron microscope sample cooling device.
JP11011722A 1999-01-20 1999-01-20 Sample cooling device for electron microscope Withdrawn JP2000208083A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11011722A JP2000208083A (en) 1999-01-20 1999-01-20 Sample cooling device for electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11011722A JP2000208083A (en) 1999-01-20 1999-01-20 Sample cooling device for electron microscope

Publications (1)

Publication Number Publication Date
JP2000208083A true JP2000208083A (en) 2000-07-28

Family

ID=11785945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11011722A Withdrawn JP2000208083A (en) 1999-01-20 1999-01-20 Sample cooling device for electron microscope

Country Status (1)

Country Link
JP (1) JP2000208083A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192616A (en) * 2007-02-05 2008-08-21 Fei Co Device for observing sample with particle beam and optical microscope
EP1975974A2 (en) 2007-03-30 2008-10-01 Jeol Ltd. Specimen stage-moving device for charged-particle beam system
JP2009289670A (en) * 2008-05-30 2009-12-10 Hitachi High-Technologies Corp Ion beam device
WO2010092747A1 (en) 2009-02-16 2010-08-19 株式会社 日立ハイテクノロジーズ Electron beam device and sample holding device for electron beam device
US10068745B2 (en) 2013-10-07 2018-09-04 Hitachi High-Technologies Corporation Charged particle beam device and sample holder for charged particle beam device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008192616A (en) * 2007-02-05 2008-08-21 Fei Co Device for observing sample with particle beam and optical microscope
EP1975974A2 (en) 2007-03-30 2008-10-01 Jeol Ltd. Specimen stage-moving device for charged-particle beam system
US8008633B2 (en) 2007-03-30 2011-08-30 Jeol, Ltd. Specimen stage-moving device for charged-particle beam system
JP2009289670A (en) * 2008-05-30 2009-12-10 Hitachi High-Technologies Corp Ion beam device
WO2010092747A1 (en) 2009-02-16 2010-08-19 株式会社 日立ハイテクノロジーズ Electron beam device and sample holding device for electron beam device
US8604429B2 (en) 2009-02-16 2013-12-10 Hitachi High-Technologies Corporation Electron beam device and sample holding device for electron beam device
US10068745B2 (en) 2013-10-07 2018-09-04 Hitachi High-Technologies Corporation Charged particle beam device and sample holder for charged particle beam device

Similar Documents

Publication Publication Date Title
JP3996935B2 (en) Cryostat structure
JP4031121B2 (en) Cryostat equipment
US6389821B2 (en) Circulating cryostat
EP1557624A2 (en) Cryogenic system
JP2013522574A (en) Method and apparatus for controlling temperature in a cryogenic cryostat using stationary and flowing gases
JP4891746B2 (en) Cooling device for analyzer and gas chromatograph device
US9958520B2 (en) Introducing an NMR apparatus comprising cooled probe components via a vacuum lock
JP4431793B2 (en) Cryostat
US8604446B2 (en) Devices and methods for cryo lift-out with in situ probe
US20170284725A1 (en) Cryostat with a first and a second helium tank, which are separated from one another in a liquid-tight manner at least in a lower part
US20060225437A1 (en) Ultracryostat and frigidity supplying apparatus
US20050086946A1 (en) Specimen cooling system of focused ion beam apparatus
JPH09120789A (en) Specimen cooling system
JP2000208083A (en) Sample cooling device for electron microscope
JP3374273B2 (en) High magnetic field low temperature physical property measurement device
JP3615589B2 (en) Sample holding device for dilution cooler and dilution cooler equipped with such sample holding device
JP2009168272A (en) Cryostat
KR101478288B1 (en) Cryogenic probestation with re-condensing type of cryogen
JP4759551B2 (en) Flow cooling magnet system
JP3285751B2 (en) Magnetic refrigerator
JP2000251819A (en) Sample cooling holder
JP2008261616A (en) Cryogenic refrigerator
JP6764902B2 (en) Sample holder
US3171957A (en) Specimen holder for an electron microscope with means to support a specimen across a thermocouple junction
JP2003075004A (en) Cryogenic apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20060404