JPH0739380A - Mutarotase gene, recombinant dna incorporated with the same and production of mutarotase - Google Patents

Mutarotase gene, recombinant dna incorporated with the same and production of mutarotase

Info

Publication number
JPH0739380A
JPH0739380A JP5208328A JP20832893A JPH0739380A JP H0739380 A JPH0739380 A JP H0739380A JP 5208328 A JP5208328 A JP 5208328A JP 20832893 A JP20832893 A JP 20832893A JP H0739380 A JPH0739380 A JP H0739380A
Authority
JP
Japan
Prior art keywords
mutarotase
gly
val
dna
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5208328A
Other languages
Japanese (ja)
Inventor
Masaya Chiba
誠哉 千葉
Ryuichi Oya
隆一 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amano Enzyme Inc
Original Assignee
Amano Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amano Pharmaceutical Co Ltd filed Critical Amano Pharmaceutical Co Ltd
Priority to JP5208328A priority Critical patent/JPH0739380A/en
Publication of JPH0739380A publication Critical patent/JPH0739380A/en
Pending legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To provide a DNA bearing the genetic information of mutarotase, provide a recombinant DNA obtained by incorporating said DNA into a vector, and provide a method for producing mutarotase using a transformant obtained by transformation with this recombinant DNA. CONSTITUTION:The objective DNA coding amino acids derived from swine kidney. Besides, it has been confirmed that this gene is capable of producing MUT through incorporation into an appropriate manifestation system; thereby, mutarotase can be produced in great quantities at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ムタロターゼ(以下、
MUTという)の遺伝情報を担うDNA及び当該DNA
をベクターに組み込んだ組換えDNA並びに組換えDN
Aで形質転換された形質転換体によるMUTの製造法に
関する。
The present invention relates to mutarotase (hereinafter referred to as
DNA that carries the genetic information of MUT) and the DNA
DNA and recombinant DN in which vector is incorporated
The present invention relates to a method for producing MUT using a transformant transformed with A.

【0002】更に詳細には、豚腎臓由来のMUTの遺伝
情報を担うDNA及び当該DNAをベクターに組み込ん
で形質転換された大腸菌を培養することによるMUTの
製造法を提供するものでり、本発明によりMUTの生産
が可能である。
More specifically, the present invention provides a DNA carrying the genetic information of MUT derived from pig kidney and a method for producing the MUT by culturing transformed Escherichia coli by incorporating the DNA into a vector. Will enable the production of MUT.

【0003】このようにして生産されたMUTは、血液
中のグルコース定量への応用に用いられている。最近に
なってグルコースの製造に際しての応用について可能で
あることが見いだされた(特開平3-139289)。
The MUT produced in this way is used for application to the determination of glucose in blood. Recently, it has been found that it can be applied to the production of glucose (JP-A-3-139289).

【0004】[0004]

【従来の技術】MUTはアルドース類のα型とβ型との
間の相互変換反応を触媒する酵素として古くから知られ
ている[バイオケミカル ジャーナル(Biochem. J.)4
5巻,584頁(1948)]。その後、微生物、植物、鳥類、
哺乳類等に広く分布していることが知られ、特に哺乳類
である牛、豚、羊、兎、ラット等の腎臓や肝臓、腸に含
まれているMUTについてはその性質についての研究が
なされている。
MUT has long been known as an enzyme that catalyzes the interconversion reaction between α-type and β-type of aldoses [Biochem. J. 4
Volume 5, p. 584 (1948)]. After that, microorganisms, plants, birds,
It is known to be widely distributed in mammals, and in particular, studies have been conducted on the properties of MUT contained in the kidneys, liver, and intestines of mammals such as cows, pigs, sheep, rabbits, and rats. .

【0005】とりわけ、豚腎臓由来のMUTについては
その精製法及び諸性質については明らかにされている
[ジャーナル オブ バイオケミストリ(J. Bioche
m.)91巻、1889-1906(1982)]。即ち、分子量約37,00
0の単量体で至適pHは6.5〜7.5、至適温度は30〜37℃、
α−D−グルコースに対するKm値は19mMであり、糖鎖な
どの修飾アミノ酸はなく、針状ではあるが結晶化されて
いる。
In particular, the purification method and various properties of MUT derived from pig kidney have been clarified [J. Bioche (J. Bioche
m.) 91, 1889-1906 (1982)]. That is, the molecular weight is about 37,00
With the monomer of 0, the optimum pH is 6.5 to 7.5, the optimum temperature is 30 to 37 ° C,
The Km value for α-D-glucose is 19 mM, there are no modified amino acids such as sugar chains, and it is needle-shaped but crystallized.

【0006】しかしながら、MUTは従来より豚腎臓か
ら抽出し精製して製造されていたために、その供給面や
価格面から大きな問題点を抱えていた。
[0006] However, since the MUT has been conventionally extracted from pig kidney and purified to be manufactured, it has a big problem in terms of supply and price.

【0007】アシネトバクター・カルコアセティカス
(Acinetobacter calcoaceticus)由来のMUT遺伝子
についてはクローニングされ、その一次構造が報告され
ている[ヌクレイック アシッズ リサーチ(Nucleic
Acids Res.)14巻,4309-4323頁(1986)]。
The MUT gene derived from Acinetobacter calcoaceticus has been cloned and its primary structure has been reported [Nucleic Acids Research (Nucleic
Acids Res.) 14: 4309-4323 (1986)].

【0008】しかし、豚腎臓由来のMUT遺伝子につい
ての一次構造の解析については報告されていない。
However, analysis of the primary structure of the pig kidney-derived MUT gene has not been reported.

【0009】[0009]

【発明が解決しようとする課題】本発明者等は、上記課
題を解決すべく鋭意研究の結果、豚腎臓由来のMUTを
コードするDNAを精製・単離し、その塩基配列を決定
することに成功した。更に該遺伝子は適当な発現系に組
み込んでMUTを生産することが可能であることを確認
し、本発明を完成した。
DISCLOSURE OF THE INVENTION As a result of intensive research to solve the above problems, the present inventors succeeded in purifying and isolating a DNA encoding a MUT derived from pig kidney and determining the base sequence thereof. did. Furthermore, it was confirmed that the gene can be incorporated into an appropriate expression system to produce MUT, and the present invention was completed.

【0010】かかる成果に基づいてMUTの効率的な大
量生産への途を開き、さらには、蛋白質工学によるMU
Tの特異性の改変への途をも開いた。
[0010] Based on these results, we will open the way to efficient mass production of MUTs, and further develop MUs by protein engineering.
It also opens the way for alterations in T specificity.

【0011】[0011]

【課題を解決するための手段】本発明は、MUT遺伝子
をコードするDNAに関し、該遺伝子を組み込んだ各種
形質転換体を培養することによるMUTの製造が可能で
ある。
The present invention relates to a DNA encoding a MUT gene, and MUT can be produced by culturing various transformants having the gene incorporated therein.

【0012】即ち、配列番号:1に示すアミノ酸配列を
コードする塩基配列を含むDNAを提供するものであ
る。かかるDNAは、各アミノ酸に対応する遺伝子コド
ン使用により、種々の塩基配列を包含し得る。
That is, the present invention provides a DNA containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 1. Such DNA may include various nucleotide sequences depending on the gene codon usage corresponding to each amino acid.

【0013】これらの塩基配列は、遺伝子発現系の諸要
素、例えば宿主細胞の種類等に応じた優先コドン等によ
って当業者が容易に選択し得るものである。
Those base sequences can be easily selected by those skilled in the art according to various elements of the gene expression system, for example, preferential codons depending on the type of host cell.

【0014】これらの遺伝子はMUTを含有する哺乳類
の各組織より以下の実施例に述べる方法により単離でき
る。哺乳類の各組織としては、MUTを含有するもので
あればいずれでも良いが、例えば豚腎臓等が使用でき
る。
These genes can be isolated from each MUT-containing mammalian tissue by the method described in the following examples. Any mammalian tissue may be used as long as it contains MUT. For example, pig kidney can be used.

【0015】以下、本発明を豚腎臓由来のMUTの場合
を例にとり、実施例を参照しながら詳細に説明する。
The present invention will be described in detail below with reference to examples, taking the case of MUT derived from pig kidney as an example.

【0016】尚、その他の組織由来のMUTの場合につ
いても、本発明と同様の過程を踏み、容易に実施でき、
形質転換に用いる宿主、発現ベクター等も種々選択でき
る。よって、本発明は以下に記載する実施例に限定され
るものではない。
In the case of MUTs derived from other tissues, the steps similar to those of the present invention can be carried out easily,
A variety of hosts, expression vectors, etc. used for transformation can be selected. Therefore, the present invention is not limited to the examples described below.

【0017】なお、以下の実施例においては、以下の方
法によりMUT活性を測定した。MUT活性測定法 酵素活性は、147mM EDTA・2Na-NaOH緩衝液(pH7.4)1.6m
l、発色剤(25mg 4-アミノアンチピリン,150mg フェ
ノールを水に溶かして100mlに定容したもの)0.5ml、グ
ルコースオキシダーゼ溶液[2000単位/ml(100mM EDTA・2
Na-NaOH緩衝液(pH7.4)]0.5ml、パーオキシダーゼ溶
液[1000単位/ml(100mM EDTA・2Na-NaOH緩衝液(pH7.
4)]0.5ml、酵素溶液 0.05mlからなる混合液3.15mlを1
0℃で5分間保持した後、0.5% α−D−グルコース溶液
(反応直前にα−D−グルコース 20mgに水4mlを加え
て調製したもの)を0.2ml加え、反応を開始させた。
In the following examples, MUT activity was measured by the following method. MUT activity measurement method Enzyme activity is 147mM EDTA-2Na-NaOH buffer (pH7.4) 1.6m
l, color former (25 mg 4-aminoantipyrine, 150 mg phenol dissolved in water to a constant volume of 100 ml) 0.5 ml, glucose oxidase solution [2000 units / ml (100 mM EDTA · 2
Na-NaOH buffer (pH 7.4)] 0.5 ml, peroxidase solution [1000 units / ml (100 mM EDTA.2Na-NaOH buffer (pH 7.
4)] 0.5 ml, mixed with 3.15 ml of enzyme solution 0.05 ml 1
After holding at 0 ° C for 5 minutes, 0.2 ml of 0.5% α-D-glucose solution (prepared by adding 4 ml of water to 20 mg of α-D-glucose immediately before the reaction) was added to start the reaction.

【0018】生成するβ−D−グルコースを反応混合液
中のグルコースオキシダーゼで酸化し、その際に生じる
過酸化水素をパーオキシダーゼと発色剤を用いて発色さ
せ、505nmの吸光度の増加を経時的に測定する。この経
時的変化から単位時間当たりの吸光度の増加を求めた。
盲検として、酵素溶液の代わりに水を用いて測定する。
上記反応条件において1分間に1μmolのα−グルコー
スをβ−グルコースに変換するのに要する酵素量を1単
位とする。
The produced β-D-glucose is oxidized with glucose oxidase in the reaction mixture, and the hydrogen peroxide generated at that time is colored with peroxidase and a color-developing agent to increase the absorbance at 505 nm with time. taking measurement. From this change over time, the increase in absorbance per unit time was determined.
As a blind test, water is used instead of the enzyme solution.
Under the above reaction conditions, the amount of enzyme required to convert 1 μmol of α-glucose into β-glucose per minute is 1 unit.

【0019】[0019]

【実施例】【Example】

実施例1 MUT蛋白のアミノ末端部分の配列 ムタロターゼ(豚腎臓由来:天野製薬製)を逆相HPLCで
精製後、直接気相シークエンサーに供したが(2nmol使
用)、蛋白由来の配列を見いだすことはできなかった。
また、ピリジルエチル化のもの(約2nmol)も同様な結
果が得られため、本酵素のN末端アミノ酸は閉塞されて
いるものと推定した。
Example 1 Sequence of the amino-terminal portion of MUT protein Mutarotase (derived from pig kidney: Amano Pharmaceutical Co., Ltd.) was purified by reverse phase HPLC and directly subjected to a gas phase sequencer (2 nmol was used), but no protein-derived sequence was found. could not.
Similar results were obtained for the pyridylethylated product (about 2 nmol), so it was presumed that the N-terminal amino acid of this enzyme was blocked.

【0020】 MUT蛋白をプロテア−ゼで切断した
ペプチドのアミノ酸配列の決定 ピリジルエチル化したムタロターゼを4M尿素を含む0.0
1M トリス緩衝液(pH9.0)に溶解し、約1/100(mol/mo
l)のリジル エンドペプチダーゼを加え、30℃、21時
間消化した後、生じたペプチドをAsahipak C8P-50カラ
ム(旭化成工業製)を用いて0.1% TFA-CH3CNの溶媒系
で分離した。ペプチドはHPLCの溶出順にLY-1〜LY-15と
番号をつけた。
Cleavage of MUT protein with protease
Determination of amino acid sequence of peptide Pyridylethylated mutarotase containing 4M urea 0.0
Dissolve in 1M Tris buffer (pH 9.0)
l) Lysyl endopeptidase was added and digested at 30 ° C. for 21 hours, and then the produced peptide was separated using a Asahipak C8P-50 column (manufactured by Asahi Kasei Kogyo) in a solvent system of 0.1% TFA-CH 3 CN. The peptides are numbered LY-1 to LY-15 in the order of HPLC elution.

【0021】各ペプチドについて配列解析を行った。そ
の結果、LY-8がエドマン反応による解析が不可能なこ
とからN末端配列を含むペプチドであると推測された。
Sequence analysis was performed for each peptide. As a result, LY-8 was presumed to be a peptide containing an N-terminal sequence because it could not be analyzed by Edman reaction.

【0022】アミノ酸分析の結果、LY-8はアルギニン
残基を1つ含んだ約20個のアミノ酸からなることが確認
された。よって、トリプシンによる二次分解によってア
ルギニンを含まないペプチド、即ちLY-8のC末端側の
ペプチドはエドマン法に従って決定し、N末端側につい
ては質量分析法によって解析してアミノ酸配列を決定し
た。(配列番号:2)
As a result of amino acid analysis, it was confirmed that LY-8 was composed of about 20 amino acids containing one arginine residue. Therefore, the peptide that does not contain arginine by the secondary decomposition with trypsin, that is, the peptide at the C-terminal side of LY-8 was determined according to the Edman method, and the peptide at the N-terminal side was analyzed by mass spectrometry to determine the amino acid sequence. (SEQ ID NO: 2)

【0023】尚、LY-9、LY-10、LY-15については以下
に従って全一次構造を決定した。 (1) LY-9のトリプシンによる二次分解並びにペプチド
の調製と配列決定 LY-9ペプチド画分を濃縮乾固後、2M尿素を含む0.1Mリ
ン酸緩衝液(pH8.0)に溶解し、約1/40(mol/mol)のト
リプシンを加え、30℃、1時間消化した後、生じたペプ
チドをFinepak SIL3000 C13-t7カラム(日本分光製)を
用いて0.1 TFA-CH3CNの溶媒系で分離し、プロテインシ
ークエンサーによってそのアミノ酸配列を決定した。
(配列番号:3)
The total primary structure of LY-9, LY-10, and LY-15 was determined as follows. (1) Secondary degradation of LY-9 with trypsin, preparation of peptide and sequencing LY-9 peptide fraction was concentrated to dryness and dissolved in 0.1M phosphate buffer (pH8.0) containing 2M urea, About 1/40 (mol / mol) trypsin was added and digested at 30 ° C for 1 hour, and then the resulting peptide was dissolved in 0.1 TFA-CH 3 CN using a Finepak SIL3000 C 13 -t7 column (manufactured by JASCO). They were separated in the system and their amino acid sequences were determined by a protein sequencer.
(SEQ ID NO: 3)

【0024】(2) LY-10ペプチドのV8プロテアーゼによ
る二次分解並びにペプチドの調製と配列決定 LY-10ペプチド画分を濃縮乾固後、2M尿素を含む0.1M炭
酸水素アンモニウム溶液(pH7.8)に溶解し、約1/40(m
ol/mol)のV8プロテア−ゼ(Staphylococcus aureus由
来:ベ−リンガ−・マンハイム製)を加え、30℃、2時
間消化した後、生じたペプチドを(1)と同様にして分離
し、プロテインシークエンサーによってそのアミノ酸配
列を決定した。(配列番号:4)
(2) Secondary Decomposition of LY-10 Peptide by V8 Protease and Preparation and Sequencing of Peptide The LY-10 peptide fraction was concentrated to dryness, and then 0.1 M ammonium hydrogen carbonate solution (pH 7.8 containing 2 M urea) was added. ), About 1/40 (m
ol / mol) V8 protease (derived from Staphylococcus aureus: manufactured by Beringer-Mannheim) was added and digested at 30 ° C. for 2 hours, and then the resulting peptide was separated in the same manner as in (1), and the protein sequencer was isolated. Its amino acid sequence was determined by. (SEQ ID NO: 4)

【0025】(3) LY-15ペプチドの配列決定 アミノ酸分析の結果から約80個のアミノ酸からなること
が考えられたため、種々のプロテアーゼ(キモトリプシ
ン、エンドペプチダーゼ、V8プロテア−ゼ)による分解
によって(1)、(2)と同様にしてアミノ酸配列を決定し
た。(配列番号:5)
(3) Sequencing of LY-15 peptide Since it was thought that it consisted of about 80 amino acids from the result of amino acid analysis, it was digested with various proteases (chymotrypsin, endopeptidase, V8 protease) to give (1 ) And (2), the amino acid sequence was determined. (SEQ ID NO: 5)

【0026】実施例2 全RNAの調製 豚腎臓(死後直ちに摘出し迅速に約2cm角に切断後、液
体窒素中において凍結し、-80℃において保存しておい
たもの)からグアニジュウム/塩化セシュウム法〔[バ
イオケミストリ(Biochemistry),13,2633(197
4)]、[サイエンス(Science),196,1313(197
7)]、[モレキュラー クローニング(Molecular Clo
ning)(1982)]〕従って全RNAを抽出した。
Example 2 Preparation of total RNA From porcine kidney (extracted immediately after death, rapidly cut into about 2 cm square pieces, frozen in liquid nitrogen and stored at -80 ° C.), guanidinium / cesium chloride method [[Biochemistry, 13, 2633 (197
4)], [Science, 196, 1313 (197
7)], [Molecular Cloning
(Ning) (1982)]] Therefore, total RNA was extracted.

【0027】即ち、-80℃において保存しておいた約2c
m角の豚腎臓を凍結させたままハンマーで粉砕し、さら
に乳鉢と乳棒を用いて粉状にしたものを10mlのD溶液
(4Mグアニジンチオシアネ−ト、25mM クエン酸ナトリ
ウム、0.1% メルカプトエタノール)の入ったファルコ
ンチューブに加えすばやく混合させた。これをポリトロ
ンでホモジナイズした後、1mlの2M 酢酸ナトリウム
(pH4.0)、10mlのフェノール(TE飽和)、2mlのクロ
ロホルム:イソアミルアルコール混液(49:1)を順次
加え混合し、10秒間激しく振りその後15分間氷冷したも
のを遠心分離(2500×g、40分、4℃)した。水層を別
のファルコンチューブに移し、等量のフェノール/クロ
ロホルム(TE飽和)を加え混合したものを遠心分離(25
00×g、40分、4℃)した(この操作を4回行った)。
That is, about 2c stored at -80 ° C
A cube of m-squared pig kidney was crushed with a hammer while frozen, and then ground into powder using a mortar and pestle. 10 ml of D solution (4M guanidine thiocyanate, 25 mM sodium citrate, 0.1% mercaptoethanol). ) Was added to the Falcon tube and mixed quickly. After homogenizing with a polytron, 1 ml of 2M sodium acetate (pH 4.0), 10 ml of phenol (TE saturated), 2 ml of chloroform: isoamyl alcohol mixed solution (49: 1) were sequentially added and mixed, and shaken vigorously for 10 seconds. What was ice-cooled for 15 minutes was centrifuged (2500 xg, 40 minutes, 4 ° C). Transfer the aqueous layer to another Falcon tube, add an equal volume of phenol / chloroform (TE saturated) and mix and centrifuge (25
(00 × g, 40 minutes, 4 ° C.) (this operation was performed 4 times).

【0028】水層を別のファルコンチューブに移し、等
量のイソプロパノールを加え混合し、−20℃で60分間静
置後遠心分離(2500×g、40℃、4℃)した。上清を除
去し、沈殿を500μlのTEに溶解し200μlの塩化リチウム
を加え攪拌後、−20℃で2時間静置し遠心分離(10000
×g、15分、4℃)した。上清を除去した後、沈殿を400
μlのTEに溶解しエタノール沈殿を行い70%エタノー
ルで洗浄後51μlの滅菌水に溶解したものを全RNAと
した。尚、最終的に得られた全RNA量は約1.03mgであ
った。
The aqueous layer was transferred to another Falcon tube, an equal amount of isopropanol was added and mixed, and the mixture was allowed to stand at -20 ° C for 60 minutes and then centrifuged (2500 xg, 40 ° C, 4 ° C). The supernatant was removed, the precipitate was dissolved in 500 μl of TE, 200 μl of lithium chloride was added, stirred, and then allowed to stand at −20 ° C. for 2 hours and centrifuged (10000
Xg, 15 minutes, 4 ° C). After removing the supernatant, add 400
It was dissolved in μl of TE, precipitated with ethanol, washed with 70% ethanol, and then dissolved in 51 μl of sterilized water to obtain total RNA. The finally obtained total RNA amount was about 1.03 mg.

【0029】 poly(A)+RNAの単離 上記で得られた全RNAからOligotex-dt30(日本合成
ゴム)を用いてpoly(A)+RNAを単離した。即ち上記で
得られた400μgの全RNAに対して100μlのOligotex-d
t30を用いた。手順は添付のプロトコールに従った。こ
の結果7.42μgのpoly(A)+RNAを回収した。
Isolation of poly (A) + RNA Poly (A) + RNA was isolated from the total RNA obtained above using Oligotex-dt30 (Nippon Synthetic Rubber). That is, 100 μl of Oligotex-d was added to 400 μg of total RNA obtained above.
t30 was used. The procedure followed the attached protocol. As a result, 7.42 μg of poly (A) + RNA was recovered.

【0030】 cDNAの合成およびライブラリーの作成 で得られたpoly(A)+RNAからcDNA合成システム・プ
ラス(Amersham)を使用してcDNAの合成を行った。即
ち、一本鎖目の合成にはOligo dTをプライマーとして用
い、RNaseH処理により生じたRNAフラグメントを二本鎖
目の合成のプライマーとした。次に、cDNAライブラリー
の作成にはアダプターライゲーションを用いるλgt10
EcoRIでフォスファターゼ処理したもの)を用いた。
但し、パッケージングにはGigapack Gold(stratagem
e)を、アダプターにはEcoRI-NotI-BamHIアダプター
(宝酒造)を使用した。
CDNA was synthesized from the poly (A) + RNA obtained in the cDNA synthesis and the library preparation using the cDNA synthesis system plus (Amersham). That is, Oligo dT was used as a primer for the synthesis of the first strand, and the RNA fragment generated by the RNase H treatment was used as a primer for the synthesis of the second strand. Next, λgt10 using adapter ligation to create a cDNA library
(Phosphatase treated with Eco RI) was used.
However, Gigapack Gold (stratagem
e) and an Eco RI- Not I- Bam HI adapter (Takara Shuzo) was used as the adapter.

【0031】指示菌にNM514を用いたプレーティングに
より3×105pfuのライブラリーが作成されたことが確認
された。
It was confirmed that a 3 × 10 5 pfu library was prepared by plating with NM514 as the indicator bacterium.

【0032】 オリゴヌクレオチドプローブによるス
クリーニング 実施例1において部分的に決定されたアミノ酸配列から
以下に示す38merのミックスプローブ(MUT-2)を作成
し、スクリーニングを行った。
Screening with Oligonucleotide Probe A 38 mer mixed probe (MUT-2) shown below was prepared from the amino acid sequence partially determined in Example 1 and screened.

【0033】 A A C C C C C C C CA -GA -TT -CA -ATI-AA -GGI-TT -GAT-CA -AA -TT -TG (I:イノシン) G G T T T T T T TA A C C C C C C C CA -GA -TT -CA -ATI-AA -GGI-TT -GAT-CA -AA -TT -TG (I: Inosine) G G T T T T T T T

【0034】宿主にNM514を用いてλgt10組換え体ファ
ージをプレーティングした。次にプラークの生じたプレ
ートにナイロンフィルターをのせ、しばらく放置した
後、アルカリ変性液(0.5M NaOH、1.5M NaCl)を浸した
ろ紙および中和液(0.5M Tris-HCl pH8.0、1.5M NaCl)
を浸したろ紙の上に順次フィルターを移し、それぞれ約
5分間放置する。
Λgt10 recombinant phage was plated using NM514 as a host. Next, place a nylon filter on the plate with plaque, leave it for a while, and filter paper soaked with alkaline denaturing solution (0.5M NaOH, 1.5M NaCl) and neutralizing solution (0.5M Tris-HCl pH8.0, 1.5M). NaCl)
The filters are sequentially transferred onto the filter paper soaked in and left for about 5 minutes each.

【0035】そのフィルターを2×SSC(0.3M NaCl、30
mM クエン酸)に浸して洗浄し、過剰の水分をペーパー
タオルの上に移して除きトランスイルミネーターで約3
分間紫外線を照射しフィルターにDNAを固定する。DNAを
固定したフィルターをハイブリダイゼーションパック
(コスモバイオ)に入れ三方をシールし、ナイロンフィ
ルター100cm2につき5mlのRapid Hybridization溶液
(5×Denhard's、5×SSPE、0.1% SDS、100μg/ml 変
性DNA)を入れ入口をシールする。
The filter was replaced with 2 × SSC (0.3M NaCl, 30
Immerse it in mM citric acid) to wash, remove excess water on a paper towel and remove with a transilluminator to about 3
Irradiate UV light for a minute to fix the DNA to the filter. Put the filter on which DNA is fixed in a hybridization pack (Cosmo Bio), seal the three sides, and add 5 ml of Rapid Hybridization solution (5 x Denhard's, 5 x SSPE, 0.1% SDS, 100 µg / ml denatured DNA) per 100 cm 2 of nylon filter. Seal the entrance.

【0036】シールしたものを65℃で15分以上インキュ
ベートする。これにγ32Pで末端をラベルした合成オリ
ゴヌクレオチド液(50μCi、10μl)を加え空気、気泡
を追い出し内部の液が均一に行き渡るように混合する。
これを52℃で一晩振盪しながらインキュベートした。次
にこのインキュベートしたフィルターを2×SSC-0.1%SD
Sで52℃、30分間振盪し洗浄を行った(3回)。
Incubate the sealed at 65 ° C. for 15 minutes or longer. To this is added a synthetic oligonucleotide solution (50 μCi, 10 μl) whose ends are labeled with γ 32 P, and the mixture is mixed so that the air and bubbles are eliminated and the solution inside is uniformly distributed.
This was incubated overnight at 52 ° C with shaking. Then incubate this incubated filter with 2 x SSC-0.1% SD
Washing was performed by shaking with S at 52 ° C. for 30 minutes (three times).

【0037】フィルターを乾燥後、X線フィルムに−80
℃で一晩感光し現像を行いシグナルの検出を行った。こ
れを7枚の角型プレート(一枚につき約1×104個のプ
ラークを作らせた)で行ったところ5個の陽性プラーク
(M1、M2、M3、M4、M5)を得た。
After the filter was dried, it was put on an X-ray film at -80.
It was exposed to light overnight at ℃ and developed to detect the signal. This was carried out on 7 square plates (about 1 × 10 4 plaques were made per plate), and 5 positive plaques (M1, M2, M3, M4, M5) were obtained.

【0038】そこで陽性のプラーク部分を、周辺を含め
寒天片ごと切り抜き一滴のクロロホルムを含むSM(1m
l)に懸濁し、4℃で保存した。これをSMで1000倍に希
釈したものを1μlプレーディングし、二次スクリーニ
ング(プレート一枚につき約1000個のプラークを作らせ
た。)を行ったところ、5種類のプレートいずれからも
陽性を示す結果が得られた。尚、プラークリフトおよび
合成オリゴヌクレオチドプローブによる検出は一次スク
リーニングに準じて行った。
Then, the positive plaque portion was cut out together with the agar piece including the surrounding area, and SM (1 m) containing 1 drop of chloroform was cut out.
It was suspended in l) and stored at 4 ° C. When 1 μl of a 1000-fold dilution of this was diluted with SM and secondary screening was performed (approximately 1000 plaques were made per plate), all 5 types of plates showed positive results. Results were obtained. The detection with plaque lift and synthetic oligonucleotide probe was performed according to the primary screening.

【0039】陽性のシングルプラークをM3のプレートか
らは1個、M1、M2、M4及びM5のプレートからはそれぞれ
2個ずつ(M1-A、M1-B、M2-A、M2-B、M4-A、M4-B、M5-
A、M5-B)の計9個を竹串で拾い、20μlのクロロホルム
を含むSM(0.5ml)に懸濁し、4℃で保存した。これと
は別にそれぞれのシングルプラークを竹串で拾い、0.5m
lの滅菌水に懸濁し、−20℃で保存しPCRのテンプレート
とした。
[0039] One positive single plaque from the M3 plate and two from each of the M1, M2, M4 and M5 plates (M1-A, M1-B, M2-A, M2-B, M4- A, M4-B, M5-
A total of 9 pieces of A, M5-B) were picked up with a bamboo skewer, suspended in SM (0.5 ml) containing 20 μl of chloroform, and stored at 4 ° C. Separately, pick up each single plaque with a bamboo skewer, 0.5m
It was suspended in 1 liter of sterilized water and stored at -20 ° C to be used as a template for PCR.

【0040】 挿入断片長の確認 9個の陽性クローンについて、λgt10ベクターアームに
両端に特異的なプライマー(λgt10 Praimer(forward,
reverse):宝酒造)を用いたPCRにより挿入断片長の確
認を試みたところM1-A、M1-B、M4-A及びM4-Bの挿入断片
は600bpと決定されたが他についてはDNAの増幅はみられ
ず確認できなかった。PCRには、1ngの鋳型DNAを供し、
下記の反応サイクルを25回繰り返した。
Confirmation of Insert Fragment Regarding 9 positive clones, primers specific to both ends of the λgt10 vector arm (λgt10 Praimer (forward,
reverse): Takara Shuzo) was used to confirm the length of the insert fragment by PCR, and the insert fragments of M1-A, M1-B, M4-A and M4-B were determined to be 600 bp, but for the others, DNA amplification was performed. It was not seen and could not be confirmed. For PCR, 1 ng of template DNA was provided,
The following reaction cycle was repeated 25 times.

【0041】94℃ 1分 55℃ 2分 72℃ 3分94 ° C 1 minute 55 ° C 2 minutes 72 ° C 3 minutes

【0042】確認できなかったプラークについては、プ
レートアッセイ法を用いてDNAの調製を行った。得られ
たDNAについて、EcoRI及びNotIによる挿入DNAの切り出
しを行ったがどちらも切断されなかった。ついで、λgt
10 primer(forward、reverse)によるPCRを行い、アガ
ロース電気泳動に供した。
For the plaques that could not be confirmed, DNA was prepared using the plate assay method. The inserted DNA was excised with Eco RI and Not I, but neither was digested. Then λgt
PCR was carried out with 10 primers (forward, reverse) and subjected to agarose electrophoresis.

【0043】その結果、M2-A、M2-Bでは1.5kb、M3及びM
5-Aについては2.5kb付近にバンドが得られた。以上によ
り、M1-A及びM1-B、M2-A及びM2-B、M4-A及びM4-Bはそれ
ぞれ同一のDNAと考えられたためこれらは区別しないこ
ととする。
As a result, in M2-A and M2-B, 1.5 kb, M3 and M
For 5-A, a band was obtained near 2.5 kb. From the above, M1-A and M1-B, M2-A and M2-B, M4-A and M4-B were considered to be the same DNA, respectively, and therefore they are not distinguished.

【0044】 M2のBluescript II(SK+,KS+)へのサブ
クローニングHae IIIを用いて得られた切断フラグメントを低融点アガ
ロースを用いた電気泳動後、切り抜き、抽出を行ったも
のをSmaI処理を行ったBluescript II SK+に連結した。
E. coli JM109コンピテントセルに形質転換、IPTGおよ
びX-galを含むLB寒天培地にプレーティングし、37℃で
一晩培養した。生じた白色の半透明コロニーを回収し、
2mlの2×YTに接種した。
Subcloning of M2 into Bluescript II (SK +, KS +) The cleavage fragment obtained using Hae III was electrophoresed on low melting point agarose, cut out and extracted, and then treated with Sma I. Connected to Bluescript II SK +.
E. coli JM109 competent cells were transformed, plated on LB agar medium containing IPTG and X-gal, and cultured overnight at 37 ° C. Collect the resulting white translucent colonies,
2 ml of 2xYT was inoculated.

【0045】5時間培養後、アルカリ溶菌法により複製
型(RF)DNAを調製し、適当な制限酵素を用いて切断
し、挿入DNAの断片長を確認した。いくつかのクローン
に関しては、ヘルパーファージM13KO7の感染で産生する
ファージ粒子よりssDNAの調製を行った。これを蛍光標
識されたユニバーザルプライマー(-21M13,ABI社製)を
用いたサンガー法[Proc. Natl. Acad. Sci. USA, 74,
5483-5467(1977)]およびDNAシークエンサー370A(ABI
社製)を用いて塩基配列の解析を行った。
After culturing for 5 hours, replication type (RF) DNA was prepared by the alkaline lysis method and cleaved with an appropriate restriction enzyme to confirm the fragment length of the inserted DNA. For some clones, ssDNA was prepared from phage particles produced by infection with helper phage M13KO7. The Sanger method [Proc. Natl. Acad. Sci. USA, 74, 74, using a fluorescence-labeled universal primer (-21M13, manufactured by ABI)
5483-5467 (1977)] and DNA sequencer 370A (ABI
(Manufactured by the company) was used to analyze the base sequence.

【0046】その結果、M2のHaeIII断片のうちの1つか
らプローブ配列を含むムタロターゼ部分配列と相同性の
ある配列が見いだされた。よって、M2をムタロターゼ遺
伝子をコードするクローンであると判断した。
As a result, a sequence homologous to the mutarotase partial sequence containing the probe sequence was found in one of the Hae III fragments of M2. Therefore, M2 was determined to be a clone encoding the mutarotase gene.

【0047】M2のPCRにより増幅させたDNAをEcoRI、Not
IおよびBamHIによる切断を行い生じるフラグメントの確
認を行い、全長を含むと思われるフラグメントを生じる
EcoRIを用いて切断を行い、EcoRI処理したBluescript I
I SK+に連結し前述の場合と同様にJM109に形質転換し複
製型(RF)DNAの調製を行った。
DNA amplified by PCR of M2 was treated with Eco RI, Not
Cleavage with I and Bam HI confirms the resulting fragment and produces a fragment that appears to contain the full length
Disconnects using the Eco RI, Bluescript I was Eco RI processing
It was ligated to I SK + and transformed into JM109 in the same manner as described above to prepare replication type (RF) DNA.

【0048】これをマルチクローニングサイトに切断サ
イトがあるいくつかの制限酵素によって切断して制限酵
素地図を作成した。(図1に示す)
This was cleaved with several restriction enzymes having a cleavage site at the multi-cloning site to prepare a restriction enzyme map. (Shown in Figure 1)

【0049】それぞれの制限酵素で切断した種々のデリ
ーションクローンを作成し、それを適当な処理をしたBl
uescript IIに連結し、JM109に形質転換後、塩基配列を
解析した。解析には前述と同様に蛍光標識されたサンガ
ー法及びDNAシークエンサー370Aを用いた。
Various deletion clones cleaved with the respective restriction enzymes were prepared, and the clones were appropriately treated with Bl.
After ligation to uescript II and transformation into JM109, the nucleotide sequence was analyzed. For the analysis, the Sanger method and DNA sequencer 370A, which were fluorescently labeled as described above, were used.

【0050】これらの作業により、M2の全塩基配列(配
列番号:6)が決定され、その結果1434bpからなること
が確認された。求められた塩基配列は、ムタロターゼの
オープンリーディングフレーム全域を含んでいると考え
られ、これからアミノ酸配列を推定したところ実施例1
で求めた部分的なアミノ酸配列と完全な一致を示した。
By these operations, the entire nucleotide sequence of M2 (SEQ ID NO: 6) was determined, and as a result it was confirmed that it consisted of 1434 bp. The determined nucleotide sequence is considered to include the entire open reading frame of mutarotase, and the amino acid sequence was deduced from this, and Example 1 was obtained.
It showed perfect agreement with the partial amino acid sequence obtained in.

【0051】実施例3 発現プラスミドの構築 プロテインシークエンサーにより明らかにされたMUT
のN末端アミノ酸配列に対応するオリゴヌクレオチドに
NcoI認識部位となるように改変し、プライマー#1を作
成した。更に下記に示すプライマー #1及び#2を用
いて前記したPCR法によりMUT遺伝子を含むと考え
られるDNA断片を増幅した。 プライマー #1 5'-TTC CCC ATG GTT TCA GTT ACA A
GA-3' (24mer) プライマー #2 λgt10(forward)(実施例2のに
記載)
Example 3 Construction of expression plasmid MUT revealed by protein sequencer
To the oligonucleotide corresponding to the N-terminal amino acid sequence of
A primer # 1 was prepared by modifying it to serve as an Nco I recognition site. Further, a DNA fragment considered to contain the MUT gene was amplified by the above-mentioned PCR method using the primers # 1 and # 2 shown below. Primer # 1 5'-TTC CCC ATG GTT TCA GTT ACA A
GA-3 '(24mer) primer # 2 λgt10 (forward) (described in Example 2)

【0052】増幅後、反応液をアガロース電気泳動で増
幅したDNA断片を確認し、これをMERMAID Kitを用い
て抽出回収した。その結果、約1.4kbのDNA断片が合
成された。
After amplification, the reaction solution was confirmed by agarose gel electrophoresis to confirm the amplified DNA fragment, which was extracted and collected using the MERMAID Kit. As a result, a DNA fragment of about 1.4 kb was synthesized.

【0053】ここで、プライマー #1は制限酵素NocI
のサイトを、プライマー #2は制限酵素HindIIIのサ
イトをそれぞれ含んでいるので、得られたDNA断片を
NcoIとHindIIIで消化することにより、DNA断片の両
末端にそれぞれNcoIサイトとHindIIIサイトを導入でき
る。
Here, the primer # 1 is the restriction enzyme NocI.
The primer # 2 contains the restriction enzyme Hind III sites, so the DNA fragment obtained was
By digesting with Nco I and Hind III, Nco I site and Hind III site can be introduced at both ends of the DNA fragment, respectively.

【0054】合成されたDNAを制限酵素(NcoI及びHi
ndIII)で切断し、更に発現ベクター(pTrc99A:ファル
マシア製)も同様にNcoI及びHindIIIで切断しライゲー
ションし、プラスミドpTRM08を得た。ライゲーション反
応はライゲーションキット(宝酒造社製)を用いて、キ
ットに添付されている説明書に従って行った。
Restriction enzymes ( Nco I and Hi
cut with nd III), further expression vector (pTrc99A: Pharmacia) similarly cut and ligated with Nco I and Hind III, thereby obtaining a plasmid PTRM08. The ligation reaction was performed using a ligation kit (Takara Shuzo) according to the instructions attached to the kit.

【0055】ライゲーション後、形質転換は大腸菌JM10
9のコンピテントセルを用いて既知の方法、例えば〔モ
レキュラー クローニング(Molecular Cloning)(198
9)〕に記載されている方法により行った。
After ligation, E. coli JM10 was transformed.
A known method using 9 competent cells, such as [Molecular Cloning (198
9)].

【0056】このようにして得られた形質転換体をLB寒
天培地にまき、終夜培養して単一コロニーを拾い、既知
の方法、例えばアルカリ−リシス法によって調製したプ
ラスミドDNA(dsDNA)を適当な制限酵素で切断する
ことにより、クローニングされていることを確認した。
The transformant thus obtained was spread on an LB agar medium and cultured overnight to pick up a single colony, and a plasmid DNA (dsDNA) prepared by a known method, for example, an alkali-lysis method was used. It was confirmed that it was cloned by cutting with a restriction enzyme.

【0057】形質転換体の培養及びMUTの抽出 LB培地(1mM IPTGを含有)100mlに1白金耳を接種
し、37℃で14.5時間振盪培養した(集菌時、OD590=3.
5)。集菌した菌体をTS緩衝液[20mM トリス緩衝液(pH
8)、30mM NaCl]で洗浄後、TS緩衝液に懸濁した。懸濁
した菌体を常法に従ってリゾチーム処理、超音波破砕を
行い、遠心分離により得られた上清を粗抽出液とした。
Cultivation of transformants and extraction of MUT One platinum loop was inoculated into 100 ml of LB medium (containing 1 mM IPTG), and cultured with shaking at 37 ° C. for 14.5 hours (OD 590 = 3.
Five). Collect the collected cells in TS buffer [20 mM Tris buffer (pH
8), 30 mM NaCl] and then suspended in TS buffer. The suspended bacterial cells were treated with lysozyme and ultrasonically disrupted by a conventional method, and the supernatant obtained by centrifugation was used as a crude extract.

【0058】非組換え体及び発現誘発剤(IPTG)の有無
の各条件で培養した組換え体について菌体外並びに菌体
内酵素画分のMUT活性と蛋白量(Bradford法)を測定
した。培養液1ml中のそれぞれの結果を表1に示す。
The MUT activity and protein amount (Bradford method) of the enzyme fraction outside the cells and inside the cells were measured for the recombinants cultured under the conditions of non-recombinant and expression inducer (IPTG). Table 1 shows the respective results in 1 ml of the culture solution.

【0059】[0059]

【表1】 [Table 1]

【0060】その結果、大腸菌野生株(JM109)にはM
UT活性は認められない。また、組換え体においてはM
UTは1mM IPTGによって約8倍誘導された。尚、豚腎
臓由来のMUTの比活性は584単位/mgであった。
As a result, the E. coli wild strain (JM109) had M
No UT activity is observed. In the recombinant, M
UT was induced by 1 mM IPTG approximately 8-fold. The specific activity of MUT derived from pig kidney was 584 units / mg.

【0061】更に組換え体によるMUTの発現量は、菌
体内酵素画分の全蛋白質量の約22%であった。
Furthermore, the amount of MUT expressed by the recombinant was about 22% of the total protein mass of the intracellular enzyme fraction.

【0062】形質転換体よりのMUTの確認 形質転換体である大腸菌の全蛋白質をSDS-PAGEにより展
開したところ、豚腎臓由来の精製酵素と同じ分子量(約
37000)を示す蛋白質が大量に発現されていることが確
認された。これをPVDF膜に転写し、プロテインシークエ
ンサーによりアミノ酸配列を解析したところ、豚腎臓由
来のMUTと同一の配列が認められた。但し、約30%の
蛋白質は、開始コドンに相当するメチオニンをN末端に
持つものであった。
Confirmation of MUT from transformant When the whole protein of E. coli, which is a transformant, was developed by SDS-PAGE, the same molecular weight as that of the purified enzyme derived from pig kidney (about
It was confirmed that the protein showing 37000) was expressed in large amounts. When this was transferred to a PVDF membrane and the amino acid sequence was analyzed by a protein sequencer, the same sequence as the MUT derived from pig kidney was found. However, about 30% of the proteins had a methionine corresponding to the start codon at the N-terminus.

【0063】[0063]

【発明の効果】本発明によりムタロターゼは安価に且つ
大量に生産する方法が確立された。
INDUSTRIAL APPLICABILITY According to the present invention, a method for inexpensively producing a large amount of mutarotase has been established.

【0064】[0064]

【配列表】[Sequence list]

配列番号:1 配列の長さ:341 配列の型:アミノ酸 配列 Val Ser Val Thr Arg Ser Val Phe Gly Asp Leu Pro Ser Gly Ala 15 Gly Thr Val Glu Lys Phe Gln Leu Gln Ser Asp Gln Leu Arg Val 30 Asp Ile Ile Ser Trp Gly Cys Thr Ile Thr Ala Leu Glu Val Lys 45 Asp Arg Gln Gly Arg Ala Ser Asp Val Val Leu Gly Phe Ala Glu 60 Leu Lys Glu Tyr Leu Gln Lys His Pro Tyr Phe Gly Ala Val Val 75 Gly Arg Val Ala Asn Arg Ile Ala Lys Gly Thr Phe Thr Leu Asp 90 Gly Lys Glu Tyr Lys Leu Ala Ile Asn Asn Gly Pro Asn Ser Leu 105 His Gly Gly Val Arg Gly Phe Asp Lys Val Leu Trp Thr Pro Arg 120 Val Leu Ser Asn Gly Ile Glu Phe Ser Arg Val Ser Pro Asp Gly 135 Glu Glu Gly Tyr Pro Gly Glu Leu Lys Val Trp Val Thr Tyr Thr 150 Leu Asp Gly Gly Glu Leu Val Val Asn Tyr Arg Ala Gln Ala Ser 165 Gln Thr Thr Pro Val Asn Leu Thr Asn His Ser Tyr Phe Asn Leu 180 Ala Gly Gln Gly Ser Pro Asn Ile Tyr Asp His Glu Val Thr Ile 195 Glu Ala Asp Ala Phe Leu Pro Val Asp Glu Thr Leu Ile Pro Thr 210 Gly Glu Ile Ala Pro Val Gln Gly Thr Ala Phe Asp Leu Arg Lys 225 Pro Val Glu Leu Gly Lys His Leu Gln Glu Phe His Ile Asn Gly 240 Phe Asp His Asn Phe Cys Leu Lys Arg Ser Lys Glu Lys Gln Phe 255 Cys Ala Arg Val His His Ala Gly Ser Gly Arg Val Leu Glu Val 270 Tyr Thr Thr Gln Pro Gly Ile Gln Phe Tyr Thr Gly Asn Phe Leu 285 Asp Gly Thr Leu Lys Gly Lys Thr Gly Ala Val Tyr Pro Lys His 300 Ser Gly Phe Cys Leu Glu Thr Gln Asn Trp Pro Asn Ala Val Asn 315 Gln Pro His Phe Pro Pro Val Leu Leu Lys Pro Gly Glu Glu Tyr 330 Asn His Thr Thr Trp Phe Val Phe Ser Val Ala 341 SEQ ID NO: 1 Sequence length: 341 Sequence type: Amino acid sequence Val Ser Val Thr Arg Ser Val Phe Gly Asp Leu Pro Ser Gly Ala 15 Gly Thr Val Glu Lys Phe Gln Leu Gln Ser Asp Gln Leu Arg Val 30 Asp Ile Ile Ser Trp Gly Cys Thr Ile Thr Ala Leu Glu Val Lys 45 Asp Arg Gln Gly Arg Ala Ser Asp Val Val Leu Gly Phe Ala Glu 60 Leu Lys Glu Tyr Leu Gln Lys His Pro Tyr Phe Gly Ala Val Val 75 Gly Arg Val Ala Asn Arg Ile Ala Lys Gly Thr Phe Thr Leu Asp 90 Gly Lys Glu Tyr Lys Leu Ala Ile Asn Asn Gly Pro Asn Ser Leu 105 His Gly Gly Val Arg Gly Phe Asp Lys Val Leu Trp Thr Pro Arg 120 Val Leu Ser Asn Gly Ile Glu Phe Ser Arg Val Ser Pro Asp Gly 135 Glu Glu Gly Tyr Pro Gly Glu Leu Lys Val Trp Val Thr Tyr Thr 150 Leu Asp Gly Gly Glu Leu Val Val Asn Tyr Arg Ala Gln Ala Ser 165 Gln Thr Thr Pro Val Asn Leu Thr Asn His Ser Tyr Phe Asn Leu 180 Ala Gly Gln Gly Ser Pro Asn Ile Tyr Asp His Glu Val Thr Ile 195 Glu Ala Asp Ala Phe Leu Pro Val Asp Glu Thr Leu Ile Pro Thr 210 Gly Glu Ile Ala Pro Val Gln Gly Thr Ala Phe Asp Leu Arg Lys 225 Pro Val Glu Leu Gly Lys His Leu Gln Glu Phe His Ile Asn Gly 240 Phe Asp His Asn Phe Cys Leu Lys Arg Ser Lys Glu Lys Gln Phe 255 Cys Ala Arg Val His His Ala Gly Ser Gly Arg Val Leu Glu Val 270 Tyr Thr Thr Gln Pro Gly Ile Gln Phe Tyr Thr Gly Asn Phe Leu 285 Asp Gly Thr Leu Lys Gly Lys Thr Gly Ala Val Tyr Pro Lys His 300 Ser Gly Phe Cys Leu Glu Thr Gln Asn Trp Pro Asn Ala Val Asn 315 Gln Pro His Phe Pro Pro Val Leu Leu Lys Pro Gly Glu Glu Tyr 330 Asn His Thr Thr Trp Phe Val Phe Ser Val Ala 341

【0065】配列番号:2 配列の長さ:20 配列の型:アミノ酸 配列 Val Ser Val Thr Arg Ser Val Phe Gly Asp Leu Pro Ser Gly Ala 15 Gly Thr Val Glu Lys 20SEQ ID NO: 2 Sequence length: 20 Sequence type: Amino acid sequence Val Ser Val Thr Arg Ser Val Phe Gly Asp Leu Pro Ser Gly Ala 15 Gly Thr Val Glu Lys 20

【0066】配列番号:3 配列の長さ:30 配列の型:アミノ酸 配列 Val Leu Trp Thr Pro Arg Val Leu Ser Asn Gly Ile Glu Phe Ser 15 Arg Val Ser Pro Asp Gly Glu Glu Gly Tyr Pro Gly Glu Leu Lys 30SEQ ID NO: 3 Sequence length: 30 Sequence type: Amino acid sequence Val Leu Trp Thr Pro Arg Val Leu Ser Asn Gly Ile Glu Phe Ser 15 Arg Val Ser Pro Asp Gly Glu Glu Gly Tyr Pro Gly Glu Leu Lys 30

【0067】配列番号:4 配列の長さ:37 配列の型:アミノ酸 配列 Gln Phe Cys Ala Arg Val His His Ala Gly Ser Gly Arg Val Leu 15 Glu Val Tyr Thr Thr Gln Pro Gly Ile Gln Phe Tyr Thr Gly Asn 30 Phe Leu Asp Gly Thr Leu Lys 37SEQ ID NO: 4 Sequence length: 37 Sequence type: Amino acid sequence Gln Phe Cys Ala Arg Val His His Ala Gly Ser Gly Arg Val Leu 15 Glu Val Tyr Thr Thr Gln Pro Gly Ile Gln Phe Tyr Thr Gly Asn 30 Phe Leu Asp Gly Thr Leu Lys 37

【0068】配列番号:5 配列の長さ:86 配列の型:アミノ酸 配列 Val Trp Val Thr Tyr Thr Leu Asp Gly Gly Glu Leu Val Val Asn 15 Tyr Arg Ala Gln Ala Ser Gln Thr Thr Pro Val Asn Leu Thr Asn 30 His Ser Tyr Phe Asn Leu Ala Gly Gln Gly Ser Pro Asn Ile Tyr 45 Asp His Glu Val Thr Ile Glu Ala Asp Ala Phe Leu Pro Val Asp 60 Glu Thr Leu Ile Pro Thr Gly Glu Ile Ala Pro Val Gln Gly Thr 75 Ala Phe Asp Leu Arg Lys Val Glu Leu Gly Lys 86SEQ ID NO: 5 Sequence length: 86 Sequence type: Amino acid sequence Val Trp Val Thr Tyr Thr Leu Asp Gly Gly Glu Leu Val Val Asn 15 Tyr Arg Ala Gln Ala Ser Gln Thr Thr Pro Val Asn Leu Thr Asn 30 His Ser Tyr Phe Asn Leu Ala Gly Gln Gly Ser Pro Asn Ile Tyr 45 Asp His Glu Val Thr Ile Glu Ala Asp Ala Phe Leu Pro Val Asp 60 Glu Thr Leu Ile Pro Thr Gly Glu Ile Ala Pro Val Gln Gly Thr 75 Ala Phe Asp Leu Arg Lys Val Glu Leu Gly Lys 86

【0069】配列番号:6 配列の長さ:1434 配列の型:核酸 配列 GGCGGGAGTT CGAGGGACCT GGAGCAACTA CACACCCCAA GCTTTCCTAA TG 52 GTT TCA GTT ACA AGA TCC GTG TTT GGA GAC CTC CCC TCG GGG GCA 97 Val Ser Val Thr Arg Ser Val Phe Gly Asp Leu Pro Ser Gly Ala 15 GGG ACG GTG GAA AAG TTC CAG CTG CAA TCA GAC CAG CTG AGA GTG 142 Gly Thr Val Glu Lys Phe Gln Leu Gln Ser Asp Gln Leu Arg Val 30 GAC ATC ATC TCC TGG GGC TGC ACC ATC ACG GCC CTG GAG GTC AAA 187 Asp Ile Ile Ser Trp Gly Cys Thr Ile Thr Ala Leu Glu Val Lys 45 GAC AGG CAG GGC AGA GCC TCA GAC GTG GTG CTT GGC TTT GCT GAA 232 Asp Arg Gln Gly Arg Ala Ser Asp Val Val Leu Gly Phe Ala Glu 60 TTG AAA GAG TAC CTC CAA AAA CAT CCC TAC TTT GGA GCA GTG GTT 277 Leu Lys Glu Tyr Leu Gln Lys His Pro Tyr Phe Gly Ala Val Val 75 GGC AGA GTG GCA AAC CGA ATT GCC AAA GGA ACA TTC ACA TTG GAT 322 Gly Arg Val Ala Asn Arg Ile Ala Lys Gly Thr Phe Thr Leu Asp 90 GGG AAG GAG TAT AAG CTG GCC ATC AAC AAC GGG CCC AAC AGC CTT 367 Gly Lys Glu Tyr Lys Leu Ala Ile Asn Asn Gly Pro Asn Ser Leu 105 CAT GGA GGA GTC AGA GGA TTT GAT AAG GTG CTC TGG ACC CCT CGG 412 His Gly Gly Val Arg Gly Phe Asp Lys Val Leu Trp Thr Pro Arg 120 GTC CTG TCA AAT GGC ATC GAG TTC TCG AGG GTC AGT CCA GAT GGT 457 Val Leu Ser Asn Gly Ile Glu Phe Ser Arg Val Ser Pro Asp Gly 135 GAG GAA GGC TAC CCT GGA GAG TTA AAA GTC TGG GTG ACA TAC ACG 502 Glu Glu Gly Tyr Pro Gly Glu Leu Lys Val Trp Val Thr Tyr Thr 150 CTG GAT GGT GGG GAG CTC GTG GTC AAC TAT CGA GCA CAG GCC AGT 547 Leu Asp Gly Gly Glu Leu Val Val Asn Tyr Arg Ala Gln Ala Ser 165 CAG ACC ACC CCA GTC AAT CTG ACC AAC CAC TCT TAT TTC AAC CTG 592 Gln Thr Thr Pro Val Asn Leu Thr Asn His Ser Tyr Phe Asn Leu 180 GCG GGC CAG GGT TCC CCA AAT ATA TAT GAC CAT GAA GTC ACT ATA 637 Ala Gly Gln Gly Ser Pro Asn Ile Tyr Asp His Glu Val Thr Ile 195 GAA GCT GAT GCT TTT TTG CCT GTG GAT GAA ACC CTA ATC CCT ACA 682 Glu Ala Asp Ala Phe Leu Pro Val Asp Glu Thr Leu Ile Pro Thr 210 GGA GAA ATT GCT CCA GTG CAA GGA ACT GCA TTT GAT CTG AGG AAG 727 Gly Glu Ile Ala Pro Val Gln Gly Thr Ala Phe Asp Leu Arg Lys 225 CCA GTG GAG CTT GGA AAA CAC CTG CAG GAG TTC CAC ATC AAT GGC 772 Pro Val Glu Leu Gly Lys His Leu Gln Glu Phe His Ile Asn Gly 240 TTT GAC CAC AAT TTC TGT CTG AAG AGA TCT AAA GAA AAG CAA TTT 817 Phe Asp His Asn Phe Cys Leu Lys Arg Ser Lys Glu Lys Gln Phe 255 TGT GCA CGG GTC CAT CAT GCT GGA AGC GGG AGG GTC CTG GAA GTG 862 Cys Ala Arg Val His His Ala Gly Ser Gly Arg Val Leu Glu Val 270 TAC ACT ACC CAG CCT GGG ATC CAG TTT TAC ACG GGC AAC TTC CTG 907 Tyr Thr Thr Gln Pro Gly Ile Gln Phe Tyr Thr Gly Asn Phe Leu 285 GAT GGC ACG CTG AAG GGC AAA ACT GGA GCA GTC TAT CCC AAG CAC 952 Asp Gly Thr Leu Lys Gly Lys Thr Gly Ala Val Tyr Pro Lys His 300 TCT GGT TTC TGC CTT GAG ACC CAG AAC TGG CCT AAT GCA GTC AAT 997 Ser Gly Phe Cys Leu Glu Thr Gln Asn Trp Pro Asn Ala Val Asn 315 CAG CCC CAC TTC CCT CCT GTG CTG CTG AAG CCT GGT GAG GAG TAC 1042 Gln Pro His Phe Pro Pro Val Leu Leu Lys Pro Gly Glu Glu Tyr 330 AAC CAC ACC ACT TGG TTT GTG TTT TCT GTG GCT TAAGG AAGTGTTAAG 1090 Asn His Thr Thr Trp Phe Val Phe Ser Val Ala 341 TTATGACCTG TTTCAGGGCC AGCTGGGAGC CCCTTCAGGA ACCTGTCTCC TGTGCAGAGA 1150 TAAGATGAAG ATTTAGAAGC TTTAAAAGTG ATCCTGTGAA TTAAAATCAC ACATATGGTA 1210 GTTGTCATGA TAATCTGAAT TTCAATTTCT TTCCCAATGA CTGACTCCAG GCCAGGTCTA 1270 ATGGTCAGCT CTATTCTCTG TGTGGTGAAG ACCCAACCAG GAATATCATC ATCTAAGCCC 1330 TGACCCTAAT CCAGAAGTGG TATCCAGATC CTTGTGTTGG CTCTATCTCT CCACTCTGCT 1390 TCTTTTCACC CCTTTTTTCT TTGATTCTAC TCATTCCTTC TTTT 1434SEQ ID NO: 6 Sequence length: 1434 Sequence type: Nucleic acid Sequence GGCGGGAGTT CGAGGGACCT GGAGCAACTA CACACCCCAA GCTTTCCTAA TG 52 GTT TCA GTT ACA AGA TCC GTG TTT GGA GAC CTC CCC TCG GGG GCA 97 Val Ser Val Thr Arg Ser Val Phe Gly Asp Leu Pro Ser Gly Ala 15 GGG ACG GTG GAA AAG TTC CAG CTG CAA TCA GAC CAG CTG AGA GTG 142 Gly Thr Val Glu Lys Phe Gln Leu Gln Ser Asp Gln Leu Arg Val 30 GAC ATC ATC TCC TGG GGC TGC ACC ATC ACG GCC CTG GAG GTC AAA 187 Asp Ile Ile Ser Trp Gly Cys Thr Ile Thr Ala Leu Glu Val Lys 45 GAC AGG CAG GGC AGA GCC TCA GAC GTG GTG CTT GGC TTT GCT GAA 232 Asp Arg Gln Gly Arg Ala Ser Asp Val Val Leu Gly Phe Ala Glu 60 TTG AAA GAG TAC CTC CAA AAA CAT CCC TAC TTT GGA GCA GTG GTT 277 Leu Lys Glu Tyr Leu Gln Lys His Pro Tyr Phe Gly Ala Val Val 75 GGC AGA GTG GCA AAC CGA ATT GCC AAA GGA ACA TTC ACA TTG GAT 322 Gly Arg Val Ala Asn Arg Ile Ala Lys Gly Thr Phe Thr Leu Asp 90 GGG AAG GAG TAT AAG CTG GCC ATC AAC AAC GGG CCC AAC AGC CTT 367 Gly Lys Glu Tyr L ys Leu Ala Ile Asn Asn Gly Pro Asn Ser Leu 105 CAT GGA GGA GTC AGA GGA TTT GAT AAG GTG CTC TGG ACC CCT CGG 412 His Gly Gly Val Arg Gly Phe Asp Lys Val Leu Trp Thr Pro Arg 120 GTC CTG TCA AAT GGC ATC GAG TTC TCG AGG GTC AGT CCA GAT GGT 457 Val Leu Ser Asn Gly Ile Glu Phe Ser Arg Val Ser Pro Asp Gly 135 GAG GAA GGC TAC CCT GGA GAG TTA AAA GTC TGG GTG ACA TAC ACG 502 Glu Glu Gly Tyr Pro Gly Glu Leu Lys Val Trp Val Thr Tyr Thr 150 CTG GAT GGT GGG GAG CTC GTG GTC AAC TAT CGA GCA CAG GCC AGT 547 Leu Asp Gly Gly Glu Leu Val Val Asn Tyr Arg Ala Gln Ala Ser 165 CAG ACC ACC CCA GTC AAT CTG ACC AAC CAC TCT TAT TTC AAC CTG 592 Gln Thr Thr Pro Val Asn Leu Thr Asn His Ser Tyr Phe Asn Leu 180 GCG GGC CAG GGT TCC CCA AAT ATA TAT GAC CAT GAA GTC ACT ATA 637 Ala Gly Gln Gly Ser Pro Asn Ile Tyr Asp His Glu Val Thr Ile 195 GAA GCT GAT GCT TTT TTG CCT GTG GAT GAA ACC CTA ATC CCT ACA 682 Glu Ala Asp Ala Phe Leu Pro Val Asp Glu Thr Leu Ile Pro Thr 210 GGA GAA ATT GCT CCA GTG CAA GGA ACT GCA TTT GAT CTG AGG A AG 727 Gly Glu Ile Ala Pro Val Gln Gly Thr Ala Phe Asp Leu Arg Lys 225 CCA GTG GAG CTT GGA AAA CAC CTG CAG GAG TTC CAC ATC AAT GGC 772 Pro Val Glu Leu Gly Lys His Leu Gln Glu Phe His Ile Asn Gly 240 TTT GAC CAC AAT TTC TGT CTG AAG AGA TCT AAA GAA AAG CAA TTT 817 Phe Asp His Asn Phe Cys Leu Lys Arg Ser Lys Glu Lys Gln Phe 255 TGT GCA CGG GTC CAT CAT GCT GGA AGC GGG AGG GTC CTG GAA GTG 862 Cys Ala Arg Val His His Ala Gly Ser Gly Arg Val Leu Glu Val 270 TAC ACT ACC CAG CCT GGG ATC CAG TTT TAC ACG GGC AAC TTC CTG 907 Tyr Thr Thr Gln Pro Gly Ile Gln Phe Tyr Thr Gly Asn Phe Leu 285 GAT GGC ACG CTG AAG GGC AAA ACT GGA GCA GTC TAT CCC AAG CAC 952 Asp Gly Thr Leu Lys Gly Lys Thr Gly Ala Val Tyr Pro Lys His 300 TCT GGT TTC TGC CTT GAG ACC CAG AAC TGG CCT AAT GCA GTC AAT 997 Ser Gly Phe Cys Leu Glu Thr Gln Asn Trp Pro Asn Ala Val Asn 315 CAG CCC CAC TTC CCT CCT GTG CTG CTG AAG CCT GGT GAG GAG TAC 1042 Gln Pro His Phe Pro Pro Val Leu Leu Lys Pro Gly Glu Glu Tyr 330 AAC CAC ACC ACT TGG TTT GTG TTTTCT GTG GCT TAAGG AAGTGTTAAG 1090 Asn His Thr Thr Trp Phe Val Phe Ser Val Ala 341 TTATGACCTG TTTCAGGGCC AGCTGGGAGC CCCTTCAGGA ACCTGTCTCC TGTGCAGAGA 1150 TAAGATGAAG ATTTAGAAGC TTTAAAAGTG ATCCTGTGAA TTAAAATCAC ACATATGGTA 1210 GTTGTCATGA TAATCTGAAT TTCAATTTCT TTCCCAATGA CTGACTCCAG GCCAGGTCTA 1270 ATGGTCAGCT CTATTCTCTG TGTGGTGAAG ACCCAACCAG GAATATCATC ATCTAAGCCC 1330 TGACCCTAAT CCAGAAGTGG TATCCAGATC CTTGTGTTGG CTCTATCTCT CCACTCTGCT 1390 TCTTTTCACC CCTTTTTTCT TTGATTCTAC TCATTCCTTC TTTT 1434

【図面の簡単な説明】[Brief description of drawings]

【図1】M2のcDNAの制限酵素地図を示す。FIG. 1 shows a restriction map of M2 cDNA.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】ムタロターゼの遺伝情報を担うDNA。1. A DNA carrying the genetic information of mutarotase. 【請求項2】図1に示される制限酵素地図を有し、ムタ
ロターゼの遺伝情報を担うDNA。
2. A DNA having the restriction enzyme map shown in FIG. 1 and carrying the genetic information of mutarotase.
【請求項3】配列番号:1に示すアミノ酸配列をコード
する塩基配列を含むDNA。
3. A DNA containing a nucleotide sequence encoding the amino acid sequence shown in SEQ ID NO: 1.
【請求項4】ムタロターゼが豚腎臓由来である請求項1
乃至請求項3記載のDNA。
4. The mutarotase is derived from pig kidney.
To the DNA according to claim 3.
【請求項5】ムタロターゼの遺伝情報を担うDNAをベ
クターに組み込んだ組換えDNA。
5. A recombinant DNA in which a DNA carrying the genetic information of mutarotase is incorporated into a vector.
【請求項6】図1に示される制限酵素地図を有し、ムタ
ロターゼの遺伝情報を担うDNAをベクターに組み込ん
だ組換えDNAを導入した形質転換体。
6. A transformant having the restriction enzyme map shown in FIG. 1 and introduced with recombinant DNA in which a DNA carrying the genetic information of mutarotase is incorporated into a vector.
【請求項7】豚腎臓由来のムタロターゼの遺伝情報を担
うDNAをベクターに組み込んだ組換えDNAを宿主に
導入して形質転換体を得、該形質転換体を培養し、ムタ
ロターゼを培養物中に産生せしめ、該培養物中よりムタ
ロターゼを採取することを特徴とするムタロターゼの製
造法。
7. A transformant is obtained by introducing into a host recombinant DNA in which a DNA carrying the genetic information of mutarotase derived from pig kidney is introduced into a host, culturing the transformant, and adding mutarotase to the culture. A method for producing mutarotase, which comprises producing the mutarotase and collecting the mutarotase from the culture.
JP5208328A 1993-07-30 1993-07-30 Mutarotase gene, recombinant dna incorporated with the same and production of mutarotase Pending JPH0739380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5208328A JPH0739380A (en) 1993-07-30 1993-07-30 Mutarotase gene, recombinant dna incorporated with the same and production of mutarotase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5208328A JPH0739380A (en) 1993-07-30 1993-07-30 Mutarotase gene, recombinant dna incorporated with the same and production of mutarotase

Publications (1)

Publication Number Publication Date
JPH0739380A true JPH0739380A (en) 1995-02-10

Family

ID=16554452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5208328A Pending JPH0739380A (en) 1993-07-30 1993-07-30 Mutarotase gene, recombinant dna incorporated with the same and production of mutarotase

Country Status (1)

Country Link
JP (1) JPH0739380A (en)

Similar Documents

Publication Publication Date Title
Kimura et al. Structure of the human thyroid peroxidase gene: comparison and relationship to the human myeloperoxidase gene
Noegel et al. Complete sequence and transcript regulation of a cell adhesion protein from aggregating Dictyostelium cells
Shorrosh et al. Molecular cloning of a putative plant endomembrane protein resembling vertebrate protein disulfide-isomerase and a phosphatidylinositol-specific phospholipase C.
Watanabe et al. Purification and molecular cloning of a chitinase expressed in the hepatopancreas of the penaeid prawn Penaeus japonicus
JPH10155493A (en) Gene coding for phospholipase a1 derived from aspergillus
Chen et al. Cloning of a chicken liver cDNA encoding 5-aminoimidazole ribonucleotide carboxylase and 5-aminoimidazole-4-N-succinocarboxamide ribonucleotide synthetase by functional complementation of Escherichia coli pur mutants.
Dignam et al. Balbiani ring 3 in Chironomus tentans encodes a 185-kDa secretory protein which is synthesized throughout the fourth larval instar
Schmidt et al. Cloning of the homogentisate 1, 2-dioxygenase gene, the key enzyme of alkaptonuria in mouse
Grohmann et al. Molecular cloning of the nuclear gene for mitochondrial ribosomal protein YmL31 from Saccharomyces cerevisiae
JP2686025B2 (en) Blasticidin S deaminase gene
EP0509768A2 (en) DNA clone of guayule rubber particle protein
JP3399549B2 (en) Microbial peroxidase gene
JPH0739380A (en) Mutarotase gene, recombinant dna incorporated with the same and production of mutarotase
HU197939B (en) Process for producing deoxyribonucleic acid, or its precursor, determining human growth hormone releasing factor
JPH06253856A (en) Mutarotase gene
JP2000175698A (en) Pyranose oxidase-containing reagent for measuring pyranose
JP2892171B2 (en) Polypeptide
JPH10504452A (en) Novel topoisomerase IV, corresponding nucleotide sequences and uses thereof
JP3197355B2 (en) Asparaginyl endopeptidase gene
JP3355368B2 (en) Plasmid vector containing cDNA encoding plant-derived epoxide hydrolase and transformant
JP3232714B2 (en) Novel proteins and genes encoding them
JP3533699B2 (en) Prophenol oxidase and phenol oxidase from silkworm
JP3030349B2 (en) Insect-derived cellulase gene
JPH0568548A (en) Gene fragment encoding human alt
NZ275817A (en) Endothelin converting enzymes, preparation and use

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040720