JP2892171B2 - Polypeptide - Google Patents

Polypeptide

Info

Publication number
JP2892171B2
JP2892171B2 JP3081136A JP8113691A JP2892171B2 JP 2892171 B2 JP2892171 B2 JP 2892171B2 JP 3081136 A JP3081136 A JP 3081136A JP 8113691 A JP8113691 A JP 8113691A JP 2892171 B2 JP2892171 B2 JP 2892171B2
Authority
JP
Japan
Prior art keywords
val
ala
leu
glu
gly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3081136A
Other languages
Japanese (ja)
Other versions
JPH04330279A (en
Inventor
正範 三田
博一 小谷
郁之進 加藤
進 綱沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Shuzo Co Ltd
Original Assignee
Takara Shuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co Ltd filed Critical Takara Shuzo Co Ltd
Priority to JP3081136A priority Critical patent/JP2892171B2/en
Publication of JPH04330279A publication Critical patent/JPH04330279A/en
Application granted granted Critical
Publication of JP2892171B2 publication Critical patent/JP2892171B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はアミノアシラーゼIのア
ミノ酸配列を有するポリペプチド及びそのDNA配列に
関する。
The present invention relates to a polypeptide having the amino acid sequence of aminoacylase I and its DNA sequence.

【0002】[0002]

【従来の技術】アミノアシラーゼI〔N−acylamino ac
id aminohydrolase 、(EC3.5.1.14.)〕
は、N−アシルアミノ酸を有機酸とアミノ酸に加水分解
する酵素である。動物組織、カビ、細菌に広く存在し、
ホ乳類においては、特に腎臓に高い活性を有する。本酵
素は一世紀以上前よりその存在は知られており、酵素的
性質についてはよく知られている。例えば、本酵素の基
質特異性は高く、L−アミノ酸だけを基質とする。その
ため、化学合成されたラセミ体のN−アシルアミノ酸よ
りL−アミノ酸を光学分割するのに、研究室あるいは工
業的規模で用いられている〔ニューヨーク市、ジョン
ワイリーアンドサンズ社、1961年発行、グリーンシ
ュタイン J.M.( Greenstein, J.M.)及びウイ
ニッツ M (Winitz, M.)著、アミノ酸の化学 ( Che
mistry of the Amino Acids )、第2巻、第1753〜
1816頁〕。構造的には、分子量46000±200
0Da(ラウリル硫酸ナトリウム−ポリアクリルアミド
電気泳動法)、98000±5000Da(沈降平衡
法)であり、同じサブユニット2つから成る二量体の形
で存在すると推定される〔ヒーセD ( Heese, D.)、
ロフレル H.G.( Loeffler, H.G.)及びローム
K.H.( Roehm,K.H.)、バイオロジカル ケミス
トリー ホップ−ザイラー( Biol. Chem. Hoppe-Seyler
)、第369巻、第559〜566頁(1988)〕。
ところで、肺小細胞ガン及び腎ガンにおいて、ヒト第3
染色体短腕のp14−p23の部分に高頻度で染色体の
欠失が見出されている。この部分に本酵素がコードされ
ていることが推定されており、実際ある種の肺小細胞ガ
ン細胞系では、本酵素活性がなくなっていることが確認
されている〔ミラー Y.E.( Miller, Y.E.)、
カオ B.( Kao,B.)及びガズダー A.( Gazder,
A.)、アメリカン ジャーナル オブ ヒューマン
ジェネティクス ( Amer.J.Hum.Genet.)、第41巻、
第A32頁(1987)〕。このようにアミノアシラー
ゼIは、ラセミ化アミノ酸の光学分割に極めて有効な手
段である。更にヒトアミノアシラーゼIをコードするD
NA配列は、肺小細胞ガンあるいは、腎ガンのマーカー
として、同ガンの遺伝子診断あるいは治療に有用である
と考えられる。
BACKGROUND OF THE INVENTION Aminoacylase I [N-acylamino ac
id aminohydrolase, (EC 3.5.1.14.)]
Is an enzyme that hydrolyzes N-acyl amino acids into organic acids and amino acids. Widely found in animal tissues, molds and bacteria,
In mammals, it has a particularly high activity on the kidney. This enzyme has been known for more than a century and its enzymatic properties are well known. For example, the enzyme has high substrate specificity, and uses only L-amino acids as substrates. Therefore, it is used on a laboratory or industrial scale to optically resolve L-amino acids from chemically synthesized racemic N-acyl amino acids [John, New York City].
Wiley & Sons, 1961, Greenstein J. M. (Greenstein, JM) and Winitz, M., Amino Acid Chemistry (Che
mistry of the Amino Acids), Volume 2, 1753-
1816]. Structurally, the molecular weight is 46,000 ± 200.
0 Da (sodium lauryl sulfate-polyacrylamide electrophoresis), 98,000 ± 5000 Da (sedimentation equilibrium method), and are presumed to exist in the form of a dimer composed of two identical subunits [Heese D (Heese, D., et al.). ),
Lofrel H. G. FIG. (Loeffler, HG) and ROHM K. H. (Roehm, KH), Biological Chemistry Hop-Seyler.
), Vol. 369, pp. 559-566 (1988)].
By the way, in small cell lung cancer and renal cancer,
Chromosomal deletions have been found at high frequency in p14-p23 of the chromosome short arm. It is presumed that this enzyme is encoded in this portion, and it has been confirmed that the activity of this enzyme is actually lost in some types of small cell lung cancer cell lines [Miller Y. E. FIG. (Miller, YE),
Khao B. (Kao, B.) and Gazda A. (Gazder,
A. ), American Journal of Human
Genetics (Amer. J. Hum. Genet.), Vol. 41,
A32 (1987)]. Thus, aminoacylase I is an extremely effective means for optical resolution of racemized amino acids. Furthermore, D encoding human aminoacylase I
The NA sequence is considered to be useful as a marker for small cell lung cancer or renal cancer in genetic diagnosis or treatment of the cancer.

【0003】[0003]

【発明が解決しようとする課題】アミノアシラーゼI
は、動物組織に広く分布し、特にブタ腎臓の酵素につい
て精製され〔ヘンセリング J.( Henseling,J.)及
びローム K.H.、ビオシミカ エ ビオフィジカ
アクタ ( Biochim. Biophys. Acta ) 、第959巻、第
370〜377頁(1988)〕、市販もされている。
しかし、その遺伝子構造やアミノ酸配列は依然として不
明である。また、アミノアシラーゼIの工業的に有利な
製造方法についても開示されていない。本発明の目的
は、アミノアシラーゼIの遺伝子構造とアミノ酸配列を
明らかにし、肺小細胞ガンあるいは腎ガンなどの遺伝子
診断あるいは治療に必要な塩基配列、またアミノアシラ
ーゼI活性を有するポリペプチドを提供することにあ
る。
SUMMARY OF THE INVENTION Aminoacylase I
Is widely distributed in animal tissues and purified especially for porcine kidney enzymes [Henseling J. et al. (Henseling, J.) and ROHM K. H. , Biosimica and Biophysica
Acta (Biochim. Biophys. Acta), Vol. 959, pp. 370-377 (1988)] and commercially available.
However, its gene structure and amino acid sequence are still unknown. Also, no industrially advantageous method for producing aminoacylase I is disclosed. An object of the present invention is to clarify the gene structure and amino acid sequence of aminoacylase I, and to provide a nucleotide sequence necessary for genetic diagnosis or treatment of small cell lung cancer or kidney cancer and a polypeptide having aminoacylase I activity. It is in.

【0004】[0004]

【課題を解決するための手段】本発明を概説すれば、本
発明の第1の発明は、配列表の配列番号1又は配列番号
2で表されるアミノ酸配列で表されるポリペプチド、あ
るいは該配列に1以上のアミノ酸残基の欠失、置換、挿
入、付加の少なくとも1つを有するアミノ酸配列を有す
るポリペプチドであって、アミノアシラーゼI活性を有
するポリペプチドをコードする核酸に関する。また、本
発明の第2の発明は、配列表の配列番号2で表されるア
ミノ酸配列で表されるポリペプチド、あるいは該配列に
個〜数個のアミノ酸残基の欠失、置換、挿入、付加の
少なくとも1つを有するアミノ酸配列を有するポリペプ
チドであってアミノアシラーゼI活性を有するポリペプ
チドに関する。
SUMMARY OF THE INVENTION In summary of the present invention, a first invention of the present invention relates to a polypeptide represented by the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2, The present invention relates to a nucleic acid encoding a polypeptide having an amino acid sequence having at least one of deletion, substitution, insertion, and addition of one or more amino acid residues in the sequence, the polypeptide having aminoacylase I activity. Further, the second invention of the present invention relates to a polypeptide represented by the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing, or deletion, substitution, and insertion of one to several amino acid residues in the sequence. A polypeptide having an amino acid sequence having at least one addition, and having aminoacylase I activity.

【0005】以下本発明を具体的に説明する。アミノア
シラーゼIをコードするcDNAのクローニングの方法
は公知の方法が用いられる。例えば、アミノアシラーゼ
Iが特に多く分布する腎臓から、ポリ(A)を含むRN
Aを抽出し、これをオリゴ(dT)を結合させたセルロ
ース担体等で精製する。これをテンプレート(鋳型)と
して逆転写酵素を作用させてcDNA合成を行い、岡山
−バーグ法あるいはガブラー−ホフマン法( Gubler-Hof
fmann 法)等の方法により、プラスミドやファージベク
ターに接続して、宿主に導入し、cDNAライブラリー
を作製する。このようなライブラリーは、市販もされて
おり、例えばクローンテック社から購入することもでき
る。cDNAライブラリーから目的のアミノアシラーゼ
IをコードするcDNAクローンをスクリーニングする
ためには、まずアミノアシラーゼIの部分アミノ酸配列
を決定し、それから推定した合成DNAプローブを作成
しなければならない。部分アミノ酸配列を決定するため
には、まず精製アミノアシラーゼIに、特異性の高いタ
ンパク質加水分解酵素を作用させ加水分解し、ペプチド
を逆相HPLCを用いて分離精製する。これをエドマン
分解法によりアミノ酸配列分析を行い、決定するのが効
果的である。この部分アミノ酸配列から合成DNAプロ
ーブをデザインするには2種類の方法がある。一つは考
えられる組合せの配列をすべて合成してゆく方法であ
る。もう一つは、今まで調べられてきたコドンの使用頻
度の高いものを用いて長いDNAを合成して使う方法で
ある。また、ある種のアミノアシラーゼIをコードする
cDNAの塩基配列が決定している場合に、他の起源の
アミノアシラーゼIをコードするcDNAクローンをス
クリーニングするためには、既にその配列が明らかにさ
れているアミノアシラーゼIのcDNA断片をプローブ
として用いるのが効果的である。DNAプローブは化学
的に合成しても良いし、cDNAを含むベクターから制
限酵素で切り出して精製してもよい。DNAプローブで
ライブラリーをスクリーニングする手段としては、まず
ライブラリーをプレート上で増幅させ、生育したコロニ
ー又はプラークをニトロセルロースやナイロンのフィル
ターに移し取り、変性処理によりDNAをフィルターに
固定する。このフィルターをあらかじめ32P等で標識し
たDNAプローブを含む溶液中でインキュベートし、フ
ィルター上のDNAと、プローブDNAとのハイブリッ
ドを形成させる(以下、この操作をハイブリダイゼーシ
ョンという)。インキュベーションの温度は、用いるプ
ローブのTm(融解温度)を目安として設定する。ハイ
ブリダイゼーション後、非特異的吸着を洗い流し、オー
トラジオグラフィーにより、プローブとハイブリッドを
形成したクローンを同定する。この操作を再度行ってク
ローンを単離し、次の分析を行う。組換え体が大腸菌の
場合は、試験管等で少量培養を行い、プラスミドを常法
によって抽出、制限酵素による切断反応を行い、アガロ
ース又はアクリルアミドゲル電気泳動に付して、クロー
ン化された挿入断片の生成を調べる。更にその泳動パタ
ーンをニトロセルロースやナイロン膜に移し取り、前述
の方法によりハイブリダイゼーションを行って挿入断片
がDNAプローブとハイブリッドを形成するか否かを調
べる。最終的には挿入断片の塩基配列を公知の方法によ
り決定する。組換え体がファージの場合も基本的には同
様のステップでクローンの分析を行う。あらかじめ培養
した宿主大腸菌にクローン化ファージを感染させ、その
溶菌液からファージDNAを調製する。ファージDNA
の具体的な調製法に関しては、例えば続生化学実験講座
1「遺伝子研究法II」の第100頁(東京化学同人出
版)に記載されている。ファージDNAを制限酵素で切
断してゲル電気泳動に付し、挿入断片の確認を行い、更
に、プローブDNAとハイブリダイズすることを調べ
る。最終的には塩基配列を決定することにより、クロー
ンの確認を行う。決定された塩基配列を、アミノアシラ
ーゼIのペプチド断片のアミノ酸配列や、C末端分析、
アミノ酸組成分析、分子量等と比較してその遺伝子構造
及びアミノ酸配列を知ることができる。また、得られた
cDNAの構造遺伝子を適当な宿主細胞、例えば酵母に
おいて発現できるように発現ベクターに接続して、該宿
主細胞に導入し、これを培養することにより、アミノア
シラーゼ活性を持つポリペプチドを生産させることがで
きる。発現の確認は、通常のアミノアシラーゼI活性測
定法により活性を測定することによって行うことができ
る。例えば、2−アセトアミドアクリル酸、L−アラニ
ンデヒドロゲナーゼ、β−ニコチンアミドアデニンジヌ
クレオチド二ナトリウム塩(NADH)を含むアミノア
シラーゼIの活性測定系に、例えば組換え体酵母の細胞
抽出液を加える。このとき2−アセトアミドアクリル酸
がアミノアシラーゼIにより加水分解された後、脱アミ
ノしてピルビン酸とアンモニアを生じる。これをL−ア
ラニンデヒドロゲナーゼがアラニンに合成する時に消費
されるNADHの減少を分光光度計で測定することによ
って、アミノアシラーゼI活性を測定することができ
る。形質転換体の培養物からアミノアシラーゼIポリペ
プチドの精製には、通常のクロマトグラフィーの手法が
用いられる。すなわち、例えば培養菌体を破砕し、上清
を得る。これを硫酸アンモニウムを用いた塩析により分
画し、次いで疎水、イオン交換、ゲルろ過等のクロマト
グラフィーによって所望のポリペプチドを得ることがで
きる。以上のことから、本発明によりアミノアシラーゼ
Iの塩基配列、一次構造が明らかとなり、肺小細胞ガン
あるいは腎ガンに対する遺伝子診断用の塩基配列、ま
た、アミノアシラーゼIの遺伝子工学的製造法を提供す
ることが可能となった。
Hereinafter, the present invention will be described specifically. Known methods are used for cloning the cDNA encoding aminoacylase I. For example, from a kidney where aminoacylase I is particularly prevalent, RN containing poly (A)
A is extracted and purified with a cellulose carrier or the like to which oligo (dT) is bound. Using this as a template, cDNA is synthesized by the action of reverse transcriptase, and the Okayama-Berg method or Gubler-Hofman method (Gubler-Hofman method) is used.
fmann method) and the like, connecting to a plasmid or phage vector, introducing into a host, and preparing a cDNA library. Such libraries are also commercially available and can be purchased, for example, from Clonetech. In order to screen a cDNA clone encoding the desired aminoacylase I from a cDNA library, first, the partial amino acid sequence of aminoacylase I must be determined, and a deduced synthetic DNA probe must be prepared therefrom. In order to determine the partial amino acid sequence, first, purified aminoacylase I is hydrolyzed by acting a highly specific protein hydrolase, and the peptide is separated and purified using reverse phase HPLC. It is effective to determine this by performing amino acid sequence analysis by the Edman degradation method. There are two methods for designing a synthetic DNA probe from this partial amino acid sequence. One is to synthesize all possible combinations of sequences. The other is a method of synthesizing and using a long DNA using a codon frequently used, which has been investigated so far. In addition, when the nucleotide sequence of a cDNA encoding a certain aminoacylase I has been determined, in order to screen a cDNA clone encoding aminoacylase I of another source, the sequence has already been revealed. It is effective to use a cDNA fragment of aminoacylase I as a probe. The DNA probe may be chemically synthesized, or may be cut out of a vector containing cDNA with a restriction enzyme and purified. As a means for screening the library with a DNA probe, first, the library is amplified on a plate, the grown colonies or plaques are transferred to a nitrocellulose or nylon filter, and the DNA is fixed to the filter by denaturation treatment. This filter is incubated in a solution containing a DNA probe previously labeled with 32 P or the like to form a hybrid between the DNA on the filter and the probe DNA (hereinafter, this operation is referred to as hybridization). The incubation temperature is set using the Tm (melting temperature) of the probe to be used as a guide. After hybridization, non-specific adsorption is washed away, and clones that have hybridized with the probe are identified by autoradiography. This operation is performed again to isolate the clone, and the next analysis is performed. When the recombinant is Escherichia coli, a small amount of culture is performed in a test tube or the like, the plasmid is extracted by a conventional method, a cleavage reaction is performed with a restriction enzyme, and subjected to agarose or acrylamide gel electrophoresis. Examine the generation of. Further, the electrophoresis pattern is transferred to a nitrocellulose or nylon membrane, and subjected to hybridization according to the above-described method to examine whether or not the inserted fragment forms a hybrid with the DNA probe. Finally, the base sequence of the inserted fragment is determined by a known method. When the recombinant is a phage, the clone is analyzed in basically the same steps. The cloned phage is infected to host Escherichia coli cultured in advance, and phage DNA is prepared from the lysate. Phage DNA
The specific preparation method is described, for example, in page 100 of Seismic Chemistry Laboratory Course 1 “Genetic Research Method II”, page 100 (published by Tokyo Chemical Dojin). The phage DNA is cleaved with a restriction enzyme and subjected to gel electrophoresis to confirm the inserted fragment, and further examined to hybridize with the probe DNA. Finally, the clone is confirmed by determining the nucleotide sequence. The determined base sequence is used for amino acid sequence analysis of aminoacylase I peptide fragment, C-terminal analysis,
The gene structure and amino acid sequence can be known by comparing with amino acid composition analysis, molecular weight and the like. In addition, a polypeptide having aminoacylase activity can be obtained by connecting the structural gene of the obtained cDNA to an appropriate host cell, for example, an expression vector so that it can be expressed in yeast, introducing into the host cell, and culturing it. Can be produced. Confirmation of expression can be performed by measuring the activity by a conventional aminoacylase I activity measuring method. For example, a cell extract of a recombinant yeast is added to a system for measuring the activity of aminoacylase I containing 2-acetamidoacrylic acid, L-alanine dehydrogenase, and β-nicotinamide adenine dinucleotide disodium salt (NADH). At this time, after 2-acetamidoacrylic acid is hydrolyzed by aminoacylase I, it is deaminated to produce pyruvic acid and ammonia. Aminoacylase I activity can be measured by measuring the decrease in NADH consumed when L-alanine dehydrogenase synthesizes alanine with a spectrophotometer. For purification of the aminoacylase I polypeptide from the culture of the transformant, a usual chromatography technique is used. That is, for example, the cultured cells are disrupted to obtain a supernatant. This is fractionated by salting out using ammonium sulfate, and then the desired polypeptide can be obtained by chromatography such as hydrophobicity, ion exchange, and gel filtration. From the above, the nucleotide sequence and primary structure of aminoacylase I have been elucidated by the present invention, and a nucleotide sequence for gene diagnosis of small cell lung cancer or renal cancer, and a method for producing aminoacylase I by genetic engineering are provided. It became possible.

【0006】[0006]

【実施例】次に本発明の実施例を示すが、これらは本発
明を限定するものではない。
EXAMPLES Next, examples of the present invention will be described, but these do not limit the present invention.

【0007】実施例1 ブタアミノアシラーゼIcDN
Aクローニング (1−1)cDNAライブラリーからのスクリーニング <ポジティブクローンの同定、単離>ブタ腎臓ポリ
(A)RNAは、クローンテック社(米国)から入手し
た(コード番号6683)。このポリ(A)RNA2μ
gよりアマルシャム社製cDNA合成キット(コード番
号RPN.1256)を使って、オリゴ(dT)プライ
マーによりcDNAを合成した。次に同じくアマシャム
社製cDNAクローニングシステム・λgt10(コード
番号PRN.1257)を使って、無細胞系で、cDN
Aをλgt10のEcoRIサイトに組込んだものを、ラム
ダーファージにパッケージングし、cDNAライブラリ
ーを作製した。ただし、配列表の配列番号3で表される
EcoRIリンカーは宝酒造(株)製のものを、パッケー
ジングには、ストラタジーン社(米国)のギガパックゴ
ールド(GIGAPACK GOLD )を用いた。前記cDNAライ
ブラリーを、宿主菌としてC600hfl株を用い、1
4cm×10cmの角シャーレ8枚に、1枚当り約1600
0個のプラークを形成させた。すなわち4mg/mlのマル
トースを含むL培地でC600hflを37℃で一晩培
養した培養液0.2mlに、ファージ液0.1mlを混ぜ3
7℃で15分間保温した。これに軟寒天(L培地に終濃
度0.6%となるようにアガロースを加え、オートクレ
ーブで処理した後、50℃に保ったもの)8mlを加え、
L−プレート上に広げ、固化後37℃で10時間程度保
温してファージのプラークを形成させた(以下、この操
作をプレーティングと略す)。次にこのプレートより2
枚のハイブリダイゼーション用フィルターを調製した。
すなわち、プレート表面にアマシャム社製ナイロン膜
〔商品名ハイボンド(Hybond-N)〕を30秒間接触させ、
これを0.5M NaOH、1.5M NaClの溶液
に浸したろ紙上で5分間(変性)、0.5M トリス
(Tris) −HCl緩衝液( pH 7.0)、1.5MNa
Clの溶液に浸したろ紙上で5分間(中和)処理した
後、2×SSC〔NaClの17.53g、クエン酸ナ
トリウム8.82gを1リットルの水に溶かしたもの〕
でリンスし、ろ紙上で乾燥させた(以下この処理をフィ
ルター処理と略す)。2枚目のフィルター処理は、プレ
ートとナイロン膜の接触時間を2分間として行った。U
Vランプで5分間このフィルターを照射してDNAを固
定化した。ハイブリダイゼーションのプローブとして
は、ブタ腎臓アミノアシラーゼI(シグマ社)の部分ア
ミノ酸配列より推定した、17塩基の合成DNAの混合
物(配列表の配列番号4で表される)を用いた。部分ア
ミノ酸配列は、精製されたブタ腎臓アミノアシラーゼI
をタンパク質加水分解酵素アクロモバクタープロテアー
ゼI消化後HPLCで分取し、気相式ペプチドシークエ
ンサーで決定した。配列表の配列番号5が、該アミノ酸
配列である。この合成DNA50ngを宝酒造社製メガラ
ベルキット(コード番号6070)を用いて32Pで標識
し、8.6×108 cpm/μgの比活性のプローブD
NAを得た。このプローブの全量と上記調製したフィル
ターを用い、6×SSC、1%SDS100μg/mlの
ニシン精子DNA、5×デンハルト( Denhardt′s)〔ウ
シ血清アルブミン、ポリビニルピロリドン、フィコール
をそれぞれ0.1%の濃度で含む〕を含む約100mlの
溶液中で45℃で一晩ハイブリダイゼーションを行っ
た。次に室温の6×SSC中で10分間フィルターを洗
浄した。更に40℃の2×SSC中で10分間を2回洗
浄した後、フィルターをろ紙上に移し余分な水分を除い
た。これを、ワットマン3MMろ紙にはり付け、増感紙
を当てて一晩−70℃でオートラジオグラフを行った。
その結果合計51個のポジティブシグナルを得た。これ
らのシグナルに相当する位置のプラークを寒天ごと0.
2mlのSM溶液〔NaCl 5.8g、MgSO4 ・7
2 O 2g、1Mトリス−HCl緩衝液( pH 7.
5)50ml、2%ゼラチン5mlを水に溶かし全量を1リ
ットルとする〕中に回収、懸濁した。これらファージ液
の内から適当に10個を選び以下の操作に供した。これ
らファージ液を希釈してプレーティングし(約300プ
ラーク/φ9cm丸形シャーレ)上記と同様の操作を行っ
た(以下2次スクリーニングと略す)。その結果、全ク
ローンに関してシングルプラークを単離することができ
た。これらのクローンをλpkAmA 1〜10と命名した。 (1−2)塩基配列分析 <λDNAの調製>クローン化できたファージを宿主菌
として大腸菌L87株を用いて液体培養(遺伝子研究法
II、第100頁、東京化学同人出版)を行った。これに
よって40mlの培養液から調製し、約40μgのλDN
Aを得た。 <挿入断片の同定と抽出精製>調製した上記DNA20
μgを100μlの1×EcoRI緩衝液(組成は宝酒造
・遺伝子工学用試薬カタログ記載)中120ユニットの
EcoRIと共に37℃1.5時間保温し、更に終濃度5
0μg/mlとなるようにRNaseAを加え10分間保温し
た。この反応液中から5μlを取出し、1.0%アガロ
ースゲルで電気泳動し挿入断片の大きさを求めた。その
結果、0.6〜1.4kbの大きさの断片が挿入されてい
ることが判明した。これらの内で一番長い1.4kbの挿
入断片を持つλpkAmA 10を選び、以下の操作に供し
た。先にEcoRI消化した残りの反応液全量を1.0%
アガロースゲルで電気泳動した。泳動後ゲルを1μg/
mlのエチジウムブロマイド溶液で10分間染色した後、
紫外線照射下で目的の挿入断片を含む部分をゲルから切
り出した。これを、宝酒造(株)製イージートラップ
(EASYTRAP) キットを用いて抽出精製し、約200ngの
1.4kbDNA断片を得た。 <挿入断片の制限酵素サイトの同定と塩基配列決定>λ
pkAmA 10の挿入断片50ngとM13mp18(宝酒造)
のRFDNAをEcoRI消化したもの50ngをライゲー
ションキット(宝酒造 コード番号6021)を用いて
ライゲーションを行った。このライゲーション反応液の
一部を用いて大腸菌JM109を形質転換し、X−Gal
(5−ブロモ−4−クロロ−3−インドリル−β−D−
ガラクトシド)とIPTG(イソプロピル−β−D−チ
オガラクトシド)を含む軟寒天に、JM109をL培地
で一晩培養した培養液0.2mlと混ぜL−プレートにま
いた。このプレートを37℃で一晩保温し、形成した白
いプラークを選ぶことによって、断片が挿入されている
組換え体を得た。得られた白色プラークを大腸菌JM1
09を宿主菌として液体培養を行い、アルカリ溶菌法に
よりRFDNAを調製した〔文献:1982年、コール
ド スプリング ハーバーラボラトリー発行、T.マニ
アスティス(T.Maniastis)ほか著、モレキュラー・ク
ローニング、ア・ラボラトリー・マニュアル( Molecula
rCloning , A Laboratory Manual ) 、第368
頁〕。このRFDNAの一部をEcoRIで消化し、1%
アガロースゲル電気泳動により、1.4kbの断片が挿入
されていることを確認した。次に挿入断片の向きと、制
限酵素サイトの存在を調べた。得られたRFDNAの一
部を、数種の制限酵素で切断し、1%アガロースゲル電
気泳動により分析した。その結果、制限酵素KpnI、S
acI、StuI、PstI、Hind III 、Hinc II等のサイ
トが1個又は2個存在することが判明した。また、M1
3mp18のベクターDNAに対してそれぞれ逆向きに、
1.4kb断片が挿入されているクローンが得られている
ことも判明した。1つの方向のものをMpkAmA 10−
2、もう一方のものをMpkAmA 10−5と命名した。次
に、1.4kb挿入断片の全塩基配列を決定するために、
以下のようにして、MpkAmA 10−2、MpkAmA 10−
5より、種々の長さのDNAを欠失させた誘導体を作製
した。まずMpkAmA 10−2をKpnI、StuIとSma
I、PstI、Hind III 、MpkAmA 10−5をHind II
I 、PstI、SacI、KpnIでそれぞれ消化し、マルチ
クローニングサイト内の制限酵素サイトと挿入断片内の
サイトで切断して、種々の大きさでDNAを欠失させ
た。次にこれらベクターDNAをセルフライゲーション
させた後、大腸菌JM109に導入し形質転換体を得
た。これら誘導体クローンと、MpkAmA 10−2、Mpk
AmA 10−5を培養してシングルストランドDNA(s
sDNA)を調製し、ジデオキシ法によってDNAシー
クエンシングを行った。その結果、λpkAmA 10の挿入
断片の塩基配列を決定した。その結果を図1に示す。す
なわち図1はブタアミノアシラーゼIcDNAの制限酵
素地図、及び塩基配列を決定した部分とその向きを示す
図である。このcDNA塩基配列分析の結果から、配列
表の配列番号6のブタアミノアシラーゼI構成遺伝子の
全塩基配列及びアミノ酸配列が決定された。すなわち配
列番号6はcDNA塩基配列分析より得た、アミノアシ
ラーゼIの1例の塩基配列及びそれに対応するアミノ酸
配列を示すものである。
Example 1 Porcine aminoacylase IcDN
A cloning (1-1) Screening from cDNA library <Identification and isolation of positive clone> Porcine kidney poly (A) RNA was obtained from Clonetech (USA) (code No. 6683). This poly (A) RNA 2μ
g, cDNA was synthesized with an oligo (dT) primer using a cDNA synthesis kit (code number RPN.1256) manufactured by Amersham. Next, using a cDNA cloning system λgt10 (code No. PRN.1257) also manufactured by Amersham, in a cell-free system, cDN
The product obtained by incorporating A into the EcoRI site of λgt10 was packaged in lambda phage to prepare a cDNA library. However, the EcoRI linker represented by SEQ ID NO: 3 in the Sequence Listing was manufactured by Takara Shuzo Co., Ltd., and Gigapack Gold (Stratagene, USA) was used for packaging. Using the C600hfl strain as a host bacterium,
Approximately 1600 per 8 pieces of 4 cm x 10 cm square petri dishes
0 plaques were formed. That is, 0.1 ml of a phage solution was mixed with 0.2 ml of a culture obtained by culturing C600hfl at 37 ° C. overnight in L medium containing 4 mg / ml maltose.
It was kept at 7 ° C. for 15 minutes. To this was added 8 ml of soft agar (agarose was added to L medium to a final concentration of 0.6%, treated in an autoclave, and kept at 50 ° C.)
After spreading on an L-plate and solidifying, the mixture was kept at 37 ° C. for about 10 hours to form phage plaques (hereinafter, this operation is abbreviated as plating). Next, 2 from this plate
One piece of hybridization filter was prepared.
That is, a nylon film made by Amersham (trade name: Highbond (Hybond-N)) was brought into contact with the plate surface for 30 seconds,
This was placed on a filter paper dipped in a solution of 0.5 M NaOH and 1.5 M NaCl for 5 minutes (denatured),
(Tris) -HCl buffer (pH 7.0), 1.5 M Na
After 5 minutes (neutralization) treatment on a filter paper immersed in a Cl solution, 2 × SSC [17.53 g of NaCl and 8.82 g of sodium citrate dissolved in 1 liter of water]
And dried on filter paper (this process is abbreviated as filter treatment). The second filter treatment was performed with the contact time between the plate and the nylon membrane being 2 minutes. U
This filter was irradiated with a V lamp for 5 minutes to immobilize DNA. As a hybridization probe, a mixture of 17 bases of synthetic DNA (represented by SEQ ID NO: 4 in the sequence listing) estimated from the partial amino acid sequence of porcine kidney aminoacylase I (Sigma) was used. The partial amino acid sequence consists of purified porcine kidney aminoacylase I
Was digested with HPLC after digestion of the protease Achromobacter protease I, and determined by a gas phase peptide sequencer. SEQ ID NO: 5 in the sequence listing is the amino acid sequence. 50 ng of this synthetic DNA was labeled with 32 P using a Takara Shuzo Mega Label Kit (code No. 6070), and probe D having a specific activity of 8.6 × 10 8 cpm / μg was used.
NA was obtained. Using the total amount of this probe and the filter prepared above, 6 × SSC, 1% SDS 100 μg / ml herring sperm DNA, 5 × Denhardt's [bovine serum albumin, polyvinylpyrrolidone, and ficoll 0.1% each. ) At 45 ° C overnight. The filters were then washed for 10 minutes in 6 × SSC at room temperature. Further, after washing twice in 2 × SSC at 40 ° C. for 10 minutes, the filter was transferred onto a filter paper to remove excess water. This was adhered to Whatman 3MM filter paper, and an intensifying screen was applied thereto to perform autoradiography at -70 ° C overnight.
As a result, a total of 51 positive signals were obtained. Plaques at positions corresponding to these signals were placed on agar plates with 0.
2ml of SM solution [NaCl 5.8g, MgSO 4 · 7
H 2 O 2g, 1M Tris -HCl buffer (pH 7.
5) 50 ml of 2% gelatin was dissolved in water to make the total volume 1 liter]. Ten of these phage solutions were appropriately selected and subjected to the following operation. These phage solutions were diluted and plated (about 300 plaques / φ9 cm round petri dish) and subjected to the same operation as described above (hereinafter abbreviated as secondary screening). As a result, a single plaque could be isolated from all clones. These clones were named λpkAmA 1-10. (1-2) Nucleotide Sequence Analysis <Preparation of λDNA> Liquid culture using E. coli L87 strain as a host phage which could be cloned
II, page 100, Tokyo Chemical Doujinshi). Thus, about 40 μg of λDN was prepared from 40 ml of the culture solution.
A was obtained. <Identification of Insertion Fragment and Extraction and Purification>
μg was incubated at 37 ° C. for 1.5 hours with 120 units of EcoRI in 100 μl of 1 × EcoRI buffer (composition described in the catalog of reagents for Takara Shuzo / Genetic Engineering), and the final concentration was 5%.
RNase A was added to a concentration of 0 μg / ml, and the mixture was kept warm for 10 minutes. 5 μl was taken out of the reaction solution and electrophoresed on a 1.0% agarose gel to determine the size of the inserted fragment. As a result, it was found that a fragment of 0.6 to 1.4 kb was inserted. Among these, λpkAmA10 having the longest insert fragment of 1.4 kb was selected and subjected to the following operation. The total amount of the remaining reaction solution previously digested with EcoRI was 1.0%
Electrophoresis was performed on an agarose gel. 1 μg /
After staining with 10 ml of ethidium bromide solution for 10 minutes,
The portion containing the insert fragment of interest was cut out from the gel under ultraviolet irradiation. This was extracted and purified using an EASYTRAP kit manufactured by Takara Shuzo Co., Ltd. to obtain about 200 ng of a 1.4 kb DNA fragment. <Identification of restriction enzyme site of inserted fragment and determination of base sequence> λ
50 ng of pkAmA10 insert and M13mp18 (Takara Shuzo)
Was ligated using a ligation kit (Takara Shuzo Code No. 6021). Escherichia coli JM109 was transformed using a part of this ligation reaction solution, and X-Gal
(5-Bromo-4-chloro-3-indolyl-β-D-
Galactoside) and IPTG (isopropyl-β-D-thiogalactoside) were mixed with 0.2 ml of a culture solution obtained by culturing JM109 in L medium overnight, and the mixture was spread on an L-plate. The plate was incubated overnight at 37 ° C., and a recombinant in which the fragment was inserted was obtained by selecting a formed white plaque. The obtained white plaque was used for E. coli JM1.
09 was used as a host cell for liquid culture, and RF DNA was prepared by an alkaline lysis method [Reference: 1982, published by Cold Spring Harbor Laboratory, T.C. T. Maniastis et al., Molecular Cloning, A Laboratory Manual (Molecula)
rCloning, A Laboratory Manual), No. 368
page〕. A part of this RF DNA was digested with EcoRI and 1%
It was confirmed by agarose gel electrophoresis that the 1.4 kb fragment was inserted. Next, the orientation of the inserted fragment and the presence of a restriction enzyme site were examined. A part of the obtained RF DNA was digested with several kinds of restriction enzymes and analyzed by 1% agarose gel electrophoresis. As a result, the restriction enzymes KpnI, S
It was found that one or two sites such as acI, StuI, PstI, HindIII, and HincII were present. Also, M1
In the opposite direction to the 3mp18 vector DNA,
It was also found that a clone in which the 1.4 kb fragment was inserted was obtained. MpkAmA 10-
2. The other was named MpkAmA 10-5. Next, to determine the entire base sequence of the 1.4 kb insert,
MpkAmA 10-2, MpkAmA 10-
From No. 5, derivatives in which DNAs of various lengths were deleted were prepared. First, MpkAmA 10-2 is converted to KpnI, StuI and Sma
I, PstI, HindIII, MpkAmA 10-5 to HindII
The DNA was digested with I, PstI, SacI, and KpnI, cut at restriction enzyme sites in the multiple cloning site and sites in the inserted fragment to delete DNAs of various sizes. Next, these vector DNAs were self-ligated and then introduced into E. coli JM109 to obtain a transformant. These derivative clones, MpkAmA 10-2, Mpk
AmA 10-5 was cultured and single-stranded DNA (s
sDNA) was prepared and subjected to DNA sequencing by the dideoxy method. As a result, the base sequence of the inserted fragment of λpkAmA10 was determined. The result is shown in FIG. That is, FIG. 1 is a diagram showing a restriction enzyme map of porcine aminoacylase I cDNA, a portion whose base sequence has been determined, and its orientation. From the results of the cDNA base sequence analysis, the entire base sequence and amino acid sequence of the porcine aminoacylase I constituent gene of SEQ ID NO: 6 in the sequence listing were determined. That is, SEQ ID NO: 6 shows the nucleotide sequence of one example of aminoacylase I and the corresponding amino acid sequence obtained by cDNA nucleotide sequence analysis.

【0008】実施例2 ヒトアミノアシラーゼIcDN
Aクローニング (2−1)cDNAライブラリーからのスクリーニング ヒト肝臓ポリ(A)RNAは、クローンテック社から入
手した。このポリ(A)RNA2μgより、実施例1と
同様にして、ヒト肝臓−λgt10−cDNAライブラリ
ーを作製し、フィルターを調製した。ハイブリダイゼー
ションのプローブDNAとしては、λpkAmA 10挿入断
片中のNcoI−StuI断片(約530bp)を用いた。す
なわち、ブタアミノアシラーゼIcDNAを含むMpkAm
A 10−2 DNAを、NcoI、StuI消化後アガロー
スゲル電気泳動をした。泳動後ゲルを1μg/mlのエチ
ジウムブロマイド溶液で10分間染色した後、紫外線照
射下で目的のDNA断片を含む部分をゲルから切り出し
た。これをイージートラップキットを用いて抽出精製し
た。得られた断片は、ランダムプライマーDNAラベリ
ングキット(宝酒造 コード番号6045)を用いて32
Pで標識し、ハイブリダイゼーションに用いた。ハイブ
リダイゼーションは、実施例1と同様の条件で行った。
ただし、ハイブリダイゼーションの温度は65℃とし、
洗浄は、最後に55℃の0.2×SSC中で30分間を
2回行った。その結果3個のポジティブシグナルを得
た。これらプラークを2次スクリーニングを行い、それ
ぞれ単離した。このクローンをλhAmA1〜3と命名し
た。 (2−2)塩基配列分析 上記3クローンについてλDNAを調製し、EcoRI消
化して挿入DNA断片の大きさを調べた。その結果1.
1〜1.4kbのDNA断片が挿入されていることが判明
した。一番長い1.4kbの挿入断片を持つλhAmA3より
EcoRIで挿入断片を切り出し、M13mp18に組込ん
だ。得られた両方向のクローンをそれぞれMhAmA3−
2、MhAmA3−3と命名した。次に、1.4kb挿入断片
の全塩基配列を決定するために、以下のようにして、M
hAmA3−2、MhAmA3−3より、種々の大きさのDNA
を欠失させた誘導体を作製した。まず各RFDNAをH
inc II、PstIでそれぞれ消化し、マルチクローニング
サイト内の制限酵素サイトと挿入断片内のサイトで切断
して、種々の大きさでDNAを欠失させた。次にこれら
ベクターDNAをセルフライゲーションさせた後、大腸
菌JM109に導入して形質転換体を得た。またタカラ
(TaKaRa)キロシークエンス用デレーションキット(宝酒
造)を用い、MhAmA3−2、MhAmA3−3について、シ
ークエンス用プライマーのアニーリング位置の側から挿
入断片を分解していき、種々の大きさのDNAを欠失さ
せた誘導体を作製した。これら誘導体の適当なものと、
MhAmA3−2、MhAmA3−3を培養してssDNAを調
製し、ジデオキシ法によってDNAシークエンシングを
行った。その結果λhAmA3の挿入断片の塩基配列を決定
した。その結果を図2に示す。すなわち図2はヒトアミ
ノアシラーゼIcDNAの制限酵素地図及び塩基配列を
決定した部分とその向きを示す図である。このcDNA
塩基配列分析の結果から、ヒトアミノアシラーゼI構成
遺伝子の全塩基配列及びアミノ酸配列が決定された。そ
の結果を配列表の配列番号7に示す。すなわち配列番号
7はcDNA塩基配列分析より得たアミノアシラーゼI
の1例の塩基配列及びそれに対応するアミノ酸配列を示
すものである。
Example 2 Human aminoacylase IcDN
A cloning (2-1) Screening from cDNA library Human liver poly (A) RNA was obtained from Clonetech. From 2 μg of this poly (A) RNA, a human liver-λgt10-cDNA library was prepared in the same manner as in Example 1, and a filter was prepared. As a probe DNA for hybridization, an NcoI-StuI fragment (about 530 bp) in the λpkAmA10 insert fragment was used. That is, MpkAm containing porcine aminoacylase I cDNA
A10-2 DNA was digested with NcoI and StuI and subjected to agarose gel electrophoresis. After the electrophoresis, the gel was stained with a 1 μg / ml ethidium bromide solution for 10 minutes, and a portion containing the target DNA fragment was cut out from the gel under ultraviolet irradiation. This was extracted and purified using an easy trap kit. The resulting fragment, using a random primer DNA labeling kit (Takara Shuzo code No. 6045) 32
It was labeled with P and used for hybridization. Hybridization was performed under the same conditions as in Example 1.
However, the hybridization temperature is 65 ° C.
The washing was finally performed twice in 0.2 × SSC at 55 ° C. for 30 minutes. As a result, three positive signals were obtained. These plaques were subjected to a secondary screening and isolated. This clone was named λhAmA1-3. (2-2) Nucleotide sequence analysis [lambda] DNA was prepared from the above three clones, digested with EcoRI, and the size of the inserted DNA fragment was examined. As a result 1.
It was found that a DNA fragment of 1 to 1.4 kb was inserted. The insert was excised with EcoRI from λhAmA3 having the longest insert of 1.4 kb and incorporated into M13mp18. The resulting clones in both directions were isolated from MhAmA3-
2. It was named MhAmA3-3. Next, in order to determine the entire base sequence of the 1.4 kb insert, M
DNA of various sizes from hAmA3-2 and MhAmA3-3
Derivatives were deleted. First, each RFDNA is converted to H
The DNA was digested with incII and PstI, cut at the restriction enzyme site in the multiple cloning site and the site in the inserted fragment, and DNAs of various sizes were deleted. Next, these vector DNAs were self-ligated and then introduced into Escherichia coli JM109 to obtain transformants. Also Takara
(TaKaRa) Using the Kilo Sequencing Delation Kit (Takara Shuzo), for MhAmA3-2 and MhAmA3-3, insert fragments were degraded from the annealing position side of the sequencing primer, and DNAs of various sizes were deleted. A derivative was prepared. Suitable ones of these derivatives,
MhAmA3-2 and MhAmA3-3 were cultured to prepare ssDNA, and DNA sequencing was performed by the dideoxy method. As a result, the base sequence of the inserted fragment of λhAmA3 was determined. The result is shown in FIG. That is, FIG. 2 is a diagram showing a restriction enzyme map of human aminoacylase I cDNA, a portion where a base sequence is determined, and a direction thereof. This cDNA
From the results of the nucleotide sequence analysis, the entire nucleotide sequence and amino acid sequence of the human aminoacylase I component gene were determined. The result is shown in SEQ ID NO: 7 in the sequence listing. That is, SEQ ID NO: 7 is aminoacylase I obtained by cDNA base sequence analysis.
1 shows the base sequence of Example 1 and the corresponding amino acid sequence.

【0009】実施例3 アミノアシラーゼIポリペプチ
ドを発現するプラスミドの構築 以下の手順でλpkAmA 10、あるいはλhAmA3挿入断片
中のアミノアシラーゼIをコードする部分を切り出し、
酵母のアルコールデヒドロゲナーゼプロモーターを持つ
大腸菌−酵母シャトルベクターであるpJM124〔文
献:ジ エムボジャーナル ( The EMBO Journal ) 、第
8巻、第2067頁(1989)〕に組込んだ発現プラ
スミド(それぞれ pYAmA101、 pYhAmA 101と命
名)を構築した。 (3−1)ブタアミノアシラーゼI様ポリペプチド発現
プラスミド pYAmA101の構築 λpkAmA 10のEcoRI挿入断片をM13mp18に組込
んだMpkAmA 10−2RFDNAを、制限酵素NcoI、
Eco47III で消化し、遊離する約1230bpのDNA
断片を分離精製した。そして、DNAブランティング
キット( Blunting Kit )(宝酒造 コード番号602
5)を用いて、NcoI突出末端を平滑化した。これを、
プラスミドpJM124をBamHI消化してBamHI挿
入断片をはずし、平滑末端化したものに組込んだ。得ら
れたプラスミドを pYAmA101と命名した。すなわちプ
ラスミド pYAmA101は、酵母アルコールデヒドロゲナ
ーゼプロモーターの下流に、ブタアミノアシラーゼIの
407アミノ酸残基のポリペプチドをコードする。この
プラスミド pYAmA101を酵母BJ2168〔MAT
a、ura3−52、leu2、trp1、prc−4
07、prb1−1122、pep4−3〕、あるいは
DKD−5D−H〔MATa、leu2−3、leu2
−112、trp1、his3〕にアルカリ金属処理法
〔文献:ジャーナル オブ バクテリオロジー ( Journ
al of Bacteriology )第153巻、第163頁(198
3)〕によって導入した。pYAmA 101を導入した酵母
BJ2168を Saccharomyces cerevisiae BJ216
8/pYAmA 101と表示し、工業技術院微生物工業技術
研究所に寄託した〔微工研菌寄第12002号(FER
M P−12002)〕。 (3−2)ヒトアミノアシラーゼI様ポリペプチド発現
プラスミド pYhAmA 101の構築 λhAmA3のEcoRI挿入断片をM13mp18に組込んだ
MhAmA3−3 RFDNAを、制限酵素SacI、EcoR
Iで消化し、遊離する約1360bpのDNA断片を分離
精製した。そして、DNAブランティング キット(宝
酒造 コード番号6025)を用いて、突出末端を平滑
化した。これを、プラスミドpJM124をBamHI消
化して、BamHI挿入断片をはずし、平滑末端化したも
のに組込んだ。得られたプラスミドをpYhAmA101と命
名した。すなわちプラスミドpYhAmA101は、酵母アル
コールデヒドロゲナーゼプロモーターの下流に、ヒトア
ミノアシラーゼIの408アミノ酸残基のポリペプチド
をコードする。このプラスミドpYhAmA101を酵母BJ
2168〔MATa、ura3−5、leu2、trp
1、prc−407、prb1−1122、pep4−
3〕、あるいはDKD−5D−H〔MATa、leu2
−3、leu2−112、trp1、his3〕にアル
カリ金属処理法〔文献:ジャーナル オブ バクテリオ
ロジー、第153巻、第163頁(1983)〕によっ
て導入した。pYhAmA101を導入した酵母BJ2168
を Saccharomycescerevisiae BJ2168/pYhAmA1
01と表示し、工業技術院微生物工業技術研究所に寄託
した〔微工研菌寄第12003号(FERM P−12
003)〕。
Example 3 Construction of Plasmid Expressing Aminoacylase I Polypeptide A portion encoding aminoacylase I in the λpkAmA10 or λhAmA3 insert was cut out by the following procedure.
Expression plasmids (pYAmA101 and pYhAmA101, respectively) integrated into pJM124 which is an E. coli-yeast shuttle vector having a yeast alcohol dehydrogenase promoter (Reference: The EMBO Journal, Vol. 8, p. 2067 (1989)) Named). (3-1) Construction of porcine aminoacylase I-like polypeptide expression plasmid pYAmA101 MpkAmA 10-2 RFDNA having EcoRI insert of λpkAmA10 incorporated into M13mp18 was converted to restriction enzyme NcoI.
Approximately 1230 bp DNA digested and released with Eco47III
The fragments were separated and purified. And DNA branding
Kit (Blunting Kit) (Takara Shuzo code number 602)
Using 5), the NcoI overhang was blunted. this,
Plasmid pJM124 was digested with BamHI to remove the BamHI insert, which was then blunt-ended and integrated. The resulting plasmid was named pYAmA101. That is, the plasmid pYAmA101 encodes a polypeptide of 407 amino acid residues of porcine aminoacylase I downstream of the yeast alcohol dehydrogenase promoter. This plasmid pYAmA101 was transformed into yeast BJ2168 [MAT
a, ura3-52, leu2, trp1, prc-4
07, prb1-1122, pep4-3] or DKD-5DH (MATa, leu2-3, leu2
-112, trp1, his3] with an alkali metal treatment method [Literature: Journal of Bacteriology (Journ
al of Bacteriology) Volume 153, Page 163 (198
3)]. The yeast BJ2168 into which pYAmA101 was introduced was transformed into Saccharomyces cerevisiae BJ216.
8 / pYAmA101 and deposited with the Institute of Microbial Industry and Technology, National Institute of Advanced Industrial Science and Technology.
MP-12002)]. (3-2) Construction of Human Aminoacylase I-like Polypeptide Expression Plasmid pYhAmA101 MhAmA3-3 RFDNA having EcoRI inserted fragment of λhAmA3 incorporated into M13mp18 was subjected to restriction enzymes SacI and EcoR.
The DNA fragment of about 1360 bp released after digestion with I was separated and purified. Then, the protruding end was blunted using a DNA branding kit (Takara Shuzo Code No. 6025). This was incorporated into a plasmid pJM124 which had been digested with BamHI to remove the BamHI insert and blunt-ended. The resulting plasmid was named pYhAmA101. That is, plasmid pYhAmA101 encodes a polypeptide of 408 amino acid residues of human aminoacylase I downstream of the yeast alcohol dehydrogenase promoter. This plasmid pYhAmA101 was transformed into yeast BJ
2168 [MATa, ura3-5, leu2, trp
1, prc-407, prb1-1122, pep4-
3] or DKD-5DH (MATa, leu2
-3, leu2-112, trp1, his3] by an alkali metal treatment method [Literature: Journal of Bacteriology, vol. 153, p. 163 (1983)]. Yeast BJ2168 into which pYhAmA101 was introduced
To Saccharomycescerevisiae BJ2168 / pYhAmA1
01 and deposited with the Institute of Microbial Industry and Technology, National Institute of Advanced Industrial Science and Technology [Microtechnical Laboratory No. 12003 (FERM P-12)
003)].

【0010】実施例4 アミノアシラーゼIポリペプチ
ドの酵母における発現 実施例3で得られた Saccharomyces cerevisiae BJ2
168/pYAmA 101(FERM P−12002)あ
るいは Saccharomyces cerevisiae BJ2168/pYhA
mA101(FERM P−12003)を20μg/ml
のL−トリプトファン、30μg/mlのL−ロイシン、
20μg/mlのL−ヒスチジン、20μg/mlのウラシ
ルを含む5mlのSD培地〔0.67%バクトイーストニ
トロジェンベースw/oアミノ酸(ディフコ<Difco社
>)、2%デキストロース〕に接種し、30℃で二晩培
養を行い集菌した。上清を捨てて、菌体を2mlの水で洗
浄し、遠心した後、400μlの0.2M リン酸ナト
リウム緩衝液( pH 7.2)に懸濁した。これに等容の
ガラスビーズ(直径0.35〜0.5mm)を加え、氷冷
しながら激しくかくはんして菌体を破砕した。遠心して
ガラスビーズと細胞残渣を除き、上清を回収し酵母抽出
液とした。この様にして得た抽出液のアミノアシラーゼ
I活性をアセトアミドアクリル酸法で測定した〔文献:
アナリティカル バイオケミストリー ( Analytical Bi
ochemistry )、第165巻、第142頁(198
7)〕。以下詳細に説明する。まず反応用緩衝液(40
mMリン酸、40mM酢酸、40mMホウ酸、0.08mM塩化
コバルト、20mM硫酸アンモニウムを含み、水酸化ナト
リウムでpHを7.6に調整)を調製した。次に基質溶液
(1mmolの2−アセトアミドアクリル酸を1.2mlの1
N水酸化ナトリウム水溶液に溶解し、0.8mlの反応用
緩衝液を加えたもの)、NADH溶液(反応用緩衝液に
3.2mMとなるようにNADHを溶解したもの)、30
U/ml L−アラニンデヒドロゲナーゼ溶液を調製し
た。反応用緩衝液700μl、基質溶液100μl、N
ADH溶液50μl、L−アラニンデヒドロゲナーゼ溶
液50μlを混和し、37℃で約5分間予熱した後、1
00μlの上記抽出液を加え、37℃で30分間保温し
た。このとき、分光光度計でNADHによる340nmの
波長の吸収の減少を測定することにより、アミノアシラ
ーゼI活性を測定した。酵素活性の定量は、酵素力価既
知のブタ腎臓アミノアシラーゼI(シグマ社)を同様に
して測定したものと比較して行った。アミノアシラーゼ
I活性測定の結果、先に調製した各抽出液100μl
は、約1ユニットのアミノアシラーゼI活性を持ってい
た。なお、プラスミドを保持しない、酵母BJ2168
を同様に処理したが、アミノアシラーゼ活性はほとんど
認められなかった(0.03ユニット/100μl抽出
液以下)。
Example 4 Expression of aminoacylase I polypeptide in yeast Saccharomyces cerevisiae BJ2 obtained in Example 3
168 / pYAmA101 (FERM P-12002) or Saccharomyces cerevisiae BJ2168 / pYhA
20 μg / ml of mA101 (FERM P-12003)
L-tryptophan, 30 μg / ml L-leucine,
5 ml of SD medium containing 0.6 μg / ml L-histidine and 20 μg / ml uracil [0.67% bactoeast nitrogen-based w / o amino acid (Difco <Difco>), 2% dextrose) was inoculated into 30 ml. The cells were cultured at C for 2 nights and collected. The supernatant was discarded, and the cells were washed with 2 ml of water, centrifuged, and then suspended in 400 μl of 0.2 M sodium phosphate buffer (pH 7.2). Equal volumes of glass beads (0.35 to 0.5 mm in diameter) were added thereto, and the cells were disrupted by vigorous stirring under ice cooling. After centrifugation to remove the glass beads and cell debris, the supernatant was recovered and used as a yeast extract. The aminoacylase I activity of the extract thus obtained was measured by the acetamidoacrylic acid method [Reference:
Analytical Biochemistry
ochemistry), 165, 142 (198
7)]. This will be described in detail below. First, the reaction buffer (40
mM phosphoric acid, 40 mM acetic acid, 40 mM boric acid, 0.08 mM cobalt chloride, 20 mM ammonium sulfate, and the pH was adjusted to 7.6 with sodium hydroxide). Next, a substrate solution (1 mmol of 2-acetamidoacrylic acid was added to 1.2 ml of 1
Dissolved in an aqueous solution of N sodium hydroxide and added with 0.8 ml of a reaction buffer), an NADH solution (a solution of NADH dissolved to 3.2 mM in the reaction buffer), 30
A U / ml L-alanine dehydrogenase solution was prepared. Reaction buffer 700 μl, substrate solution 100 μl, N
After mixing 50 μl of the ADH solution and 50 μl of the L-alanine dehydrogenase solution and preheating at 37 ° C. for about 5 minutes,
The extract was added in an amount of 00 μl, and kept at 37 ° C. for 30 minutes. At this time, aminoacylase I activity was measured by measuring the decrease in absorption at a wavelength of 340 nm by NADH using a spectrophotometer. The quantification of the enzyme activity was performed in comparison with the measurement of porcine kidney aminoacylase I (Sigma) having a known enzyme titer in the same manner. As a result of the aminoacylase I activity measurement, 100 μl of each extract prepared above was used.
Had about 1 unit of aminoacylase I activity. In addition, yeast BJ2168 which does not carry a plasmid is used.
Was treated in the same manner, but almost no aminoacylase activity was observed (0.03 units / 100 μl extract or less).

【0011】[0011]

【発明の効果】以上の結果から、本発明によりブタ、ヒ
トアミノアシラーゼIのアミノ酸配列及びそのDNA配
列が明らかとなり、アミノアシラーゼIポリペプチドの
遺伝子工学的製造方法が提供された。また生体的でアミ
ノアシラーゼIの存在、あるいは発現の様子を調べるタ
ーゲットが提供されたことにより、このDNA配列を基
にプローブやプライマーを作成することや、アミノ酸配
列を基に抗体を作成することなどが可能となった。
From the above results, the present invention has revealed the amino acid sequence of porcine and human aminoacylase I and the DNA sequence thereof, and provided a method for producing aminoacylase I polypeptide by genetic engineering. In addition, by providing a target for examining the presence or expression of aminoacylase I in vivo, it is possible to prepare probes and primers based on this DNA sequence, and to prepare antibodies based on the amino acid sequence. Became possible.

【配列表】配列番号:1 配列の長さ:407 配列の型:アミノ酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列の特徴:1-407 ブタアミノアシラーゼI 配列: Met Ala Ser Lys Gly Arg Glu Gly Glu His Pro Ser Val Thr Leu 1 5 10 15 Phe Arg Gln Tyr Leu Arg Ile Arg Thr Val Gln Pro Glu Pro Asp 20 25 30 Tyr Gly Ala Ala Val Ala Phe Leu Glu Glu Arg Ala Arg Gln Leu 35 40 45 Gly Leu Gly Cys Gln Lys Val Glu Val Val Pro Gly His Val Val 50 55 60 Thr Val Leu Thr Trp Pro Gly Thr Asn Pro Thr Leu Ser Ser Ile 65 70 75 Leu Leu Asn Ser His Thr Asp Val Val Pro Val Phe Lys Glu His 80 85 90 Trp Ser His Asp Pro Phe Glu Gly Phe Lys Asp Ala Asp Gly Tyr 95 100 105 Ile Tyr Gly Arg Gly Ala Gln Asp Met Lys Cys Val Ser Ile Gln 110 115 120 Tyr Leu Glu Ala Val Arg Arg Leu Lys Val Glu Gly His His Phe 125 130 135 Pro Arg Thr Ile His Met Thr Phe Val Pro Asp Glu Glu Val Gly 140 145 150 Gly His Gln Gly Met Glu Leu Phe Val Lys Arg Pro Glu Phe Gln 155 160 165 Ala Leu Arg Ala Gly Phe Ala Leu Asp Glu Gly Leu Ala Ser Pro 170 175 180 Thr Asp Ala Phe Thr Val Phe Tyr Ser Glu Arg Ser Pro Trp Trp 185 190 195 Leu Arg Val Thr Ser Thr Gly Lys Pro Gly His Gly Ser Arg Phe 200 205 210 Ile Glu Asp Thr Ala Ala Glu Lys Leu His Lys Val Ile Asn Ser 215 220 225 Ile Leu Ala Phe Arg Glu Lys Glu Lys Gln Arg Leu Gln Ser Asn 230 235 240 Gln Leu Lys Pro Gly Ala Val Thr Ser Val Asn Leu Thr Met Leu 245 250 255 Glu Gly Gly Val Ala Tyr Asn Val Val Pro Ala Thr Met Ser Ala 260 265 270 Cys Phe Asp Phe Arg Val Ala Pro Asp Val Asp Leu Lys Ala Phe 275 280 285 Glu Glu Gln Leu Gln Ser Trp Cys Gln Ala Ala Gly Glu Gly Val 290 295 300 Thr Phe Glu Phe Val Gln Lys Trp Met Glu Thr Gln Val Thr Ser 305 310 315 Thr Asp Asp Ser Asp Pro Trp Trp Ala Ala Phe Ser Gly Val Phe 320 325 330 Lys Asp Met Lys Leu Ala Leu Glu Leu Glu Ile Cys Pro Ala Ser 335 340 345 Thr Asp Ala Arg Tyr Ile Arg Ala Ala Gly Val Pro Ala Leu Gly 350 355 360 Phe Ser Pro Met Asn His Thr Pro Val Leu Leu His Asp His Asp 365 370 375 Glu Arg Leu His Glu Ala Val Phe Leu Arg Gly Val Asp Ile Tyr 380 385 390 Thr Gln Leu Leu Ser Ala Leu Ala Ser Val Pro Ala Leu Pro Ser 395 400 405 Glu Ser 配列番号:2 配列の長さ:408 配列の型:アミノ酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:ペプチド 配列の特徴:1-408 ヒトアミノアシラーゼI 配列: Met Thr Ser Lys Gly Pro Glu Glu Glu His Pro Ser Val Thr Leu 1 5 10 15 Phe Arg Gln Tyr Leu Arg Ile Arg Thr Val Gln Pro Lys Pro Asp 20 25 30 Tyr Gly Ala Ala Val Ala Phe Phe Glu Glu Thr Ala Arg Gln Leu 35 40 45 Gly Leu Gly Cys Gln Lys Val Glu Val Ala Pro Gly Tyr Val Val 50 55 60 Thr Val Leu Thr Trp Pro Gly Thr Asn Pro Thr Leu Ser Ser Ile 65 70 75 Leu Leu Asn Ser His Thr Asp Val Val Pro Val Phe Lys Glu His 80 85 90 Trp Ser His Asp Pro Phe Glu Ala Phe Lys Asp Ser Glu Gly Tyr 95 100 105 Ile Tyr Ala Arg Gly Ala Gln Asp Met Lys Cys Val Ser Ile Gln 110 115 120 Tyr Leu Glu Ala Val Arg Arg Leu Lys Val Glu Gly His Arg Phe 125 130 135 Pro Arg Thr Ile His Met Thr Phe Val Pro Asp Glu Glu Val Gly 140 145 150 Gly His Gln Gly Met Glu Leu Phe Val Gln Arg Pro Glu Phe His 155 160 165 Ala Leu Arg Ala Gly Phe Ala Leu Asp Glu Gly Ile Ala Asn Pro 170 175 180 Thr Asp Ala Phe Thr Val Phe Tyr Ser Glu Arg Ser Pro Trp Trp 185 190 195 Val Arg Val Thr Ser Thr Gly Arg Pro Gly His Ala Ser Arg Phe 200 205 210 Met Glu Asp Thr Ala Ala Glu Lys Leu His Lys Val Val Asn Ser 215 220 225 Ile Leu Ala Phe Arg Glu Lys Glu Trp Gln Arg Leu Gln Ser Asn 230 235 240 Pro His Leu Lys Glu Gly Ser Val Thr Ser Val Asn Leu Thr Lys 245 250 255 Leu Glu Gly Gly Val Ala Tyr Asn Val Ile Pro Ala Thr Met Ser 260 265 270 Ala Ser Phe Asp Phe Arg Val Ala Pro Asp Val Asp Phe Lys Ala 275 280 285 Phe Glu Glu Gln Leu Gln Ser Trp Cys Gln Ala Ala Gly Glu Gly 290 295 300 Val Thr Leu Glu Phe Ala Gln Lys Trp Met His Pro Gln Val Thr 305 310 315 Pro Thr Asp Asp Ser Asn Pro Trp Trp Ala Ala Phe Ser Arg Val 320 325 330 Cys Lys Asp Met Asn Leu Thr Leu Glu Pro Glu Ile Met Pro Ala 335 340 345 Ala Thr Asp Asn Arg Tyr Ile Arg Ala Val Gly Val Pro Ala Leu 350 355 360 Gly Phe Ser Pro Met Asn Arg Thr Pro Val Leu Leu His Asp His 365 370 375 Asp Glu Arg Leu His Glu Ala Val Phe Leu Arg Gly Val Asp Ile 380 385 390 Tyr Thr Arg Leu Leu Pro Ala Leu Ala Ser Val Pro Ala Leu Pro 395 400 405 Ser Asp Ser 配列番号:3 配列の長さ:10 配列の型:核酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) 配列の特徴:1-10 linker 配列: CCGAATTCGG 10 配列番号:4 配列の長さ:17 配列の型:核酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:他の核酸(合成DNA) ハイポセティカル配列:NO アンチセンス:NO 配列の特徴:1-17 probe 配列: TGGATGGARA CNCARGT 17 配列番号:5 配列の長さ:6 配列の型:アミノ酸 鎖の数:1本鎖 トポロジー:直鎖状 配列の種類:ペプチド フラグメント型:中間部フラグメント(ブタアミノアシ
ラーゼI) 配列番号:6 配列の長さ:1221 配列の型:核酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類: cDNA to mRNA ハイポセティカル配列:NO アンチセンス:NO 配列の特徴:1-1221 CDS (ブタアミノアシラーゼ
I) 配列: ATG GCC AGC AAG GGT CGC GAG GGC GAG CAC CCA TCC GTG ACG CTC 45 Met Ala Ser Lys Gly Arg Glu Gly Glu His Pro Ser Val Thr Leu 1 5 10 15 TTC CGT CAG TAC CTG CGC ATC CGC ACC GTC CAG CCT GAG CCC GAC 90 Phe Arg Gln Tyr Leu Arg Ile Arg Thr Val Gln Pro Glu Pro Asp 20 25 30 TAC GGG GCT GCT GTG GCC TTC CTT GAG GAG AGA GCC CGC CAG CTG 135 Tyr Gly Ala Ala Val Ala Phe Leu Glu Glu Arg Ala Arg Gln Leu 35 40 45 GGC CTG GGC TGT CAG AAA GTG GAG GTG GTA CCT GGC CAT GTG GTG 180 Gly Leu Gly Cys Gln Lys Val Glu Val Val Pro Gly His Val Val 50 55 60 ACC GTG CTG ACC TGG CCG GGC ACC AAC CCC ACA CTC TCC TCC ATC 225 Thr Val Leu Thr Trp Pro Gly Thr Asn Pro Thr Leu Ser Ser Ile 65 70 75 TTG CTC AAC TCC CAC ACA GAT GTG GTG CCT GTC TTC AAG GAG CAT 270 Leu Leu Asn Ser His Thr Asp Val Val Pro Val Phe Lys Glu His 80 85 90 TGG AGT CAT GAC CCC TTT GAG GGC TTC AAG GAT GCA GAT GGC TAC 315 Trp Ser His Asp Pro Phe Glu Gly Phe Lys Asp Ala Asp Gly Tyr 95 100 105 ATC TAT GGC AGG GGC GCC CAG GAC ATG AAG TGC GTC AGC ATC CAG 360 Ile Tyr Gly Arg Gly Ala Gln Asp Met Lys Cys Val Ser Ile Gln 110 115 120 TAC CTG GAG GCT GTG AGG AGG CTG AAG GTT GAG GGC CAC CAT TTC 405 Tyr Leu Glu Ala Val Arg Arg Leu Lys Val Glu Gly His His Phe 125 130 135 CCC AGA ACC ATC CAC ATG ACC TTT GTG CCA GAT GAG GAG GTT GGA 450 Pro Arg Thr Ile His Met Thr Phe Val Pro Asp Glu Glu Val Gly 140 145 150 GGT CAC CAA GGC ATG GAG CTC TTT GTG AAG CGG CCC GAG TTC CAG 495 Gly His Gln Gly Met Glu Leu Phe Val Lys Arg Pro Glu Phe Gln 155 160 165 GCC CTG AGG GCT GGC TTT GCC CTG GAT GAA GGC CTA GCC AGC CCC 540 Ala Leu Arg Ala Gly Phe Ala Leu Asp Glu Gly Leu Ala Ser Pro 170 175 180 ACT GAC GCC TTC ACT GTC TTT TAC AGT GAG CGG AGC CCC TGG TGG 585 Thr Asp Ala Phe Thr Val Phe Tyr Ser Glu Arg Ser Pro Trp Trp 185 190 195 CTA AGG GTC ACG AGC ACT GGG AAG CCA GGG CAT GGC TCG CGC TTC 630 Leu Arg Val Thr Ser Thr Gly Lys Pro Gly His Gly Ser Arg Phe 200 205 210 ATT GAG GAC ACA GCA GCA GAG AAG CTG CAC AAG GTC ATC AAC TCT 675 Ile Glu Asp Thr Ala Ala Glu Lys Leu His Lys Val Ile Asn Ser 215 220 225 ATC CTG GCT TTT CGG GAG AAG GAG AAG CAG AGG CTG CAG TCA AAC 720 Ile Leu Ala Phe Arg Glu Lys Glu Lys Gln Arg Leu Gln Ser Asn 230 235 240 CAG CTG AAG CCG GGG GCT GTG ACC TCC GTG AAC CTG ACT ATG CTA 765 Gln Leu Lys Pro Gly Ala Val Thr Ser Val Asn Leu Thr Met Leu 245 250 255 GAG GGT GGC GTG GCC TAT AAC GTC GTT CCT GCC ACC ATG AGT GCC 810 Glu Gly Gly Val Ala Tyr Asn Val Val Pro Ala Thr Met Ser Ala 260 265 270 TGC TTT GAC TTC CGC GTA GCA CCG GAT GTG GAC CTG AAG GCT TTC 855 Cys Phe Asp Phe Arg Val Ala Pro Asp Val Asp Leu Lys Ala Phe 275 280 285 GAG GAG CAG CTG CAG AGT TGG TGC CAG GCA GCT GGC GAG GGG GTC 900 Glu Glu Gln Leu Gln Ser Trp Cys Gln Ala Ala Gly Glu Gly Val 290 295 300 ACC TTT GAG TTT GTT CAG AAG TGG ATG GAG ACG CAA GTG ACA TCT 945 Thr Phe Glu Phe Val Gln Lys Trp Met Glu Thr Gln Val Thr Ser 305 310 315 ACT GAT GAC TCA GAC CCC TGG TGG GCA GCA TTT AGT GGG GTC TTC 990 Thr Asp Asp Ser Asp Pro Trp Trp Ala Ala Phe Ser Gly Val Phe 320 325 330 AAG GAT ATG AAG CTT GCC CTA GAG CTA GAG ATC TGC CCT GCT TCC 1035 Lys Asp Met Lys Leu Ala Leu Glu Leu Glu Ile Cys Pro Ala Ser 335 340 345 ACT GAC GCC CGC TAT ATT CGT GCG GCG GGG GTT CCG GCT CTG GGC 1080 Thr Asp Ala Arg Tyr Ile Arg Ala Ala Gly Val Pro Ala Leu Gly 350 355 360 TTC TCA CCC ATG AAC CAC ACA CCG GTG CTG CTC CAT GAC CAT GAT 1125 Phe Ser Pro Met Asn His Thr Pro Val Leu Leu His Asp His Asp 365 370 375 GAG CGG CTG CAT GAG GCC GTG TTT CTC CGT GGG GTT GAC ATA TAC 1170 Glu Arg Leu His Glu Ala Val Phe Leu Arg Gly Val Asp Ile Tyr 380 385 390 ACT CAG CTG CTG TCT GCC TTG GCC AGC GTG CCC GCA CTG CCC AGT 1215 Thr Gln Leu Leu Ser Ala Leu Ala Ser Val Pro Ala Leu Pro Ser 395 400 405 GAA AGC 1221 Glu Ser 配列番号:7 配列の長さ:1224 配列の型:核酸 鎖の数:2本鎖 トポロジー:直鎖状 配列の種類: cDNA to mRNA ハイポセティカル配列:NO アンチセンス:NO 配列の特徴:1-1224 CDS (ヒトアミノアシラーゼI) 配列: ATG ACC AGC AAG GGT CCC GAG GAG GAG CAC CCA TCG GTG ACG CTC 45 Met Thr Ser Lys Gly Pro Glu Glu Glu His Pro Ser Val Thr Leu 1 5 10 15 TTC CGC CAG TAC CTG CGT ATC CGC ACT GTC CAG CCC AAG CCT GAC 90 Phe Arg Gln Tyr Leu Arg Ile Arg Thr Val Gln Pro Lys Pro Asp 20 25 30 TAT GGA GCT GCT GTG GCT TTC TTT GAG GAG ACA GCC CGC CAG CTG 135 Tyr Gly Ala Ala Val Ala Phe Phe Glu Glu Thr Ala Arg Gln Leu 35 40 45 GGC CTG GGC TGT CAG AAA GTA GAG GTG GCA CCT GGC TAT GTG GTG 180 Gly Leu Gly Cys Gln Lys Val Glu Val Ala Pro Gly Tyr Val Val 50 55 60 ACC GTG TTG ACC TGG CCA GGC ACC AAC CCT ACA CTC TCC TCC ATC 225 Thr Val Leu Thr Trp Pro Gly Thr Asn Pro Thr Leu Ser Ser Ile 65 70 75 TTG CTC AAC TCC CAC ACG GAT GTG GTG CCT GTC TTC AAG GAA CAT 270 Leu Leu Asn Ser His Thr Asp Val Val Pro Val Phe Lys Glu His 80 85 90 TGG AGT CAC GAC CCC TTT GAG GCC TTC AAG GAT TCT GAG GGC TAC 315 Trp Ser His Asp Pro Phe Glu Ala Phe Lys Asp Ser Glu Gly Tyr 95 100 105 ATC TAT GCC AGG GGT GCC CAG GAC ATG AAG TGC GTC AGC ATC CAG 360 Ile Tyr Ala Arg Gly Ala Gln Asp Met Lys Cys Val Ser Ile Gln 110 115 120 TAC CTG GAA GCT GTG AGG AGG CTG AAG GTG GAG GGC CAC CGG TTC 405 Tyr Leu Glu Ala Val Arg Arg Leu Lys Val Glu Gly His Arg Phe 125 130 135 CCC AGA ACC ATC CAC ATG ACC TTT GTG CCT GAT GAG GAG GTT GGG 450 Pro Arg Thr Ile His Met Thr Phe Val Pro Asp Glu Glu Val Gly 140 145 150 GGT CAC CAA GGC ATG GAG CTG TTC GTG CAG CGG CCT GAG TTC CAC 495 Gly His Gln Gly Met Glu Leu Phe Val Gln Arg Pro Glu Phe His 155 160 165 GCC CTG AGG GCA GGC TTT GCC CTG GAT GAG GGC ATA GCC AAT CCC 540 Ala Leu Arg Ala Gly Phe Ala Leu Asp Glu Gly Ile Ala Asn Pro 170 175 180 ACT GAT GCC TTC ACT GTC TTT TAT AGT GAG CGG AGT CCC TGG TGG 585 Thr Asp Ala Phe Thr Val Phe Tyr Ser Glu Arg Ser Pro Trp Trp 185 190 195 GTG CGG GTT ACC AGC ACT GGG AGG CCA GGC CAT GCC TCA CGC TTC 630 Val Arg Val Thr Ser Thr Gly Arg Pro Gly His Ala Ser Arg Phe 200 205 210 ATG GAG GAC ACA GCA GCA GAG AAG CTG CAC AAG GTT GTA AAC TCC 675 Met Glu Asp Thr Ala Ala Glu Lys Leu His Lys Val Val Asn Ser 215 220 225 ATC CTG GCA TTC CGG GAG AAG GAA TGG CAG AGG CTG CAG TCA AAC 720 Ile Leu Ala Phe Arg Glu Lys Glu Trp Gln Arg Leu Gln Ser Asn 230 235 240 CCC CAC CTG AAA GAG GGG TCC GTG ACC TCC GTG AAC CTG ACT AAG 765 Pro His Leu Lys Glu Gly Ser Val Thr Ser Val Asn Leu Thr Lys 245 250 255 CTA GAG GGT GGC GTG GCC TAT AAC GTG ATA CCT GCC ACC ATG AGC 810 Leu Glu Gly Gly Val Ala Tyr Asn Val Ile Pro Ala Thr Met Ser 260 265 270 GCC AGC TTT GAC TTC CGT GTG GCA CCG GAT GTG GAC TTC AAG GCT 855 Ala Ser Phe Asp Phe Arg Val Ala Pro Asp Val Asp Phe Lys Ala 275 280 285 TTT GAG GAG CAG CTG CAG AGC TGG TGC CAG GCA GCT GGC GAG GGG 900 Phe Glu Glu Gln Leu Gln Ser Trp Cys Gln Ala Ala Gly Glu Gly 290 295 300 GTC ACC CTA GAG TTT GCT CAG AAG TGG ATG CAC CCC CAA GTG ACA 945 Val Thr Leu Glu Phe Ala Gln Lys Trp Met His Pro Gln Val Thr 305 310 315 CCT ACT GAT GAC TCA AAC CCT TGG TGG GCA GCT TTT AGC CGG GTC 990 Pro Thr Asp Asp Ser Asn Pro Trp Trp Ala Ala Phe Ser Arg Val 320 325 330 TGC AAG GAT ATG AAC CTC ACT CTG GAG CCT GAG ATC ATG CCT GCT 1035 Cys Lys Asp Met Asn Leu Thr Leu Glu Pro Glu Ile Met Pro Ala 335 340 345 GCC ACT GAC AAC CGC TAT ATC CGC GCG GTG GGG GTC CCA GCT CTA 1080 Ala Thr Asp Asn Arg Tyr Ile Arg Ala Val Gly Val Pro Ala Leu 350 355 360 GGC TTC TCA CCC ATG AAC CGC ACA CCT GTG CTG CTG CAC GAC CAC 1125 Gly Phe Ser Pro Met Asn Arg Thr Pro Val Leu Leu His Asp His 365 370 375 GAT GAA CGG CTG CAT GAG GCT GTG TTC CTC CGT GGG GTG GAC ATA 1170 Asp Glu Arg Leu His Glu Ala Val Phe Leu Arg Gly Val Asp Ile 380 385 390 TAT ACA CGC CTG CTG CCT GCC CTT GCC AGT GTG CCT GCC CTG CCC 1215 Tyr Thr Arg Leu Leu Pro Ala Leu Ala Ser Val Pro Ala Leu Pro 395 400 405 AGT GAC AGC 1224 Ser Asp Ser
[Sequence list] SEQ ID NO: 1 Sequence length: 407 Sequence type: Number of amino acid chains: Single chain Topology: Linear Sequence type: Peptide Sequence features: 1-407 Porcine aminoacylase I Sequence: Met Ala Ser Lys Gly Arg Glu Gly Glu His Pro Ser Val Thr Leu 1 5 10 15 Phe Arg Gln Tyr Leu Arg Ile Arg Thr Val Gln Pro Glu Pro Asp 20 25 30 Tyr Gly Ala Ala Val Ala Phe Leu Glu Glu Arg Ala Arg Gln Leu 35 40 45 Gly Leu Gly Cys Gln Lys Val Glu Val Val Pro Gly His Val Val 50 55 60 Thr Val Leu Thr Trp Pro Gly Thr Asn Pro Thr Leu Ser Ser Ile 65 70 75 Leu Leu Asn Ser His Thr Asp Val Val Pro Val Phe Lys Glu His 80 85 90 Trp Ser His Asp Pro Phe Glu Gly Phe Lys Asp Ala Asp Gly Tyr 95 100 105 Ile Tyr Gly Arg Gly Ala Gln Asp Met Lys Cys Val Ser Ile Gln 110 115 120 Tyr Leu Glu Ala Val Arg Arg Leu Lys Val Glu Gly His His Phe 125 130 135 Pro Arg Thr Ile His Met Thr Phe Val Pro Asp Glu Glu Val Gly 140 145 150 Gly His Gln Gly Met Glu Leu Phe Val Lys Arg Pro Glu Phe Gln 155 160 165 Ala Leu Arg Ala Gly Phe Ala Leu Asp Glu Gly Leu Ala Ser Pro 170 175 180 Thr Asp Ala Phe Thr Val Phe Tyr Ser Glu Arg Ser Pro Trp Trp 185 190 195 Leu Arg Val Thr Ser Thr Gly Lys Pro Gly His Gly Ser Arg Phe 200 205 210 Ile Glu Asp Thr Ala Ala Glu Lys Leu His Lys Val Ile Asn Ser 215 220 225 Ile Leu Ala Phe Arg Glu Lys Glu Lys Gln Arg Leu Gln Ser Asn 230 235 240 Gln Leu Lys Pro Gly Ala Val Thr Ser Val Asn Leu Thr Met Leu 245 250 255 Glu Gly Gly Val Ala Tyr Asn Val Val Pro Ala Thr Met Ser Ala 260 265 270 Cys Phe Asp Phe Arg Val Ala Pro Asp Val Asp Leu Lys Ala Phe 275 280 285 Glu Glu Gln Leu Gln Ser Trp Cys Gln Ala Ala Gly Glu Gly Val 290 295 300 Thr Phe Glu Phe Val Gln Lys Trp Met Glu Thr Gln Val Thr Ser 305 310 315 Thr Asp Asp Ser Asp Pro Trp Trp Ala Ala Phe Ser Gly Val Phe 320 325 330 Lys Asp Met Lys Leu Ala Leu Glu Leu Glu Ile Cys Pro Ala Ser 335 340 345 Thr Asp Ala Arg Tyr Ile Arg Ala Ala Gly Val Pro Ala Leu Gly 350 355 360 Phe Ser Pro Met Asn His Thr Pro Val Leu Leu His Asp His Asp 365 370 375 Glu Arg Leu His Glu Ala Val Phe Leu Arg Gly Val Asp Ile Tyr 380 385 390 Thr Gln Leu Leu Ser Ala Leu Ala Ser Val Pro Ala Leu Pro Ser 395 400 405 Glu Ser SEQ ID NO: 2 Sequence length: 2 408 Sequence type: amino acid Number of chains: 1 chain Topology: linear Sequence type: peptide Sequence characteristics: 1-408 Human aminoacylase I Sequence: Met Thr Ser Lys Gly Pro Glu Glu Glu His Pro Ser Val Thr Leu 1 5 10 15 Phe Arg Gln Tyr Leu Arg Ile Arg Thr Val Gln Pro Lys Pro Asp 20 25 30 Tyr Gly Ala Ala Val Ala Phe Phe Glu Glu Thr Ala Arg Gln Leu 35 40 45 Gly Leu Gly Cys Gln Lys Val Glu Val Ala Pro Gly Tyr Val Val 50 55 60 Thr Val Leu Thr Trp Pro Gly Thr Asn Pro Thr Leu Ser Ser Ile 65 70 75 Leu Leu Asn Ser His Thr Asp Val Val Pro Val Phe Lys Glu His 80 85 90 Trp Ser His Asp Pro Phe Glu Ala Phe Lys Asp Ser Glu Gly Tyr 95 100 105 Ile Tyr Ala Arg Gly Ala Gln Asp Met Lys Cys Val Ser Ile Gln 110 115 120 Tyr Leu Glu Ala Val Arg Arg Leu Lys Val Glu Gly His Arg Phe 1 25 130 135 Pro Arg Thr Ile His Met Thr Phe Val Pro Asp Glu Glu Val Gly 140 145 150 Gly His Gln Gly Met Glu Leu Phe Val Gln Arg Pro Glu Phe His 155 160 165 Ala Leu Arg Ala Gly Phe Ala Leu Asp Glu Gly Ile Ala Asn Pro 170 175 180 Thr Asp Ala Phe Thr Val Phe Tyr Ser Glu Arg Ser Pro Trp Trp 185 190 195 Val Arg Val Thr Ser Thr Gly Arg Pro Gly His Ala Ser Arg Phe 200 205 210 Met Glu Asp Thr Ala Ala Glu Lys Leu His Lys Val Val Asn Ser 215 220 225 Ile Leu Ala Phe Arg Glu Lys Glu Trp Gln Arg Leu Gln Ser Asn 230 235 240 Pro His Leu Lys Glu Gly Ser Val Thr Ser Val Asn Leu Thr Lys 245 250 255 Leu Glu Gly Gly Val Ala Tyr Asn Val Ile Pro Ala Thr Met Ser 260 265 270 Ala Ser Phe Asp Phe Arg Val Ala Pro Asp Val Asp Phe Lys Ala 275 280 285 Phe Glu Glu Glu Gln Leu Gln Ser Trp Cys Gln Ala Ala Gly Glu Gly 290 295 300 Val Thr Leu Glu Phe Ala Gln Lys Trp Met His Pro Gln Val Thr 305 310 315 Pro Thr Asp Asp Ser Asn Pro Trp Trp Ala Ala Phe Ser Arg Val 320 325 330 Cys Lys Asp Met Asn Leu Thr Leu Glu Pro Glu Ile Met P ro Ala 335 340 345 Ala Thr Asp Asn Arg Tyr Ile Arg Ala Val Gly Val Pro Ala Leu 350 355 360 Gly Phe Ser Pro Met Asn Arg Thr Pro Val Leu Leu His Asp His 365 370 375 Asp Glu Arg Leu His Glu Ala Val Phe Leu Arg Gly Val Asp Ile 380 385 390 Tyr Thr Arg Leu Leu Pro Ala Leu Ala Ser Val Pro Ala Leu Pro 395 400 405 Ser Asp Ser SEQ ID NO: 3 Sequence length: 10 Sequence type: Nucleic acid Number of strands: 2 Main strand Topology: Linear Sequence type: Other nucleic acids (synthetic DNA) Sequence characteristics: 1-10 linker Sequence: CCGAATTCGG 10 SEQ ID NO: 4 Sequence length: 17 Sequence type: Nucleic acid Number of strands: 1 Main strand Topology: Linear Sequence type: Other nucleic acids (synthetic DNA) Hypothetical sequence: NO Antisense: NO Sequence characteristics: 1-17 probe sequence: TGGATGGARA CNCARGT 17 SEQ ID NO: 5 Sequence length: 6 Sequence type: amino acid Number of chains: 1 chain Topology: linear Sequence type: peptide Fragment type: middle fragment Fragment (porcine aminoacylase I) SEQ ID NO: 6 Sequence length: 1221 Sequence type: nucleic acid Number of strands: double-stranded Topology: linear Sequence type: cDNA to mRNA hypothetical sequence: NO Antisense: NO Sequence characteristics: 1- 1221 CDS (porcine aminoacylase I) sequence: ATG GCC AGC AAG GGT CGC GAG GGC GAG CAC CCA TCC GTG ACG CTC 45 Met Ala Ser Lys Gly Arg Glu Gly Glu His Pro Ser Val Thr Leu 15 10 15 TTC CGT CAG TAC CTG CGC ATC CGC ACC GTC CAG CCT GAG CCC GAC 90 Phe Arg Gln Tyr Leu Arg Ile Arg Thr Val Gln Pro Glu Pro Asp 20 25 30 TAC GGG GCT GCT GTG GCC TTC CTT GAG GAG AGA GCC CGC CAG CTG 135 Tyr Gly Ala Ala Val Ala Phe Leu Glu Glu Arg Ala Arg Gln Leu 35 40 45 GGC CTG GGC TGT CAG AAA GTG GAG GTG GTA CCT GGC CAT GTG GTG 180 Gly Leu Gly Cys Gln Lys Val Glu Val Val Gly His Val Val 50 55 60 ACC GTG CTG ACC TGG CCG GGC ACC AAC CCC ACA CTC TCC TCC ATC 225 Thr Val Leu Thr Trp Pro Gly Thr Asn Pro Thr Leu Ser Ser Ile 65 70 75 TTG CTC AAC TCC CAC ACA GAT GTG GTG CCT GTC TTC AAG GAG CAT 270 Leu Leu Asn Ser His Thr Asp Val Val Pro Val Phe Lys Glu His 80 85 90 TGG AGT CAT GAC CCC TTT GAG GGC TTC AAG GAT GCA GAT GGC TAC 315 Trp Ser His Asp Pro Phe Glu Gly Phe Lys Asp Ala Asp Gly Tyr 95 100 105 ATC TAT GGC AGG GGC GCC CAG GAC ATG AAG TGC GTC AGC ATC CAG 360 Ile Tyr Gly Arg Gly Ala Gln Asp Met Lys Cys Val Ser Ile Gln 110 115 120 TAC CTG GAG GCT GTG AGG AGG CTG AAG GTT GAG GGC CAC CAT TTC 405 Tyr Leu Glu Ala Val Arg Arg Leu Lys Val Glu Gly His His Phe 125 130 135 CCC AGA ACC ATC CAC ATG ACC TTT GTG CCA GAT GAG GAG GTT GGA 450 Pro Arg Thr Ile His Met Thr Phe Val Pro Asp Glu Glu Val Gly 140 145 150 GGT CAC CAA GGC ATG GAG CTC TTT GTG AAG CGG CCC GAG TTC CAG 495 Gly His Gln Gly Met Glu Leu Phe Val Lys Arg Pro Glu Phe Gln 155 160 165 GCC CTG AGG GCT GGC TTT GCC CTG GAT GAA GGC CTA GCC AGC CCC 540 Ala Leu Arg Ala Gly Phe Ala Leu Asp Glu Gly Leu Ala Ser Pro 170 175 180 ACT GAC GCC TTC ACT GTC TTT TAC AGT GAG CGG AGC CCC TGG TGG 585 Thr Asp Ala Phe Thr Val Phe Tyr Ser Glu Arg Ser Pro Trp Trp 185 190 195 CTA AGG GTC ACG AGC ACT GGG AAG CCA GGG CAT GGC TCG CGC TTC 630 Leu Arg Val Thr Ser Thr Gly Lys Pro Gly His Gly Ser Arg Phe 200 205 210 ATT GAG GAC ACA GCA GCA GAG AAG CTG CAC AAG GTC ATC AAC TCT 675 Ile Glu Asp Thr Ala Ala Glu Lys Leu His Lys Val Ile Asn Ser 215 220 225 ATC CTG GCT TTT CGG GAG AAG GAG AAG CAG AGG CTG CAG TCA AAC 720 Ile Leu Ala Phe Arg Glu Lys Glu Lys Gln Arg Leu Gln Ser Asn 230 235 240 CAG CTG AAG CCG GGG GCT GTG ACC TCC GTG AAC CTG ACT ATG CTA 765 Gln Leu Lys Pro Gly Ala Val Thr Ser Val Asn Leu Thr Met Leu 245 250 255 GAG GGT GGC GTG GCC TAT AAC GTC GTT CCT GCC ACC ATG AGT GCC 810 Glu Gly Gly Val Ala Tyr Asn Val Val Pro Ala Thr Met Ser Ala 260 265 270 TGC TTT GAC TTC CGC GTA GCA CCG GAT GTG GAC CTG AAG GCT TTC 855 Cys Phe Asp Phe Arg Val Ala Pro Asp Val Asp Leu Lys Ala Phe 275 280 285 GAG GAG CAG CTG CAG AGT TGG TGC CAG GCA GCT GGC GAG GGG GTC 900 Glu Glu Gln Leu Gln Ser Trp Cys Gln Ala Ala Gly Glu Gly Val 290 295 300 ACC TTT GAG TTT GTT CAG AAG TGG ATG GAG ACG CAA GTG ACA TCT 945 Thr Phe Glu Phe Val Gln Lys Trp Met Glu Thr Gln Val Thr Ser 305 310 315 ACT GAT GAC TCA GAC CCC TGG TGG GCA GCA TTT AGT GGG GTC TTC 990 Thr Asp Asp Ser Asp Pro Trp Trp Ala Ala Phe Ser Gly Val Phe 320 325 330 AAG GAT ATG AAG CTT GCC CTA GAG CTA GAG ATC TGC CCT GCT TCC 1035 Lys Asp Met Lys Leu Ala Leu Glu Leu Glu Ile Cys Pro Ala Ser 335 340 345 ACT GAC GCC CGC TAT ATT CGT GCG GCG GGG GTT CCG GCT CTG GGC 1080 Thr Asp Ala Arg Tyr Ile Arg Ala Ala Gly Val Pro Ala Leu Gly 350 355 360 TTC TCA CCC ATG AAC CAC ACA CCG GTG CTG CTC CAT GAC CAT GAT 1125 Phe Ser Pro Met Asn His Thr Pro Val Leu Leu His Asp His Asp 365 370 375 GAG CGG CTG CAT GAG GCC GTG TTT CTC CGT GGG GTT GAC ATA TAC 1170 Glu Arg Leu His Glu Ala Val Phe Leu Arg Gly Val Asp Ile Tyr 380 385 390 ACT CAG CTG CTG TCT GCC TTG GCC AGC GTG CCC GCA CTG CCC AGT 1215 Thr Gln Leu Leu Ser Ala Leu Ala Ser Val Pro Ala Leu Pro Ser 395 400 405 GAA AGC 1221 Glu Ser SEQ ID NO: 7 Sequence length: 1224 Sequence type: Nucleic acid Number of strands: Double strand Topology: Linear Sequence type: cDNA to mRNA Hypothetical sequence: NO Antisense: NO Sequence characteristics: 1-1224 CDS (human aminoacylase I) sequence : ATG ACC AGC AAG GGT CCC GAG GAG GAG CAC CCA TCG GTG ACG CTC 45 Met Thr Ser Lys Gly Pro Glu Glu Glu His Pro Ser Val Thr Leu 1 5 10 15 TTC CGC CAG TAC CTG CGT ATC CGC ACT GTC CAG CCC AAG CCT GAC 90 Phe Arg Gln Tyr Leu Arg Ile Arg Thr Val Gln Pro Lys Pro Asp 20 25 30 TAT GGA GCT GCT GTG GCT TTC TTT GAG GAG ACA GCC CGC CAG CTG 135 Tyr Gly Ala Ala Val Ala Phe Phe Glu Glu Thr Ala Arg Gln Leu 35 40 45 GGC CTG GGC TGT CAG AAA GTA GAG GTG GCA CCT GGC TAT GTG GTG 180 Gly Leu Gly Cys Gln Lys Val Glu Val Ala Pro Gly Tyr Val Val 50 55 60 ACC GTG TTG ACC TGG CCA GGC ACC AAC CCT ACA CTC TCC TCC ATC 225 Thr Val Leu Thr Trp Pro Gly Thr Asn Pro Thr Leu Ser Ser Ile 65 70 75 TTG CTC AAC TCC CAC ACG GAT GTG GTG CCT GTC TTC AAG GAA CAT 270 Leu Leu Asn Ser His Thr Asp Val Val Pro Val Phe Lys Glu His 80 85 90 TGG AGT CAC GAC CCC TTT GAG GCC TTC AAG GAT TCT GAG GGC TAC 315 Trp Ser His Asp Pro Phe Glu Ala Phe Lys Asp Ser Glu Gly Tyr 95 100 105 ATC TAT GCC AGG GGT GCC CAG GAC ATG AAG TGC GTC AGC ATC CAG 360 Ile Tyr Ala Arg Gly Ala Gln Asp Met Lys Cys Val Ser Ile Gln 110 115 120 TAC CTG GAA GCT GTG AGG AGG CTG AAG GTG GAG GGC CAC CGG TTC 405 Tyr Leu Glu Ala Val Arg Arg Leu Lys Val Glu Gly His Arg Phe 125 130 135 CCC AGA ACC ATC CAC ATG ACC TTT GTG CCT GAT GAG GAG GTT GGG 450 Pro Arg Thr Ile His Met Thr Phe Val Pro Asp Glu Glu Val Gly 140 145 150 GGT CAC CAA GGC ATG GAG CTG TTC GTG CAG CGG CCT GAG TTC CAC 495 Gly His Gln Gly Met Glu Leu Phe Val Gln Arg Pro Glu Phe His 155 160 165 GCC CTG AGG GCA GGC TTT GCC CTG GAT GAG GGC ATA GCC AAT CCC 540 Ala Leu Arg Ala Gly Phe Ala Leu Asp Glu Gly Ile Ala Asn Pro 170 175 180 ACT GAT GCC TTC ACT GTC TTT TAT AGT GAG CGG AGT CCC TGG TGG 585 Thr Asp Ala Phe Thr Val Phe Tyr Ser Glu Arg Ser Pro Trp Trp 185 190 195 GTG CGG GTT ACC AGC ACT GGG AGG CCA GGC CAT GCC TCA CGC TTC 630 Val Arg Val Thr Ser Thr Gly Arg Pro Gly His Ala Ser Arg Phe 200 205 210 ATG GAG GAC ACA GCA GCA GAG AAG CTG CAC AAG GTT GTA AAC TCC 675 Met Glu Asp Thr Ala Ala Glu Lys Leu His Lys Val Val Asn Ser 215 220 225 ATC CTG GCA TTC CGG GAG AAG GAA TGG CAG AGG CTG CAG TCA AAC 720 Ile Leu Ala Phe Arg Glu Lys Glu Trp Gln Arg Leu Gln Ser Asn 230 235 240 CCC CAC CTG AAA GAG GGG TCC GTG ACC TCC GTG AAC CTG ACT AAG 765 Pro His Leu Lys Glu Gly Ser Val Thr Ser Val Asn Leu Thr Lys 245 250 255 CTA GAG GGT GGC GTG GCC TAT AAC GTG ATA CCT GCC ACC ATG AGC 810 Leu Glu Gly Gly Val Ala Tyr Asn Val Ile Pro Ala Thr Met Ser 260 265 270 GCC AGC TTT GAC TTC CGT GTG GCA CCG GAT GTG GAC TTC AAG GCT 855 Ala Ser Phe Asp Phe Arg Val Ala Pro Asp Val Asp Phe Lys Ala 275 280 285 TTT GAG GAG CAG CTG CAG AGC TGG TGC CAG GCA GCT GGC GAG GGG 900 Phe Glu Glu Gln Leu Gln Ser Trp Cys Gln Ala Ala Gly Glu Gly 290 295 300 GTC ACC CTA GAG TTT GCT CAG AAG TGG ATG CAC CCC CAA GTG ACA 945 Val Thr Leu Glu Phe Ala Gln Lys Trp Met His Pro Gln Val Thr 305 310 315 CCT ACT GAT GAC TCA AAC CCT TGG TGG GCA GCT TTT AGC CGG GTC 990 Pro Thr Asp Asp Ser Asn Pro Trp Trp Ala Ala Phe Ser Arg Val 320 325 330 TGC AAG GAT ATG AAC CTC ACT CTG GAG CCT GAG ATC ATG CCT GCT 1035 Cys Lys Asp Met Asn Leu Thr Leu Glu Pro Glu Ile Met Pro Ala 335 340 345 345 GCC ACT GAC AAC CGC TAT ATC CGC GCG GTG GGG GTC CCA GCT CTA 1080 Ala Thr Asp Asn Arg Tyr Ile Arg Ala Val Gly Val Pro Ala Leu 350 355 360 GGC TTC TCA CCC ATG AAC CGC ACA CCT GTG CTG CTG CAC GAC CAC 1125 Gly Phe Ser Pro Met Asn Arg Thr Pro Val Leu Leu His Asp His 365 370 375 GAT GAA CGG CTG CAT GAG GCT GTG TTC CTC CGT GGG GTG GAC ATA 1170 Asp Glu Arg Leu His Glu Ala Val Phe Leu Arg Gly Val Asp Ile 380 385 390 TAT ACA CGC CTG CTG CCT GCC CTT GCC AGT GTG CCT GCC CTG CCC 1215 Tyr Thr Arg Leu Leu Pro Ala Leu Ala Ser Val Pro Ala Leu Pro 395 400 405 AGT GAC AGC 1224 Ser Asp Ser

【図面の簡単な説明】[Brief description of the drawings]

【図1】ブタアミノアシラーゼIのcDNAの制限酵素
地図、及びDNAシークエンシングを行った部分と向き
を示した図である。
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a diagram showing a restriction enzyme map of porcine aminoacylase I cDNA, and a portion subjected to DNA sequencing and its orientation.

【図2】ヒトアミノアシラーゼIのcDNAの制限酵素
地図、及びDNAシークエンシングを行った部分と向き
を示した図である。
FIG. 2 is a diagram showing a restriction enzyme map of human aminoacylase I cDNA, and a portion subjected to DNA sequencing and its orientation.

フロントページの続き (56)参考文献 Biochim.Biophys.A cta 959 p.370−377(1988) (58)調査した分野(Int.Cl.6,DB名) C12N 15/00 C12N 9/80 Continuation of front page (56) References Biochim. Biophys. Acta 959 p. 370-377 (1988) (58) Field surveyed (Int. Cl. 6 , DB name) C12N 15/00 C12N 9/80

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 配列表の配列番号1又は配列番号2で表
されるアミノ酸配列で表されるポリペプチド、あるいは
該配列に1以上のアミノ酸残基の欠失、置換、挿入、付
加の少なくとも1つを有するアミノ酸配列を有するポリ
ペプチドであって、アミノアシラーゼI活性を有するポ
リペプチドをコードする核酸。
1. A polypeptide represented by the amino acid sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 in the sequence listing, or at least one of deletion, substitution, insertion, and addition of one or more amino acid residues in the sequence. A nucleic acid which encodes a polypeptide having an aminoacylase I activity.
【請求項2】 配列表の配列番号6あるいは配列番号7
で表される塩基配列で表される核酸を含む請求項1に記
載の核酸。
2. SEQ ID NO: 6 or SEQ ID NO: 7 in the sequence listing
The nucleic acid according to claim 1, comprising a nucleic acid represented by a base sequence represented by:
【請求項3】 請求項1又は2に記載の核酸にストリン
ジェントな条件でハイブリダイズ可能な核酸を含有し、
かつアミノアシラーゼI活性を有するポリペプチドをコ
ードする核酸。
3. A nucleic acid according to claim 1 or 2, comprising a nucleic acid hybridizable under stringent conditions,
And a nucleic acid encoding a polypeptide having aminoacylase I activity.
【請求項4】 配列表の配列番号2で表されるアミノ酸
配列で表されるポリペプチド、あるいは該配列に1個〜
数個のアミノ酸残基の欠失、置換、挿入、付加の少なく
とも1つを有するアミノ酸配列を有するポリペプチドで
あって、アミノアシラーゼI活性を有するポリペプチ
ド。
4. A polypeptide represented by the amino acid sequence represented by SEQ ID NO: 2 in the sequence listing, or one to
A polypeptide having an amino acid sequence having at least one of deletion, substitution, insertion, and addition of several amino acid residues, wherein the polypeptide has aminoacylase I activity.
JP3081136A 1991-03-22 1991-03-22 Polypeptide Expired - Fee Related JP2892171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3081136A JP2892171B2 (en) 1991-03-22 1991-03-22 Polypeptide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3081136A JP2892171B2 (en) 1991-03-22 1991-03-22 Polypeptide

Publications (2)

Publication Number Publication Date
JPH04330279A JPH04330279A (en) 1992-11-18
JP2892171B2 true JP2892171B2 (en) 1999-05-17

Family

ID=13737988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3081136A Expired - Fee Related JP2892171B2 (en) 1991-03-22 1991-03-22 Polypeptide

Country Status (1)

Country Link
JP (1) JP2892171B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307006A (en) * 2007-06-15 2008-12-25 Toyobo Co Ltd Method for producing l-amino acid
FR2919062B1 (en) * 2007-07-19 2009-10-02 Biomerieux Sa METHOD OF DETERMINING AMINOACYLASE 1 FOR IN VITRO DIAGNOSIS OF COLORECTAL CANCER.
GB201304460D0 (en) * 2013-03-13 2013-04-24 Univ Leeds Biomarker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Biochim.Biophys.Acta 959 p.370−377(1988)

Also Published As

Publication number Publication date
JPH04330279A (en) 1992-11-18

Similar Documents

Publication Publication Date Title
Nyunoya et al. Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat.
US6406899B1 (en) Highly active alkaline phosphatase
EP0647714B1 (en) Peptidyl prolyl-cis.trans-isomerase
JPH11332568A (en) Endo-beta-n-acetylglucosaminidase gene
JP2892171B2 (en) Polypeptide
JPH1017600A (en) Blood platelet activating factor acetyl hydrolase and its gene
JPH067158A (en) Substantially pure microorganism producing myo-inositol dehydrogenase
JP3107847B2 (en) Polypeptide
McKay et al. A Drosophila gene that encodes a member of the protein disulfide isomerase/phospholipase C-α family
JP3197355B2 (en) Asparaginyl endopeptidase gene
EP0336155A1 (en) Recombinant human cardiac myosin
JP2729045B2 (en) Sarcosine oxidase and method for producing the same
JP3024684B2 (en) Human acylamino acid releasing enzyme-like polypeptide
JP3356350B2 (en) Almond N-glycosidase gene
JP3533699B2 (en) Prophenol oxidase and phenol oxidase from silkworm
JPH0568548A (en) Gene fragment encoding human alt
US5747329A (en) Glutamylcysteine synthetase light subunit
JP2006238808A (en) New pyridoxal 4-dehydrogenase and its utilization
JP3257120B2 (en) Gene, transformant thereof, and method for producing polypeptide
JP3051293B2 (en) CDNA encoding luciferase of the firefly
JPH06253856A (en) Mutarotase gene
JP2605902B2 (en) Luciferase, gene encoding it and method for producing luciferase
JP2002101882A (en) Cloning of gene of asterina pectinifera-derived phospholipase a2 and mass production of the same by escherichia coli
JPH09262089A (en) Dna coding for b-type subunit of avian lactic acid dehydrogenase
EP0693122A1 (en) Glutamylcysteine synthetase light subunit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees