JP3030349B2 - Insect-derived cellulase gene - Google Patents

Insect-derived cellulase gene

Info

Publication number
JP3030349B2
JP3030349B2 JP9206740A JP20674097A JP3030349B2 JP 3030349 B2 JP3030349 B2 JP 3030349B2 JP 9206740 A JP9206740 A JP 9206740A JP 20674097 A JP20674097 A JP 20674097A JP 3030349 B2 JP3030349 B2 JP 3030349B2
Authority
JP
Japan
Prior art keywords
ala
gly
leu
asp
tyr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9206740A
Other languages
Japanese (ja)
Other versions
JPH1146764A (en
Inventor
博明 野田
裕文 渡辺
岳 徳田
Original Assignee
農林水産省蚕糸・昆虫農業技術研究所長
生物系特定産業技術研究推進機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 農林水産省蚕糸・昆虫農業技術研究所長, 生物系特定産業技術研究推進機構 filed Critical 農林水産省蚕糸・昆虫農業技術研究所長
Priority to JP9206740A priority Critical patent/JP3030349B2/en
Publication of JPH1146764A publication Critical patent/JPH1146764A/en
Application granted granted Critical
Publication of JP3030349B2 publication Critical patent/JP3030349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は昆虫が生産し、その
体内でセルロースを消化するために働くセルラーゼ、そ
の遺伝子及び前記セルラーゼの製造方法に関する。
[0001] The present invention relates to a cellulase produced by an insect and acting to digest cellulose in the body, a gene thereof, and a method for producing the cellulase.

【0002】[0002]

【従来の技術】木材などのセルロースを食べている昆虫
は体内にセルロース消化酵素(セルラーゼ)を持ってお
り、セルロースを消化してエネルギー源としている。こ
れらのセルラーゼは消化管内に共生する微生物が生産し
ていると考えられており、昆虫自身がセルラーゼを作っ
ているという示唆はあったが、動物からセルラーゼの遺
伝子は取り出されていなかった。一方、細菌や糸状菌な
どからはセルラーゼ遺伝子が取り出されているが、分子
量が大きく、活性ドメインの他に吸着ドメインおよびそ
れらをつなぐドメインからなることが判明している。こ
れまでセルラーゼを昆虫から単離した例は極めて少な
く、その理化学的性状 についても、徘徊性のゴキブリ(Panesthia cribrata
のエンド−β−1,4−グルカナーゼなどについて調べ
られているだけで、遺伝子についてはまったく判ってい
ない。
2. Description of the Related Art Insects eating cellulose such as wood have a cellulose digestive enzyme (cellulase) in their bodies, and digest cellulose as an energy source. It is thought that these cellulases are produced by microorganisms symbiotic in the digestive tract, suggesting that insects themselves make cellulases, but the cellulase gene has not been removed from animals. On the other hand, cellulase genes have been extracted from bacteria and filamentous fungi, but have a high molecular weight and are known to be composed of an adsorption domain and a domain connecting them in addition to the active domain. To date, very few cellulases have been isolated from insects, and their physicochemical properties are also high in the wandering cockroach ( Panethia cribrata ).
Has only been investigated for endo-β-1,4-glucanase and the like, but the gene is not known at all.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、昆虫
からのセルラーゼの精製法を確立し、その酵素学的特徴
を明らかにし、さらにその遺伝子を取り出し、さらにそ
の遺伝子を用いて遺伝子工学的手法により上記酵素を製
造する方法を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to establish a method for purifying cellulase from insects, clarify its enzymatic characteristics, further extract the gene, and use the gene for genetic engineering. An object of the present invention is to provide a method for producing the enzyme by a technique.

【0004】[0004]

【課題を解決するための手段】すなわち、本発明は下記
の酵素化学的性質を有する昆虫由来のセルラーゼにあ
る。 基質特異性:昆虫の唾腺または腸で作られ、餌として取
り込まれたセルロースを分解する。 分子量:40,000-50,000 熱安定性: 〜60℃ 至適pH:5.0〜6.0 カルボキシメチルセルロースに対する比活性:70〜1300
ユニット/mg 上記昆虫としてはヤマトシロアリ(Reticulitermes spe
r atus)又はタカサゴシロアリ(Nasutiterm es takasago
ensis)などが挙げられる。
That is, the present invention resides in an insect cellulase having the following enzymatic chemical properties. Substrate specificity: Degrades cellulose made in the salivary glands or intestine of insects and taken up as food. Molecular weight: 40,000-50,000 Thermal stability: 6060 ° C. Optimum pH: 5.0-6.0 Specific activity for carboxymethyl cellulose: 70-1300
Unit / mg The above insects include the Japanese termite ( Reticulitermes spe
r atus) or Takasago termites (Nasutiterm es takasago
ensis ).

【0005】さらに、本発明は以下の(a)又は(b)
のセルラーゼ活性を有する組換えタンパク質にある。 (a)配列番号1又は2で表されるアミノ酸配列からな
るタンパク質。 (b)アミノ酸配列(a)において1若しくは数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、セルラーゼ酵素活性を有するタンパク質。
Further, the present invention provides the following (a) or (b)
In a recombinant protein having cellulase activity. (A) a protein consisting of the amino acid sequence represented by SEQ ID NO: 1 or 2; (B) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence (a), and having a cellulase enzyme activity;

【0006】さらに、本発明は以下の(a)又は(b)
のセルラーゼ活性を有するタンパク質をコードするDN
Aにある。 (a)配列番号1又は2で表されるアミノ酸配列からな
るタンパク質。 (b)アミノ酸配列(a)において1若しくは数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、セルラーゼ酵素活性を有するタンパク質。そし
て、上記DNAとしては、例えば配列番号1又は2で表
されるものが挙げられる。
Further, the present invention provides the following (a) or (b)
Encoding a protein having cellulase activity
A. (A) a protein consisting of the amino acid sequence represented by SEQ ID NO: 1 or 2; (B) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence (a), and having a cellulase enzyme activity; And as said DNA, what is represented by sequence number 1 or 2 is mentioned, for example.

【0007】さらに、本発明は、上記DNAを含む組換
えベクターである。さらに、本発明は、上記組換えベク
ターによって形質転換された形質転換体である。さら
に、本発明は、上記形質転換体を培地に培養し、得られ
る培養物から請求項3記載のセルラーゼ活性を有する組
換えタンパク質を採取することを特徴とする該組換えタ
ンパク質の製造方法である。
[0007] Further, the present invention is a recombinant vector containing the above DNA. Furthermore, the present invention is a transformant transformed by the above-mentioned recombinant vector. Further, the present invention is a method for producing a recombinant protein, comprising culturing the above transformant in a medium and collecting the recombinant protein having cellulase activity according to claim 3 from the resulting culture. .

【0008】[0008]

【発明の実施の形態】以下、本発明を詳細に説明する。 1)昆虫セルラーゼタンパク質の分離・精製 昆虫からの酵素タンパク質の分離には、一般のタンパク
質の分離、精製に用いられる様々な方法が適用できる。
本発明においては、シロアリを磨砕し、そのアセトン沈
殿分画をクロマトグラフィーを用いて、単一のピークに
まで精製できる。例えば、ゲル濾過とハイドロキシアパ
タイト吸着クロマトグラフィーを行いほぼ純粋なセルラ
ーゼを得ることができる。このセルラーゼの酵素学的性
状は、精製した酵素を用いて、後に述べる活性の測定法
によって調査できる。そして、至適pH、至適温度、温
度耐性、基質特性などが調べられる。なお、本発明で対
象とした昆虫は下等シロアリであるヤマトシロアリおよ
び高等シロアリであるタカサゴシロアリである。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. 1) Separation / Purification of Insect Cellulase Protein Various methods commonly used for separation and purification of proteins can be applied to the separation of enzyme proteins from insects.
In the present invention, termites are ground and the acetone-precipitated fraction can be purified to a single peak using chromatography. For example, almost pure cellulase can be obtained by performing gel filtration and hydroxyapatite adsorption chromatography. The enzymatic properties of this cellulase can be investigated using the purified enzyme by the activity measurement method described later. Then, the optimum pH, the optimum temperature, the temperature resistance, the substrate characteristics and the like are examined. The insects targeted in the present invention are the lower termite, the termite Yamato termite, and the higher termite, the Takasago termite.

【0009】2)昆虫セルラーゼ遺伝子のクローニング 昆虫セルラーゼ遺伝子のクローニングは、昆虫からクロ
マトグラフィーなどによって、効率的にセルラーゼ(エ
ンド−β−1,4−グルカナーゼ)を精製し、その抗体
を作成して、ファージに組み込んだcDNAを探し出す
か、またはそのN末端のアミノ酸配列をエドマン法で解
読し、PCR法によってcDNAを手に入れた後、プラ
スミドに組み込んで形質転換体を作成することによって
達成できる。
2) Cloning of insect cellulase gene In cloning of insect cellulase gene, cellulase (endo-β-1,4-glucanase) is efficiently purified from insects by chromatography or the like, and its antibody is prepared. This can be achieved by searching for the cDNA incorporated into the phage or by decoding the N-terminal amino acid sequence by the Edman method, obtaining the cDNA by the PCR method, and then incorporating the cDNA into a plasmid to prepare a transformant.

【0010】この酵素蛋白質の遺伝子(cDNA)塩基
配列を決定する方法は、種種の分子生物学的な手法を適
用できる。例えば、この精製酵素を電気泳動に掛け、ナ
イロンメンブレンなどに移し取り、そのメンブレンをプ
ロテインシーケンサーにかけて、酵素のN末端のアミノ
酸配列を決定する。そして、そのアミノ酸配列からPC
R用のプライマーを作り、mRNAを鋳型としてcDN
Aの5’末端と3’末端を含む複数のPCR断片を手に
入れ、公知のプラスミド(例えば、Stratagene社製のpB
luescript II、pUC18 等)にクローニングして、DNA
シーケンサー(例えば、ABI社製の373A、373S等)でc
DNAの全長の塩基配列を決定できる。
[0010] Various molecular biology techniques can be applied to the method for determining the gene (cDNA) base sequence of the enzyme protein. For example, the purified enzyme is subjected to electrophoresis, transferred to a nylon membrane or the like, and the membrane is applied to a protein sequencer to determine the N-terminal amino acid sequence of the enzyme. And, from the amino acid sequence,
R primers, and using mRNA as template
A plurality of PCR fragments containing the 5 ′ end and 3 ′ end of A are obtained, and a known plasmid (for example, pB
luescript II, pUC18, etc.)
Use a sequencer (eg, ABI 373A, 373S)
The full-length nucleotide sequence of DNA can be determined.

【0011】このようにして決定されるセルラーゼの遺
伝子およびこの遺伝子によりコードされるアミノ酸配列
を配列番号1と2に示すが、本質的に本発明の遺伝子が
セルラーゼを発現しセルロース分解活性を有する限り、
また、本発明のタンパク質がセルラーゼ活性を有する限
り、当該タンパク質に含まれるアミノ酸配列、又は当該
遺伝子の塩基配列に欠失、置換、挿入等の変異が生じて
もよいことを意味する。
[0011] The cellulase gene thus determined and the amino acid sequence encoded by this gene are shown in SEQ ID NOs: 1 and 2, provided that the gene of the present invention essentially expresses cellulase and has a cellulolytic activity. ,
Further, as long as the protein of the present invention has cellulase activity, it means that mutations such as deletion, substitution, and insertion may occur in the amino acid sequence contained in the protein or the base sequence of the gene.

【0012】従って、例えば配列番号1と2で表される
アミノ酸配列に含まれる第1番目のメチオニン(Met)が
欠失しているものなども、このアミノ酸配列の変化によ
るタンパク質に含まれる。また、本発明のタンパク質に
含まれるアミノ酸をコードする塩基配列のほか、縮重コ
ドンにおいてのみ異なる同一のポリペプチドをコードす
る縮重異性体も本発明の遺伝子に含まれる。
Therefore, for example, those in which the first methionine (Met) contained in the amino acid sequences represented by SEQ ID NOs: 1 and 2 are deleted are also included in the protein resulting from the change in the amino acid sequence. In addition to the nucleotide sequence encoding the amino acid contained in the protein of the present invention, the gene of the present invention also includes degenerate isomers encoding the same polypeptide that differs only in degenerate codons.

【0013】なお、上記変異は、公知の突然変異誘発キ
ット(Takara社製など)を用いることにより容易に導入
することができる。また、上記塩基配列が一旦確定され
ると、その後は、化学合成、PCR、又は該塩基配列を
有するDNA断片をプローブとしてハイブリダイズさせ
ることにより、本発明の遺伝子を得ることができる。一
方、上記遺伝子DNA断片を保持するためのベクターに
ついては公知のプラスミドベクター(例えばStratagene
社製のpBluescript II、pUC18 等) を用いることができ
る。
The above mutation can be easily introduced by using a known mutagenesis kit (eg, manufactured by Takara). Further, once the base sequence is determined, the gene of the present invention can be obtained by chemical synthesis, PCR, or hybridization using a DNA fragment having the base sequence as a probe. On the other hand, vectors for retaining the gene DNA fragments are known plasmid vectors (for example, Stratagene).
PBluescript II, pUC18, etc.) can be used.

【0014】3)形質転換体の作製 本発明の形質転換体は、本発明の組み換えベクターを、
適合する宿主中に導入することにより得られる。宿主と
しては、目的とする遺伝子を発現できるものであれば特
に限定されず、例えば、大腸菌(Escherichia coli) 、
バチルス・ズブチリス(Bacillus subtilis) 等の細
菌、サッカロミセス・セレビシエ(Saccharomyces cere
visiae) 等の酵母、SF9、SF21等の昆虫細胞、C
OS細胞、CHO細胞等の動物細胞などが挙げられる。
3) Preparation of Transformant The transformant of the present invention comprises the recombinant vector of the present invention,
Obtained by introduction into a suitable host. The host is not particularly limited as long as it can express the gene of interest. For example, Escherichia coli,
Bacillus subtilis and other bacteria such as Saccharomyces cere
visiae ), insect cells such as SF9 and SF21, C
Animal cells such as OS cells and CHO cells are exemplified.

【0015】大腸菌等の細菌を宿主として用いる場合
は、本発明の組換え体DNAが該宿主中で自立複製可能
であると同時に、プロモーター、本発明のDNA、転写
終結配列を含む構成であることが好ましい。発現ベクタ
ーとしては、例えばpET3、pET11(Stratagene社製) 、pM
AL(New England Biolabs社) 等が挙げられる。プロモー
ターとしては、大腸菌等の宿主中で発現できるものであ
ればいずれを用いてもよい。例えば、T7プロモーター、
trpプロモーター、lac プロモーター、PL プロモータ
ー、PR プロモーターなどの大腸菌やファージ等に由来
するプロモーターが用いられる。細菌への組み換え体D
NAの導入方法としては、例えばカルシウムイオンを用
いる方法、エレクトロポレーション法等が挙げられる。
When a bacterium such as Escherichia coli is used as a host, the recombinant DNA of the present invention must be capable of autonomous replication in the host and contain a promoter, the DNA of the present invention, and a transcription termination sequence. Is preferred. Examples of expression vectors include pET3, pET11 (Stratagene), pM
AL (New England Biolabs) and the like. Any promoter can be used as long as it can be expressed in a host such as Escherichia coli. For example, T 7 promoter,
trp promoter, lac promoter, P L promoter, promoters derived from Escherichia coli or phage, etc., such as P R promoter. Recombinant D for bacteria
Examples of the method for introducing NA include a method using calcium ions, and an electroporation method.

【0016】酵母を宿主として用いる場合は、発現ベク
ターとして、例えば pYEUra3、YEp13 、YCp50 等が挙げ
られる。プロモーターとしては、例えばgal 1 プロモー
ター、gal 10プロモーター等が挙げられる。酵母への組
換えベクターの導入方法としては、例えばエレクトロポ
レーション法、スフェロプラスト法、酢酸リチウム法等
が挙げられる。
When yeast is used as a host, examples of expression vectors include pYEUra3, YEp13, and YCp50. Examples of the promoter include a gal 1 promoter and a gal 10 promoter. Examples of a method for introducing a recombinant vector into yeast include an electroporation method, a spheroplast method, and a lithium acetate method.

【0017】昆虫細胞を宿主として用いる場合は、発現
ベクターとして例えば pBacPAK8(Clontec 社) 、pBlueB
ac(Invitrogen 社製) 等が用いられる。昆虫細胞への組
み換えベクターの導入方法としては、例えば、エレクト
ロポレーション法、リポフェクション法等が挙げられ
る。動物細胞を宿主として用いる場合は、発現ベクター
として例えば pMAM(Clontec 社製) 、pcDNA(Invitrogen
社製) 等が用いられる。動物細胞への組換えベクターの
導入方法としては、例えば、エレクトロポレーション
法、リン酸カルシウム法等が挙げられる。
When an insect cell is used as a host, pBacPAK8 (Clontec), pBlueB
ac (manufactured by Invitrogen) or the like is used. Examples of a method for introducing the recombinant vector into insect cells include an electroporation method and a lipofection method. When an animal cell is used as a host, pMAM (manufactured by Clontec), pcDNA (Invitrogen)
And the like are used. Examples of a method for introducing a recombinant vector into animal cells include an electroporation method and a calcium phosphate method.

【0018】4)昆虫セルラーゼ遺伝子の発現タンパク
質の精製 本発明のタンパク質は、本発明の形質転換体を培地で培
養し、培養物中および形質転換体中に本発明のポリペプ
チドを生成蓄積させ、該培養物および形質転換体から該
ポリペプチドを採取することにより製造することができ
る。本発明の形質転換体を培地で培養する方法は、宿主
の培養に用いられる通常の方法に従って行われる。
4) Purification of Insect Cellulase Gene-Expressed Protein The protein of the present invention is obtained by culturing the transformant of the present invention in a medium, producing and accumulating the polypeptide of the present invention in the culture and in the transformant. The polypeptide can be produced by collecting the polypeptide from the culture and the transformant. The method for culturing the transformant of the present invention in a medium is performed according to a usual method used for culturing a host.

【0019】大腸菌や酵母菌等の微生物を宿主として得
られた形質転換体を培養する培地としては、微生物が資
化し得る炭素源、窒素源、無機塩類等を含有し、形質転
換体の培養を効率的に行える培地であれば、天然培地、
合成培地のいずれを用いてもよい。
A culture medium for culturing a transformant obtained by using a microorganism such as Escherichia coli or yeast as a host contains a carbon source, a nitrogen source, inorganic salts, and the like which can be utilized by the microorganism. If the medium can be performed efficiently, natural medium,
Any of the synthetic media may be used.

【0020】培養は、通常振盪培養などの好気的条件
下、25〜37℃で行う。培養中は、アンピシリンやテトラ
サイクリン等の抗生物質を培地に添加してもよい。誘導
性のプロモーターを用いた発現ベクターで形質転換した
微生物を培養する場合は、インデューサーを培地に添加
することもできる。例えば、イソプロピル−β−D−チ
オガラクトピラノシド(IPTG) 、インドールアクリル酸
(IAA) 等を培地に添加することができる。
The culture is usually performed at 25 to 37 ° C. under aerobic conditions such as shaking culture. During the culture, an antibiotic such as ampicillin or tetracycline may be added to the medium. When culturing a microorganism transformed with an expression vector using an inducible promoter, an inducer can be added to the medium. For example, isopropyl-β-D-thiogalactopyranoside (IPTG), indoleacrylic acid
(IAA) can be added to the medium.

【0021】昆虫細胞を宿主として得られた形質転換体
を培養する培地としてはグレース培地又はこの培地にウ
シ胎児血清を添加した培地が用いられる。動物細胞を宿
主として得られた形質転換体を培養する培地としては、
例えばRPMI-1640 、DMEM培地又はこれらの培地にウシ胎
児血清を添加した培地が用いられる。培養中はカナマイ
シン、ペニシリン等の抗生物質を培地に添加してもよ
い。
As a medium for culturing the transformant obtained using insect cells as a host, Grace's medium or a medium obtained by adding fetal bovine serum to this medium is used. As a medium for culturing the transformant obtained using animal cells as a host,
For example, RPMI-1640, DMEM medium or a medium obtained by adding fetal bovine serum to these mediums is used. During culture, antibiotics such as kanamycin and penicillin may be added to the medium.

【0022】本発明のタンパク質の精製は昆虫からの分
離・精製と同様に行うことができる。例えば本発明の遺
伝子を保有する大腸菌等のクローンについて、アンピシ
リンなどの抗生物質を含むLB培地などの振盪培養を行
う。得られる培養物を遠心して細胞を回収し、ソニケー
ターにて細胞を破砕した後、ゲル濾過等を単独で又は適
宜組み合わせることによって精製が行われる。得られた
精製物質が目的のタンパク質であることの確認は、通常
の方法、例えばSDSポリアクリルアミドゲル電気泳
動、ウエスタンブロッティング等の他に、セルラーゼ活
性の測定によっても行える。
The purification of the protein of the present invention can be carried out in the same manner as the separation and purification from insects. For example, a clone such as Escherichia coli having the gene of the present invention is subjected to shaking culture in an LB medium containing an antibiotic such as ampicillin. The obtained culture is centrifuged to collect the cells, the cells are crushed with a sonicator, and then purified by gel filtration or the like alone or in an appropriate combination. Confirmation that the obtained purified substance is the target protein can be carried out by a usual method, for example, SDS polyacrylamide gel electrophoresis, Western blotting, or the like, or by measurement of cellulase activity.

【0023】[0023]

〔実施例1〕[Example 1]

1)タカサゴシロアリのセルラーゼの調製と活性の測定 約20頭のシロアリから消化管と唾腺を解剖により取り出
し、消化管の場合は前腸、中腸、後腸などにわけて、10
マイクロリットルの緩衝液(0.1M酢酸ナトリウム、pH5.
5)で磨砕し、約20,000gで20分遠心した。上清を600マ
イクロリットルの緩衝液で希釈し、酵素液とした。エン
ド−β−1,4−グルカナーゼの活性は、2.0%ソディ
ウム・カルボキシメチルセルロース(CMC)200 マイ
クロリットル(緩衝液に溶かす)に、酵素液25マイクロ
リットルを加え、37℃で30分インキュベートした後、テ
トラゾリウム・ブルー(Sigma)で、発色程度を測定し
た。そのときの蛋白量は、紫外線の280と260nmの吸収を
利用して、牛胎児血清を用いて標準線を作成しておき、
標準線から決定した。これにより、活性の高い部位を知
ることができ、次の精製操作の参考になる。
1) Preparation of cellulase of Takasago termite and measurement of its activity The gastrointestinal tract and salivary glands are dissected out of about 20 termites, and the digestive tract is divided into foregut, midgut, hindgut, etc.
Microliter of buffer (0.1 M sodium acetate, pH 5.
Triturated in 5) and centrifuged at about 20,000 g for 20 minutes. The supernatant was diluted with 600 microliters of a buffer to obtain an enzyme solution. The activity of endo-β-1,4-glucanase was determined by adding 25 microliters of an enzyme solution to 200 microliters of 2.0% sodium carboxymethylcellulose (CMC) (dissolved in a buffer) and incubating at 37 ° C. for 30 minutes. Color development was measured with tetrazolium blue (Sigma). The amount of protein at that time uses the absorption of ultraviolet light at 280 and 260 nm, and creates a standard line using fetal calf serum.
Determined from the standard line. As a result, a site having a high activity can be known, and it becomes a reference for the next purification operation.

【0024】2)カラムクロマトグラフィーによる酵素
の分離・精製 約15gのシロアリを蒸留水 150ミリリットルで磨砕し、
24,000gで30分遠心して上清を回収した。硫酸アンモニ
ウムを加えて35〜70%濃度での沈殿物を遠心して回収し
た。この沈殿物を30ミリリットルの0.3M酢酸アンモニウ
ム緩衝液(pH5.0)に溶かし、カラムクロマトグラフィ
ーにかけた。サンプルの濃縮は限外濾過膜(アミコン製
モデル8010,8050など)を用いて行った。
2) Separation and purification of enzyme by column chromatography About 15 g of termites were ground with 150 ml of distilled water,
The supernatant was collected by centrifugation at 24,000 g for 30 minutes. The precipitate at 35-70% concentration by adding ammonium sulfate was collected by centrifugation. The precipitate was dissolved in 30 ml of 0.3 M ammonium acetate buffer (pH 5.0) and subjected to column chromatography. The sample was concentrated using an ultrafiltration membrane (Amicon models 8010, 8050, etc.).

【0025】Sephacryl S-200HR(Pharmacia)をつめたカ
ラム(26×900mm)にサンプルをのせ、0.3M酢酸アンモ
ニウム緩衝液を流した(1分当たり1.0ミリリット
ル)。活性のあった分画は濃縮して、次に HiLoad 16/6
0 Superdex-75(Pharmacia)のカラムで精製した(1分あ
たり 0.6ミリリットル)。さらに、同様に、hydroxyapa
tite(Bio-Rad) のカラム(10×50mm)を用いて、20mMか
ら1Mリン酸緩衝液(pH5.5)へ勾配をかえて流して
(1分当たり 0.2ミリリットル)活性分画を回収した。
もう一度 hydroxyapatite カラムで精製を繰り返せばさ
らに純度を上げることができた。精製した酵素は、ポリ
アクリルアミドゲル電気泳動(SDS-PAGE)を行って、良
く精製されていることを確認した。
The sample was placed on a column (26 × 900 mm) packed with Sephacryl S-200HR (Pharmacia), and a 0.3 M ammonium acetate buffer solution was flowed (1.0 ml per minute). Active fractions were concentrated and then HiLoad 16/6
Purified on a Superdex-75 (Pharmacia) column (0.6 ml per minute). Furthermore, similarly, hydroxyapa
Using a column (10 × 50 mm) of tite (Bio-Rad), the active fraction was recovered by flowing the gradient from 20 mM to 1 M phosphate buffer (pH 5.5) with a gradient (0.2 ml per minute).
Repeating purification on the hydroxyapatite column again could further increase the purity. The purified enzyme was subjected to polyacrylamide gel electrophoresis (SDS-PAGE) to confirm that it was well purified.

【0026】3)酵素の酵素化学的性質の調査 精製された酵素を用いて、至適温度を調べるには、酢酸
ナトリウム緩衝液などに溶かした2%CMC溶液の中に
酵素をいれ、20℃から70℃くらいまで5℃間隔でそれぞ
れのサンプルを5分間保持したのち、37℃で5分間テト
ラゾリウムで発色させ、活性を測った。至適pHは、p
H域によって用いる緩衝液を変え、同様に37℃で活性を
測った。
3) Investigation of Enzyme Chemical Properties of the Enzyme To examine the optimum temperature using the purified enzyme, put the enzyme in a 2% CMC solution dissolved in a sodium acetate buffer or the like, and add the enzyme at 20 ° C. After holding each sample for 5 minutes at 5 ° C intervals from 5 to 70 ° C, the color was developed with tetrazolium at 37 ° C for 5 minutes, and the activity was measured. The optimum pH is p
The buffer used was changed according to the H range, and the activity was measured at 37 ° C. in the same manner.

【0027】酵素の基質特異性(cellopentaose, cello
tetraose, cellotriose, cellobiose)を調査するに
は、60mMの基質溶液10マイクロリットルに酵素液を10マ
イクロリットル加え、37℃でインキュベートした。分解
産物を薄層クロマトグラフィー(TLC)で展開して、
発色剤(アニリン、ディフェニルアミン、アセトン、H
3PO4)を吹き付け、熱して検出した。その結果、本酵
素は cellopentaose やcellotetraose をより良く分解
することが判った。
The substrate specificity of the enzyme (cellopentaose, cellopenta
To investigate tetraose, cellotriose, cellobiose), 10 microliters of enzyme solution was added to 10 microliters of a 60 mM substrate solution and incubated at 37 ° C. The degradation products are developed by thin layer chromatography (TLC),
Color formers (aniline, diphenylamine, acetone, H
3 PO 4 ) was sprayed and heated to detect. As a result, this enzyme was found to degrade cellopentaose and cellotetraose better.

【0028】本酵素の比活性は基質としてカルボキシメ
チルセルロースを用いて測定した結果、70〜1300ユニッ
ト/mg(ユニット:1分あたりにグルコース相当の還元
糖を1マイクロモル生成する酵素量)であった。分子量
はポリアクリルアミドゲル(SDS-PAGE)の泳動度から推定
した。ヤマトシロアリ及びタカサゴシロアリのセルラー
ゼ(エンド−β−1,4−グルカナーゼ)についての酵
素化学的性質は表1に示す通りである。
The specific activity of this enzyme was measured using carboxymethylcellulose as a substrate, and was found to be 70 to 1300 units / mg (unit: amount of enzyme that produces 1 micromol of reducing sugar equivalent to glucose per minute). . The molecular weight was estimated from the electrophoretic mobility of polyacrylamide gel (SDS-PAGE). The enzymatic chemical properties of the cellulase (endo-β-1,4-glucanase) of Yamato termite and Takasago termite are as shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】〔実施例2〕 遺伝子のクローニングと塩
基配列の解析(タカサゴシロアリのセルラーゼの例) 精製した酵素をポリアクリルアミドゲル電気泳動で泳動
し、PVDF膜にブロティング装置(TransBlott SD,Bi
o-Rad)で写し取った後、クマジーブルーで染色し、乾
燥後染色部分を切り取り、アミノ酸シーケンサー(LF-3
000, Beckman)で酵素蛋白質のN末端のアミノ酸配列を
調べた。解読されたアミノ酸配列部分(約30アミノ酸)
だけを増幅できるPCRプライマー対(縮合プライマ
ー)を作成した。
Example 2 Cloning of Gene and Analysis of Base Sequence (Example of Cellulase of Takasago Termite) The purified enzyme was electrophoresed by polyacrylamide gel electrophoresis and blotted on a PVDF membrane (TransBlott SD, Bi).
o-Rad), stained with Coomassie Blue, dried, cut out the stained part, and used an amino acid sequencer (LF-3
000, Beckman) was used to examine the N-terminal amino acid sequence of the enzyme protein. Decoded amino acid sequence (about 30 amino acids)
A PCR primer pair (condensation primer) capable of amplifying only the primer was prepared.

【0031】RT−PCRを行うために、mRNA抽出
キット(Pharmacia Bioteck)を用いてシロアリのメッ
センジャーRNAを中腸から抽出した。逆転写酵素をも
ちいてオリゴdTのプライマーでcDNAを合成し(42
℃1時間)、次にこの反応液をPCRに用いた。PCR
の条件は94℃30秒、51℃1分、72℃2分で30サイクルと
した。PCR産物はアガロースゲル電気泳動で確認後、
ベクター(pBluescript II)につなぎ、大腸菌を用いて
クローニングを行った。ベクターのインサートの塩基配
列を解読し、まずN末端の塩基配列の一部(両プライマ
ーに挟まれた部分の数十塩基)を明らかにした。さら
に、この塩基配列に基づき、cDNAのその部分から
5’側と3’側をそれぞれ増幅するためのプライマーを
作成して Marathon cDNA Amplification Kit (CLONTEC
H) を用いて、2種類のPCR産物を得た。このPCR
産物をそれぞれプラスミドにクローニングし、数本づつ
塩基配列を解読した。
To perform RT-PCR, termite messenger RNA was extracted from the midgut using an mRNA extraction kit (Pharmacia Bioteck). Using reverse transcriptase, cDNA was synthesized with oligo dT primers (42
This reaction was used for PCR. PCR
Were performed at 94 ° C. for 30 seconds, 51 ° C. for 1 minute, and 72 ° C. for 2 minutes for 30 cycles. After confirming the PCR product by agarose gel electrophoresis,
It was connected to a vector (pBluescript II) and cloned using E. coli. The base sequence of the vector insert was decoded, and first, a part of the base sequence at the N-terminus (several tens of bases between the two primers) was revealed. Further, based on this nucleotide sequence, primers for amplifying the 5 'and 3' sides from that portion of the cDNA were prepared, and the Marathon cDNA Amplification Kit (CLONTEC
H) was used to obtain two types of PCR products. This PCR
The products were each cloned into plasmids, and the base sequence of each was decoded.

【0032】得られた塩基配列および推定されるアミノ
酸配列について、ヤマトシロアリ (YEG2) は配列番号1
に、タカサゴシロアリは配列番号2にそれぞれ示す。こ
れら塩基配列および推定されるアミノ酸配列から相同な
ものを、インターネットを利用してデータベースの中か
ら探し出した。
With respect to the obtained nucleotide sequence and deduced amino acid sequence, Yamato termite (YEG2)
And the termites are shown in SEQ ID NO: 2, respectively. Homologous ones were searched out of the database using the Internet from these nucleotide sequences and deduced amino acid sequences.

【0033】〔実施例3〕形質転換体の作製及びセルラ
ーゼ遺伝子の発現 得られたcDNAのタンパク質をコードしている部分の
うち,シグナルペプチドに相当する部分を除いたDNA
部分をPCRによって増幅した。このDNAをpBluescr
ipt IIのマルチクローニングサイトに,タンパク質への
翻訳の読み枠が合うように結合した。大腸菌にこのプラ
スミドを入れ,IPTGを加えたLB培地で大腸菌を培
養し,セルラーゼ遺伝子を発現させた。
[Example 3] Preparation of transformant and expression of cellulase gene DNA obtained by removing the portion corresponding to the signal peptide from the protein-encoding portion of the obtained cDNA.
Portions were amplified by PCR. This DNA is called pBluescr
It was ligated to the multiple cloning site of ipt II so that the reading frame for translation into the protein fit. This plasmid was put into Escherichia coli, and the Escherichia coli was cultured in an LB medium supplemented with IPTG to express the cellulase gene.

【0034】大腸菌の中で作られたタンパク質がセルラ
ーゼ活性を持つことは,アクリルアミドゲルで泳動した
タンパク質の活性を見ることによって確かめた。すなわ
ち,大腸菌を37℃でOD 660=1.0 まで培養し(約5時
間),菌体をリゾチームを含む緩衝液中で消化し,得ら
れたタンパク質をCMC(カルボキシメチルセルロー
ス)を含むポリアクリルアミドゲルで泳動し,コンゴレ
ッドで染色した。目的のタンパク質が泳動されている部
分は,セルラーゼ活性によってCMCが分解されたた
め,周囲よりも薄く染まった。
The fact that the protein produced in E. coli has cellulase activity was confirmed by observing the activity of the protein electrophoresed on an acrylamide gel. That is, Escherichia coli is cultured at 37 ° C. to OD 660 = 1.0 (about 5 hours), the cells are digested in a buffer containing lysozyme, and the obtained protein is electrophoresed on a polyacrylamide gel containing CMC (carboxymethylcellulose). And stained with Congo Red. In the portion where the target protein was migrated, the CMC was decomposed by the cellulase activity, so that the portion was stained thinner than the surroundings.

【0035】[0035]

【発明の効果】本発明により新規な昆虫由来のセルラー
ゼ、その遺伝子が提供された。そして、この遺伝子を用
いて遺伝子工学的手法により昆虫由来のセルラーゼを大
量に製造することができる。また、本発明によるセルラ
ーゼ単独またはすでに知られているセルラーゼと組み合
わせることにより、セルロースの分解をより効率的に行
うことができる。
Industrial Applicability According to the present invention, a novel insect-derived cellulase and its gene have been provided. Using this gene, insect-derived cellulase can be produced in large quantities by genetic engineering techniques. In addition, the cellulase according to the present invention alone or in combination with a known cellulase enables more efficient degradation of cellulose.

【0036】[0036]

【配列表】[Sequence list]

配列番号:1 配列の長さ:1495 配列の形:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起原 生物名:ヤマトシロアリ(Reticuli terme
speratus) 配列の特徴 特徴を表す記号:sig peptide 存在位置:16..63 特徴を決定した方法:E 特徴を表す記号:peptide 存在位置:64..1353 特徴を決定した方法:E 配列 CCACTACCAG CCACC ATG AAG GTC TTC GTT TGT CTT CTG TCT GCA CTC GCG 51 Met Lys Val Phe Val Cys Leu Leu Ser Ala Leu Ala -15 -10 -5 CTT TGC CAA GCT GCT TAC GAC TAT AAG ACA GTA CTA AGC AAT TCG CTA 99 Leu Cys Gln Ala Ala Tyr Asp Tyr Lys Thr Val Leu Ser Asn Ser Leu 1 5 10 CTT TTC TAC GAG GCT CAG CGA TCG GGA AAA TTG CCG TCT GAT CAG AAG 147 Leu Phe Tyr Glu Ala Gln Arg Ser Gly Lys Leu Pro Ser Asp Gln Lys 15 20 25 GTC ACG TGG AGG ATT CCG CCC TTA ACG ACA AGG GCC AGA AGG CGA GGA 195 Val Thr Trp Arg Ile Pro Pro Leu Thr Thr Arg Ala Arg Arg Arg Gly 30 35 40 CTG ACA GGA GGA TAC TAT GAC GCT GGT GAT TTT GTG AAG TTC GGC TCC 243 Leu Thr Gly Gly Tyr Tyr Asp Ala Gly Asp Phe Val Lys Phe Gly Ser 45 50 55 60 CCT ATG GCG TAC ACA GTC ACC GTC CTG GCT TGG GGT GTT ATA GAC TAC 291 Pro Met Ala Tyr Thr Val Thr Val Leu Ala Trp Gly Val Ile Asp Tyr 65 70 75 GAA TCA GCG TAT TCT GCA GCA GGA GCT CTG GAT AGT GGT CGC AAG GCT 339 Glu Ser Ala Tyr Ser Ala Ala Gly Ala Leu Asp Ser Gly Arg Lys Ala 80 85 90 CTT AAA TAT GGC ACG GAC TAC TTC CTC AAG GCG CAC ACG GCC GCG AAC 387 Leu Lys Tyr Gly Thr Asp Tyr Phe Leu Lys Ala His Thr Ala Ala Asn 95 100 105 GAA TTC TAC GGA CAA GTG GGC CAG GGA GAT GTC GAC CAC GCC TAC TGG 435 Glu Phe Tyr Gly Gln Val Gly Gln Gly Asp Val Asp His Ala Tyr Trp 110 115 120 GGA CGT CCA GAA GAC ATG ACG ATG TCC AGA CCT GCC TAC AAG ATC GAC 483 Gly Arg Pro Glu Asp Met Thr Met Ser Arg Pro Ala Tyr Lys Ile Asp 125 130 135 140 ACG TCG AAA CCA GGG TCT GAC CTG GCC GCC GAG ACA GCC GCC GCC CTC 531 Thr Ser Lys Pro Gly Ser Asp Leu Ala Ala Glu Thr Ala Ala Ala Leu 145 150 155 GCT GCA ACT GCC ATC GCC TAC AAG AGT GCT GAC GCC ACT TAT TCC AAC 579 Ala Ala Thr Ala Ile Ala Tyr Lys Ser Ala Asp Ala Thr Tyr Ser Asn 160 165 170 AAC TTG ATC ACC CAC GCC AAG CAG CTT TTC GAC TTC GCC AAC AAT TAT 627 Asn Leu Ile Thr His Ala Lys Gln Leu Phe Asp Phe Ala Asn Asn Tyr 175 180 185 CGC GGC AAA TAC AGT GAT TCA ATC ACC GAC GCG CAG AAT TTC TAC GCG 675 Arg Gly Lys Tyr Ser Asp Ser Ile Thr Asp Ala Gln Asn Phe Tyr Ala 190 195 200 TCC GGA GAC TAC AAG GAC GAG TTA GTA TGG GCA GCC GCA TGG CTC TAC 723 Ser Gly Asp Tyr Lys Asp Glu Leu Val Trp Ala Ala Ala Trp Leu Tyr 205 210 215 220 AGA GCG ACC AAC GAC AAC ACC TAT CTG ACC AAA GCT GAA TCG CTA TAC 771 Arg Ala Thr Asn Asp Asn Thr Tyr Leu Thr Lys Ala Glu Ser Leu Tyr 225 230 235 AAC GAA TTC GGC CTC GGA AAC TGG AAC GGT GCC TTC AAC TGG GAT AAC 819 Asn Glu Phe Gly Leu Gly Asn Trp Asn Gly Ala Phe Asn Trp Asp Asn 240 245 250 AAG ATC TCC GGT GTA CAG GTT CTA CTG GCC AAG CTC ACA AGC AAG CAG 867 Lys Ile Ser Gly Val Gln Val Leu Leu Ala Lys Leu Thr Ser Lys Gln 255 260 265 GCA TAC AAG GAC AAG GTA CAA GGC TAC GTC GAT TAC TTG ATT TCG TCT 915 Ala Tyr Lys Asp Lys Val Gln Gly Tyr Val Asp Tyr Leu Ile Ser Ser 270 275 280 CAG AAG AAG ACA CCC AAG GGT CTC GTA TAC ATC GAC CAG TGG GGT ACC 963 Gln Lys Lys Thr Pro Lys Gly Leu Val Tyr Ile Asp Gln Trp Gly Thr 285 290 295 300 CTG CGA CAT GCT GCC AAT TCT GCT CTC ATT GCT CTG CAG GCA GCC GAC 1011 Leu Arg His Ala Ala Asn Ser Ala Leu Ile Ala Leu Gln Ala Ala Asp 305 310 315 CTG GGT ATC AAT GCT GCT ACT TAT CGC GCG TAT GCC AAG AAG CAG ATC 1059 Leu Gly Ile Asn Ala Ala Thr Tyr Arg Ala Tyr Ala Lys Lys Gln Ile 320 325 330 GAT TAC GCA TTA GGT GAT GGA GGT CGC AGC TAC GTC ATA GGA TTT GGT 1107 Asp Tyr Ala Leu Gly Asp Gly Gly Arg Ser Tyr Val Ile Gly Phe Gly 335 340 345 ACT AAC CCA CCC GTA CGC CCT CAC CAC AGA TCC AGC TCG TGC CCT GAC 1155 Thr Asn Pro Pro Val Arg Pro His His Arg Ser Ser Ser Cys Pro Asp 350 355 360 GCA CCA GCC GTA TGT GAC TGG AAC ACG TAC AAC AGC GCC GGC CCC AAT 1203 Ala Pro Ala Val Cys Asp Trp Asn Thr Tyr Asn Ser Ala Gly Pro Asn 365 370 375 380 GCT CAC GTA CTC ACC GGA GCC TTG GTC GGT GGT CCA GAT AGC AAC GAT 1251 Ala His Val Leu Thr Gly Ala Leu Val Gly Gly Pro Asp Ser Asn Asp 385 390 395 AGC TAC ACG GAC GCT CGC AGC GAT TAC ATC TCC AAC GAA GTG GCC ACA 1299 Ser Tyr Thr Asp Ala Arg Ser Asp Tyr Ile Ser Asn Glu Val Ala Thr 400 405 410 GAT TAC AAC GCT GGC TTC CAA TCA GCT GTC GCT GGT CTC CTC AAG GCT 1347 Asp Tyr Asn Ala Gly Phe Gln Ser Ala Val Ala Gly Leu Leu Lys Ala 415 420 425 GGC GTG TAA CCGCACACAG CACTCAATGT CTCCTTGTCC ACTGGACATG TGTACAATT 1405 Gly Val 430 TGACAACGAA AATGTAATAT TCTTCAGAAA AGTTCAATAA AAGTTTAAAT TTCAACACAA 1465 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 1495
SEQ ID NO: 1 Sequence length: 1495 Sequence form: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: cDNA to mRNA Origin Biological name: Reticuli termi
s speratus ) Sequence characteristics Symbol indicating characteristics: sig peptide Location of occurrence: 16. . 63 Method for determining feature: E Symbol representing feature: peptide Location: 64. . 1353 Method of Characterization: E Sequence CCACTACCAG CCACC ATG AAG GTC TTC GTT TGT CTT CTG TCT GCA CTC GCG 51 Met Lys Val Phe Val Cys Leu Leu Ser Ala Leu Ala -15 -10 -5 CTT TGC CAA GCT GCT TAC GAC TAT AAG ACA GTA CTA AGC AAT TCG CTA 99 Leu Cys Gln Ala Ala Tyr Asp Tyr Lys Thr Val Leu Ser Asn Ser Leu 1 5 10 CTT TTC TAC GAG GCT CAG CGA TCG GGA AAA TTG CCG TCT GAT CAG AAG 147 Leu Phe Tyr Glu Ala Gln Arg Ser Gly Lys Leu Pro Ser Asp Gln Lys 15 20 25 GTC ACG TGG AGG ATT CCG CCC TTA ACG ACA AGG GCC AGA AGG CGA GGA 195 Val Thr Trp Arg Ile Pro Pro Leu Thr Thr Arg Ala Arg Arg Arg Gly 30 35 40 CTG ACA GGA GGA TAC TAT GAC GCT GGT GAT TTT GTG AAG TTC GGC TCC 243 Leu Thr Gly Gly Tyr Tyr Asp Ala Gly Asp Phe Val Lys Phe Gly Ser 45 50 55 60 CCT ATG GCG TAC ACA GTC ACC GTC CTG GCT TGG GGT GTT ATA GAC TAC 291 Pro Met Ala Tyr Thr Val Thr Val Leu Ala Trp Gly Val Ile Asp Tyr 65 70 75 GAA TCA GCG TAT TCT GCA GCA GGA GCT CTG GAT AGT GGT CGC AAG GCT 339 Glu Ser Ala Tyr Ser Ala Ala Gly Ala Leu Asp Se r Gly Arg Lys Ala 80 85 90 CTT AAA TAT GGC ACG GAC TAC TTC CTC AAG GCG CAC ACG GCC GCG AAC 387 Leu Lys Tyr Gly Thr Asp Tyr Phe Leu Lys Ala His Thr Ala Ala Asn 95 100 105 GAA TTC TAC GGA CAA GTG GGC CAG GGA GAT GTC GAC CAC GCC TAC TGG 435 Glu Phe Tyr Gly Gln Val Gly Gln Gly Asp Val Asp His Ala Tyr Trp 110 115 120 GGA CGT CCA GAA GAC ATG ACG ATG TCC AGA CCT GCC TAC AAG ATC GAC 483 Gly Arg Pro Glu Asp Met Thr Met Ser Arg Pro Ala Tyr Lys Ile Asp 125 130 135 140 ACG TCG AAA CCA GGG TCT GAC CTG GCC GCC GAG ACA GCC GCC GCC CTC 531 Thr Ser Lys Pro Gly Ser Asp Leu Ala Ala Glu Thr Ala Ala Ala Leu 145 150 155 GCT GCA ACT GCC ATC GCC TAC AAG AGT GCT GAC GCC ACT TAT TCC AAC 579 Ala Ala Thr Ala Ile Ala Tyr Lys Ser Ala Asp Ala Thr Tyr Ser Asn 160 165 170 AAC TTG ATC ACC CAC GCC AAG CAG CTT TTC GAC TTC GCC AAC AAT TAT 627 Asn Leu Ile Thr His Ala Lys Gln Leu Phe Asp Phe Ala Asn Asn Tyr 175 180 185 CGC GGC AAA TAC AGT GAT TCA ATC ACC GAC GCG CAG AAT TTC TAC GCG 675 Arg Gly Lys Tyr Ser Asp Ser Ile Thr As p Ala Gln Asn Phe Tyr Ala 190 195 200 TCC GGA GAC TAC AAG GAC GAG TTA GTA TGG GCA GCC GCA TGG CTC TAC 723 Ser Gly Asp Tyr Lys Asp Glu Leu Val Trp Ala Ala Ala Trp Leu Tyr 205 210 215 220 AGA GCG ACC AAC GAC AAC ACC TAT CTG ACC AAA GCT GAA TCG CTA TAC 771 Arg Ala Thr Asn Asp Asn Thr Tyr Leu Thr Lys Ala Glu Ser Leu Tyr 225 230 235 AAC GAA TTC GGC CTC GGA AAC TGG AAC GGT GCC TTC AAC TGG GAT AAC 819 Asn Glu Phe Gly Leu Gly Asn Trp Asn Gly Ala Phe Asn Trp Asp Asn 240 245 250 AAG ATC TCC GGT GTA CAG GTT CTA CTG GCC AAG CTC ACA AGC AAG CAG 867 Lys Ile Ser Gly Val Gln Val Leu Leu Ala Lys Leu Thr Ser Lys Gln 255 260 265 GCA TAC AAG GAC AAG GTA CAA GGC TAC GTC GAT TAC TTG ATT TCG TCT 915 Ala Tyr Lys Asp Lys Val Gln Gly Tyr Val Asp Tyr Leu Ile Ser Ser 270 275 275 280 CAG AAG AAG ACA CCC AAG GGT CTC GTA TAC ATC GAC CAG TGG GGT ACC 963 Gln Lys Lys Thr Pro Lys Gly Leu Val Tyr Ile Asp Gln Trp Gly Thr 285 290 295 300 CTG CGA CAT GCT GCC AAT TCT GCT CTC ATT GCT CTG CAG GCA GCC GAC 1011 Leu Arg His Ala Ala A sn Ser Ala Leu Ile Ala Leu Gln Ala Ala Asp 305 310 315 CTG GGT ATC AAT GCT GCT ACT TAT CGC GCG TAT GCC AAG AAG CAG ATC 1059 Leu Gly Ile Asn Ala Ala Thr Tyr Arg Ala Tyr Ala Lys Lys Gln Ile 320 325 330 GAT TAC GCA TTA GGT GAT GGA GGT CGC AGC TAC GTC ATA GGA TTT GGT 1107 Asp Tyr Ala Leu Gly Asp Gly Gly Arg Ser Tyr Val Ile Gly Phe Gly 335 340 345 ACT AAC CCA CCC GTA CGC CCT CAC CAC AGA TCC AGC TCG TGC CCT GAC 1155 Thr Asn Pro Pro Val Arg Pro His His Arg Ser Ser Ser Cys Pro Asp 350 355 360 GCA CCA GCC GTA TGT GAC TGG AAC ACG TAC AAC AGC GCC GGC CCC AAT 1203 Ala Pro Ala Val Cys Asp Trp Asn Thr Tyr Asn Ser Ala Gly Pro Asn 365 370 375 380 GCT CAC GTA CTC ACC GGA GCC TTG GTC GGT GGT CCA GAT AGC AAC GAT 1251 Ala His Val Leu Thr Gly Ala Leu Val Gly Gly Pro Asp Ser Asn Asp 385 390 395 AGC TAC ACG GAC GCT CGC AGC GAT TAC ATC TCC AAC GAA GTG GCC ACA 1299 Ser Tyr Thr Asp Ala Arg Ser Asp Tyr Ile Ser Asn Glu Val Ala Thr 400 405 410 GAT TAC AAC GCT GGC TTC CAA TCA GCT GTC GCT GGT CTC CTC AAG GCT 1347 As p Tyr Asn Ala Gly Phe Gln Ser Ala Val Ala Gly Leu Leu Lys Ala 415 420 425 GGC GTG TAA CCGCACACAG CACTCAATGT CTCCTTGTCC ACTGGACATG TGTACAATT 1405 Gly Val 430 TGACAACGAA AATGTAATAT TCTTCAGAAA AGTTCAATAA AAGTTTAAAT TTCAACACAA 1465 AAAAAAAAAA AAAAAAAAAA AAAAAAAAAA 1495

【0037】配列番号:2 配列の長さ: 配列の形:核酸 鎖の数:二本鎖 トポロジー:直鎖状 配列の種類:cDNA to mRNA 起原 生物名:タカサゴシロアリ(Nasutitermes
takasagoensis) 配列の特徴 特徴を表す記号:sig peptide 存在位置:103..150 特徴を決定した方法:E 特徴を表す記号:peptide 存在位置:151..1446 特徴を決定した方法:E 配列 ATCAGATTGA GAGTCTCTCT CCTGTTGTGC AGCCGATCAG TATAAATCGG CGGGACGGTC 60 CTACCAAAAC AACTTCACGG CCTGCAACCA ATACCAGCCA GC ATG AGG GTC TTC 114 Met Arg Val Phe -15 CTT TGT CTT CTG TCT GCG CTA GCG CTT TGC CAA GCT GCT TAC GAC TAC 162 Leu Cys Leu Leu Ser Ala Leu Ala Leu Cys Gln Ala Ala Tyr Asp Tyr -10 -5 1 AAG CAA GTA CTG CGC GAT TCC CTA CTG TTC TAC GAG GCT CAA CGA TCG 210 Lys Gln Val Leu Arg Asp Ser Leu Leu Phe Tyr Glu Ala Gln Arg Ser 5 10 15 20 GGA AGG TTG CCC GCT GAT CAG AAA GTC ACA TGG AGA AAG GAT TCC GCC 258 Gly Arg Leu Pro Ala Asp Gln Lys Val Thr Trp Arg Lys Asp Ser Ala 25 30 35 CTA AAC GAC CAA GGA GAC CAG GGC CAG GAC CTA ACA GGA GGA TAC TTT 306 Leu Asn Asp Gln Gly Asp Gln Gly Gln Asp Leu Thr Gly Gly Tyr Phe 40 45 50 GAC GCT GGT GAT TTT GTG AAA TTC GGC TTT CCA ATG GCG TAC ACA GCC 354 Asp Ala Gly Asp Phe Val Lys Phe Gly Phe Pro Met Ala Tyr Thr Ala 55 60 65 ACC GTC CTG GCT TGG GGC CTG ATC GAC TTT GAA GCG GGC TAC TCT TCA 402 Thr Val Leu Ala Trp Gly Leu Ile Asp Phe Glu Ala Gly Tyr Ser Ser 70 75 80 GCA GGA GCT CTG GAT GAT GGT CGC AAA GCT GTT AAA TGG GCC ACA GAC 450 Ala Gly Ala Leu Asp Asp Gly Arg Lys Ala Val Lys Trp Ala Thr Asp 85 90 95 100 TAT TTC ATC AAG GCG CAC ACG TCC CAA AAT GAA TTC TAC GGA CAA GTG 498 Tyr Phe Ile Lys Ala His Thr Ser Gln Asn Glu Phe Tyr Gly Gln Val 105 110 115 GGC CAG GGA GAT GCG GAC CAC GCC TTC TGG GGA CGT CCA GAA GAC ATG 546 Gly Gln Gly Asp Ala Asp His Ala Phe Trp Gly Arg Pro Glu Asp Met 120 125 130 ACA ATG GCA AGA CCT GCC TAC AAG ATC GAC ACG TCT AGA CCA GGG TCG 594 Thr Met Ala Arg Pro Ala Tyr Lys Ile Asp Thr Ser Arg Pro Gly Ser 135 140 145 GAT CTG GCC GGC GAA ACA GCC GCC GCC CTC GCT GCA GCT TCC ATC GTG 642 Asp Leu Ala Gly Glu Thr Ala Ala Ala Leu Ala Ala Ala Ser Ile Val 150 155 160 TTC AGG AAT GTC GAC GGC ACT TAT TCC AAC AAC CTG CTC ACA CAC GCC 690 Phe Arg Asn Val Asp Gly Thr Tyr Ser Asn Asn Leu Leu Thr His Ala 165 170 175 180 AGG CAG CTT TTC GAC TTC GCC AAC AAT TAT CGC GGC AAA TAC AGT GAC 738 Arg Gln Leu Phe Asp Phe Ala Asn Asn Tyr Arg Gly Lys Tyr Ser Asp 185 190 195 TCA ATC ACC GAC GCC AGG AAT TTC TAC GCG TCC GCG GAC TAC AGG GAT 786 Ser Ile Thr Asp Ala Arg Asn Phe Tyr Ala Ser Ala Asp Tyr Arg Asp 200 205 210 GAA TTA GTA TGG GCA GCC GCA TGG CTC TAC AGG GCA ACC AAC GAC AAC 834 Glu Leu Val Trp Ala Ala Ala Trp Leu Tyr Arg Ala Thr Asn Asp Asn 215 220 225 ACC TAC CTC AAC ACC GCT GAA TCG CTA TAT GAT GAA TTC GGT CTC CAG 882 Thr Tyr Leu Asn Thr Ala Glu Ser Leu Tyr Asp Glu Phe Gly Leu Gln 230 235 240 AAC TGG GGT GGT GGC CTT AAC TGG GAT AGC AAA GTG TCC GGT GTA CAG 930 Asn Trp Gly Gly Gly Leu Asn Trp Asp Ser Lys Val Ser Gly Val Gln 245 250 255 260 GTT CTA CTG GCC AAA CTC ACA AAC AAG CAA GCG TAC AAG GAC ACG GTA 978 Val Leu Leu Ala Lys Leu Thr Asn Lys Gln Ala Tyr Lys Asp Thr Val 265 270 275 CAA TCA TAC GTG AAT TAC CTA ATT AAC AAC CAG CAG AAG ACA CCC AAG 1026 Gln Ser Tyr Val Asn Tyr Leu Ile Asn Asn Gln Gln Lys Thr Pro Lys 280 285 290 GGT CTT CTT TAC ATC GGA CAT GTG GGG AAC CTG CGA CAT GCT GCA AAC 1074 Gly Leu Leu Tyr Ile Gly His Val Gly Asn Leu Arg His Ala Ala Asn 295 300 305 GCT GCC TTC ATT ATG CTT GAG GCT GCG GAG CTG GGT TTG AGT GCT TCT 1122 Ala Ala Phe Ile Met Leu Glu Ala Ala Glu Leu Gly Leu Ser Ala Ser 310 315 320 AGT TAT CGC CAG TTT GCC CAG ACG CAG ATC GAT TAC GCA TTG GGT GAC 1170 Ser Tyr Arg Gln Phe Ala Gln Thr Gln Ile Asp Tyr Ala Leu Gly Asp 325 330 335 340 GGT GGG CGC AGC TTC GTG TGT GGA TTT GGC AGT AAC CCA CCT ACC CGC 1218 Gly Gly Arg Ser Phe Val Cys Gly Phe Gly Ser Asn Pro Pro Thr Arg 345 350 355 CCT CAC CAT AGA TCT AGT TCG TGC CCA CCC GCG CCG GCC ACA TGT GAC 1266 Pro His His Arg Ser Ser Ser Cys Pro Pro Ala Pro Ala Thr Cys Asp 360 365 370 TGG AAC ACA TTC AAC AGT CCA GAT CCA AAC TAC CAC GTA CTC AGT GGA 1314 Trp Asn Thr Phe Asn Ser Pro Asp Pro Asn Tyr His Val Leu Ser Gly 375 380 385 GCT TTG GTG GGC GGT CCA GAT CAG AAC GAC AAC TAC GTG GAC GAT CGC 1362 Ala Leu Val Gly Gly Pro Asp Gln Asn Asp Asn Tyr Val Asp Asp Arg 390 395 400 AGC GAT TAC GTC CAC AAC GAA GTT GCC ACA GAT TAC AAC GCA GGC TTC 1410 Ser Asp Tyr Val His Asn Glu Val Ala Thr Asp Tyr Asn Ala Gly Phe 405 410 415 420 CAA TCA GCT CTC GCC GCT CTC GTC GCG TTG GGT TAT TAA ACTCACAAAA CA 1461 Gln Ser Ala Leu Ala Ala Leu Val Ala Leu Gly Tyr 425 430 TTCAAATTGT CCGTCTGCTG TGAGTGTGTA CAAAATAATA TAAACAATGT AACATTGTCC 1521 TTAGCAGTGA AAATAAAATC TTTGTATGCA GATACGTTTG TAGACGACGT TCAGTACTGC 1581 ATACAGGGCT GAAATTGCAA TGTATAATCC TAGAAATCGA AATGGATGTT GAAATAAACT 1641 ACAATATTAC AACTGAGTAC ACAGTAAAAA AAAAAAAAAA AAAAAAAAAA AAAA 1695
[0037] SEQ ID NO: 2 sequence length of: SEQ form of: the number of nucleic acid strands: double-stranded Topology: linear sequence type: cDNA-to mRNA Origin Organism: Takasago termite (Nasutitermes
takasagoensis ) Characteristic of sequence Symbol indicating characteristic: sig peptide Side location: 103. . 150 Method for determining feature: E Symbol representing feature: peptide Location: 151. . 1446 Method of Characterization: E Sequence ATCAGATTGA GAGTCTCTCT CCTGTTGTGC AGCCGATCAG TATAAATCGG CGGGACGGTC 60 CTACCAAAAC AACTTCACGG CCTGCAACCA ATACCAGCCA GC ATG AGG GTC TTC 114 Met Arg Val Phe -15 CTT TGT CTT CTG GCT GCT CCT GCT GCT GCT CCT GCT GCT CCT GCT GCT CCT GCT GCT CCT GCT GCT GCT CTCT GCT GTC Cys Leu Leu Ser Ala Leu Ala Leu Cys Gln Ala Ala Tyr Asp Tyr -10 -5 1 AAG CAA GTA CTG CGC GAT TCC CTA CTG TTC TAC GAG GCT CAA CGA TCG 210 Lys Gln Val Leu Arg Asp Ser Leu Leu Phe Tyr Glu Ala Gln Arg Ser 5 10 15 20 GGA AGG TTG CCC GCT GAT CAG AAA GTC ACA TGG AGA AAG GAT TCC GCC 258 Gly Arg Leu Pro Ala Asp Gln Lys Val Thr Trp Arg Lys Asp Ser Ala 25 30 35 CTA AAC GAC CAA GGA GAC CAG GGC CAG GAC CTA ACA GGA GGA TAC TTT 306 Leu Asn Asp Gln Gly Asp Gln Gly Gln Asp Leu Thr Gly Gly Tyr Phe 40 45 50 GAC GCT GGT GAT TTT GTG AAA TTC GGC TTT CCA ATG GCG TAC ACA GCC 354 Asp Ala Gly Asp Phe Val Lys Phe Gly Phe Pro Met Ala Tyr Thr Ala 55 60 65 ACC GTC CTG GCT TGG GGC CTG ATC GAC TTT GAA GCG GGC TAC TCT TCA 402 Thr Val Leu Ala Trp Gly Leu Ile Asp Phe Glu Ala Gly Tyr Ser Ser 70 75 80 GCA GGA GCT CTG GAT GAT GGT CGC AAA GCT GTT AAA TGG GCC ACA GAC 450 Ala Gly Ala Leu Asp Asp Gly Arg Lys Ala Val Lys Trp Arp Thr Asp 85 90 95 100 TAT TTC ATC AAG GCG CAC ACG TCC CAA AAT GAA TTC TAC GGA CAA GTG 498 Tyr Phe Ile Lys Ala His Thr Ser Gln Asn Glu Phe Tyr Gly Gln Val 105 110 115 GGC CAG GGA GAT GCG GAC CAC GCC TTC TGG GGA CGT CCA GAA GAC ATG 546 Gly Gln Gly Asp Ala Asp His Ala Phe Trp Gly Arg Pro Glu Asp Met 120 125 130 ACA ATG GCA AGA CCT GCC TAC AAG ATC GAC ACG TCT AGA CCA GGG TCG 594 Thr Met Ala Arg Pro Ala Tyr Lys Ile Asp Thr Ser Arg Pro Gly Ser 135 140 145 GAT CTG GCC GGC GAA ACA GCC GCC GCC CTC GCT GCA GCT TCC ATC GTG 642 Asp Leu Ala Gly Glu Thr Ala Ala Ala Leu Ala Ala Ala Ser Ile Val 150 155 160 TTC AGG AAT GTC GAC GGC ACT TAT TCC AAC AAC CTG CTC ACA CAC GCC 690 Phe Arg Asn Val Asp Gly Thr Tyr Ser Asn Asn Leu Leu Thr His Ala 165 170 175 180 AGG CAG CTT TTC GAC TTC GCC AAC AAT TAT CGC GGC AAA TAC AGT GAC 738 Arg G ln Leu Phe Asp Phe Ala Asn Asn Tyr Arg Gly Lys Tyr Ser Asp 185 190 195 TCA ATC ACC GAC GCC AGG AAT TTC TAC GCG TCC GCG GAC TAC AGG GAT 786 Ser Ile Thr Asp Ala Arg Asn Phe Tyr Ala Ser Ala Asp Tyr Arg Asp 200 205 210 GAA TTA GTA TGG GCA GCC GCA TGG CTC TAC AGG GCA ACC AAC GAC AAC 834 Glu Leu Val Trp Ala Ala Ala Trp Leu Tyr Arg Ala Thr Asn Asp Asn 215 220 225 ACC TAC CTC AAC ACC GCT GAA TCG CTA TAT GAT GAA TTC GGT CTC CAG 882 Thr Tyr Leu Asn Thr Ala Glu Ser Leu Tyr Asp Glu Phe Gly Leu Gln 230 235 240 AAC TGG GGT GGT GGC CTT AAC TGG GAT AGC AAA GTG TCC GGT GTA CAG 930 Asn Trp Gly Gly Gly Gly Leu Asn Trp Asp Ser Lys Val Ser Gly Val Gln 245 250 255 260 GTT CTA CTG GCC AAA CTC ACA AAC AAG CAA GCG TAC AAG GAC ACG GTA 978 Val Leu Leu Ala Lys Leu Thr Asn Lys Gln Ala Tyr Lys Asp Thr Val 265 270 275 CAA TCA TAC GTG AAT TAC CTA ATT AAC AAC CAG CAG AAG ACA CCC AAG 1026 Gln Ser Tyr Val Asn Tyr Leu Ile Asn Asn Gln Gln Lys Thr Pro Lys 280 285 290 GGT CTT CTT TAC ATC GGA CAT GTG GGG AAC CTG CGA CAT GCT GCA AAC 1074 Gly Leu Leu Tyr Ile Gly His Val Gly Asn Leu Arg His Ala Ala Asn 295 300 305 GCT GCC TTC ATT ATG CTT GAG GCT GCG GAG CTG GGT TTG AGT GCT TCT 1122 Ala Ala Pla Ihe Met Leu Glu Ala Ala Glu Leu Gly Leu Ser Ala Ser 310 315 320 AGT TAT CGC CAG TTT GCC CAG ACG CAG ATC GAT TAC GCA TTG GGT GAC 1170 Ser Tyr Arg Gln Phe Ala Gln Thr Gln Ile Asp Tyr Ala Leu Gly Asp 325 330 335 340 GGT GGG CGC AGC TTC GTG TGT GGA TTT GGC AGT AAC CCA CCT ACC CGC 1218 Gly Gly Arg Ser Phe Val Cys Gly Phe Gly Ser Asn Pro Pro Thr Arg 345 350 355 CCT CAC CAT AGA TCT AGT TCG TGC CCA CCC GCG CCG GCC ACA TGT GAC 1266 Pro His His Arg Ser Ser Ser Cys Pro Pro Ala Pro Ala Thr Cys Asp 360 365 370 TGG AAC ACA TTC AAC AGT CCA GAT CCA AAC TAC CAC GTA CTC AGT GGA 1314 Trp Asn Thr Phe Asn Ser Pro Asp Pro Asn Tyr His Val Leu Ser Gly 375 380 385 GCT TTG GTG GGC GGT CCA GAT CAG AAC GAC AAC TAC GTG GAC GAT CGC 1362 Ala Leu Val Gly Gly Pro Asp Gln Asn Asp Asn Tyr Val Asp Asp Arg 390 395 400 AGC GAT TAC GTC CAC AAC GAA GTT GCC ACA G AT TAC AAC GCA GGC TTC 1410 Ser Asp Tyr Val His Asn Glu Val Ala Thr Asp Tyr Asn Ala Gly Phe 405 410 415 420 CAA TCA GCT CTC GCC GCT CTC GTC GCG TTG GGT TAT TAA ACTCACAAAA CA 1461 Gln Ser Ala Leu Ala Ala Leu Val Ala Leu Gly Tyr 425 430 TTCAAATTGT CCGTCTGCTG TGAGTGTGTA CAAAATAATA TAAACAATGT AACATTGTCC 1521 TTAGCAGTGA AAATAAAATC TTTGTATGCA GATACGTTTG TAGACGACGT TCAGTACTGC 1581 ATACAGGGAA GATCATTAAGAAGATCAAGAGAA GATCAAAAGA

【図面の簡単な説明】[Brief description of the drawings]

【図1】タカサゴシロアリのセルラーゼ(エンド−β−
1,4−グルカナーゼ)のハイドロキシアパタイトカラ
ムによる分析結果を示す説明図。
BRIEF DESCRIPTION OF THE FIGURES FIG. 1: Takasago termite cellulase (endo-β-
Explanatory drawing which shows the analysis result by a hydroxyapatite column of (1, 4-glucanase).

【図2】シロアリのセルラーゼ(エンド−β−1,4−
グルカナーゼ)の構造(一番下)を細菌(上から2
種)、植物(上から3番目)のものと比較した図。
FIG. 2. Termite cellulase (endo-β-1,4-
Glucanase) (bottom)
Species) and plants (third from the top).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI (C12N 9/42 C12R 1:19) (C12N 15/09 ZNA C12R 1:91) (58)調査した分野(Int.Cl.7,DB名) C12N 15/00 - 15/90 C12N 1/00 - 1/38 C12N 9/00 - 9/99 BIOSIS(DIALOG) GenBank/EMBL/DDBJ/ (GENETYX) WPI(DIALOG)──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI (C12N 9/42 C12R 1:19) (C12N 15/09 ZNA C12R 1:91) (58) Investigated field (Int.Cl. 7 , DB name) C12N 15/00-15/90 C12N 1/00-1/38 C12N 9/00-9/99 BIOSIS (DIALOG) GenBank / EMBL / DDBJ / (GENETYX) WPI (DIALOG)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 以下の(a)又は(b)のセルラーゼ活
性を有する組換えタンパク質。 (a)配列番号1又は2で表されるアミノ酸配列からな
るタンパク質。 (b)アミノ酸配列(a)において1若しくは数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、セルラーゼ酵素活性を有するタンパク質。
1. A recombinant protein having the following cellulase activity (a) or (b): (A) a protein consisting of the amino acid sequence represented by SEQ ID NO: 1 or 2; (B) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence (a), and having a cellulase enzyme activity;
【請求項2】 以下の(a)又は(b)のセルラーゼ活
性を有するタンパク質をコードするDNA。 (a)配列番号1又は2で表されるアミノ酸配列からな
るタンパク質。 (b)アミノ酸配列(a)において1若しくは数個のア
ミノ酸が欠失、置換若しくは付加されたアミノ酸配列か
らなり、セルラーゼ酵素活性を有するタンパク質。
2. A DNA encoding a protein having the following cellulase activity (a) or (b). (A) a protein consisting of the amino acid sequence represented by SEQ ID NO: 1 or 2; (B) a protein comprising an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence (a), and having a cellulase enzyme activity;
【請求項3】 DNAが配列番号1又は2で表されるも
のである請求項2記載のDNA。
3. The DNA according to claim 2, wherein the DNA is represented by SEQ ID NO: 1 or 2.
【請求項4】 請求項2又は3記載のDNAを含む組換
えベクター。
4. A recombinant vector comprising the DNA according to claim 2 or 3.
【請求項5】 請求項4記載の組換えベクターによって
形質転換された形質転換体。
A transformant transformed by the recombinant vector according to claim 4.
【請求項6】 請求項5記載の形質転換体を培地に培養
し、得られる培養物から請求項1記載のセルラーゼ活性
を有する組換えタンパク質を採取することを特徴とする
該組換えタンパク質の製造方法。
6. A method for producing a recombinant protein according to claim 1, wherein the transformant according to claim 5 is cultured in a medium, and the recombinant protein having cellulase activity according to claim 1 is collected from the resulting culture. Method.
JP9206740A 1997-07-31 1997-07-31 Insect-derived cellulase gene Expired - Lifetime JP3030349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9206740A JP3030349B2 (en) 1997-07-31 1997-07-31 Insect-derived cellulase gene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9206740A JP3030349B2 (en) 1997-07-31 1997-07-31 Insect-derived cellulase gene

Publications (2)

Publication Number Publication Date
JPH1146764A JPH1146764A (en) 1999-02-23
JP3030349B2 true JP3030349B2 (en) 2000-04-10

Family

ID=16528325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9206740A Expired - Lifetime JP3030349B2 (en) 1997-07-31 1997-07-31 Insect-derived cellulase gene

Country Status (1)

Country Link
JP (1) JP3030349B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693468A1 (en) 2012-07-31 2014-02-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for flip-chip assembly of two electronic components

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005551A2 (en) * 2008-07-07 2010-01-14 Mascoma Corporation Heterologous expression of termite cellulases in yeast

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693468A1 (en) 2012-07-31 2014-02-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for flip-chip assembly of two electronic components

Also Published As

Publication number Publication date
JPH1146764A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
Silva et al. An α-glucosidase from perimicrovillar membranes of Dysdercus peruvianus (Hemiptera: Pyrrhocoridae) midgut cells. Purification and properties
NZ233949A (en) Purification and recombinant production of thermally stable cytosine deaminase enzyme
US5908772A (en) Gene encoding lacto-N-biosidase
KR100454174B1 (en) Genes encoding endoglycoceramides
Eltis et al. Hyperexpression of a synthetic gene encoding a high potential iron sulfur protein
KR100541202B1 (en) Genes encoding endoglycoceramidase activators
JPH02177887A (en) Glucose-6-phosphate dehydrogenase gene
Oliver et al. Genetic and biochemical aspects of trehalase from Drosophila melanogaster
JP3030349B2 (en) Insect-derived cellulase gene
Schlatter et al. The primary structure of the psychrophilic lactate dehydrogenase from Bacillus psychrosaccharolyticus
JP3087575B2 (en) Heptaprenyl diphosphate synthase and DNA encoding the same
Emanuelsson et al. Chemical and mutational modification of histidines in violaxanthin de‐epoxidase from Spinacia oleracea
Batterham et al. Biochemical characterization of the products of the Adh loci of Drosophila mojavensis
US5637491A (en) Dextranase enzyme, method for its production and DNA encoding the enzyme
AU4772596A (en) Recombinant alpha-galactosidase enzyme
JP2000175698A (en) Pyranose oxidase-containing reagent for measuring pyranose
WO1995007088A1 (en) RECOMBINANT α-GALACTOSIDASE ENZYME AND cDNA ENCODING SAID ENZYME
CN113564195B (en) Fructosamine descarbohydrase pichia pastoris expression vector, genetically engineered bacterium, construction method and protein expression method
JP3355368B2 (en) Plasmid vector containing cDNA encoding plant-derived epoxide hydrolase and transformant
JP2003284553A (en) Biologically active protein
JP3197355B2 (en) Asparaginyl endopeptidase gene
JPH1052274A (en) Heat-stable beta-glucosidase gene, new recombinant dna and production of heat-stable beta-glucosidase
JP3012919B2 (en) Thermostable enzyme having aminoacylase and carboxypeptidase activities, and gene encoding the same
JP3616203B2 (en) Endoglycoceramidase activator gene
Müller et al. cDNA cloning of a Sec61 homologue from the cryptomonad alga Pyrenomonas salina

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term