JPH0739353B2 - How to prevent catalyst deterioration - Google Patents
How to prevent catalyst deteriorationInfo
- Publication number
- JPH0739353B2 JPH0739353B2 JP60204370A JP20437085A JPH0739353B2 JP H0739353 B2 JPH0739353 B2 JP H0739353B2 JP 60204370 A JP60204370 A JP 60204370A JP 20437085 A JP20437085 A JP 20437085A JP H0739353 B2 JPH0739353 B2 JP H0739353B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- iron
- reaction
- selectivity
- ruthenium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は単環芳香族炭化水素を部分水素化し、対応する
シクロオレフイン類を製造する方法に関するものであ
り、更に詳しくは、該反応において使用されるルテニウ
ム触媒の劣化防止方法に関する。TECHNICAL FIELD The present invention relates to a method for partially hydrogenating a monocyclic aromatic hydrocarbon to produce a corresponding cycloolefin, more specifically, a method for use in the reaction. The present invention relates to a method for preventing deterioration of a ruthenium catalyst.
シルロヘキサン類は有機化学工業製品の中間原料として
その価値が高く、特にポリアミド原料、リジン原料など
として重要である。Cyllohexanes are highly valuable as intermediate raw materials for organic chemical industrial products, and are especially important as polyamide raw materials and lysine raw materials.
(従来の技術) かかる単環芳香族炭化水素の部分水素化法については、
例えば(1)ルテニウム触媒及びI a族金属、II a族金
属、Mn、Zn又はアンモニアの塩化物もしくは硫酸塩を含
む中性又は酸性水溶液の存在下に行う方法(特開昭50−
142536号公報)、あるいはあらかじめこれらの金属の塩
を含む水溶液で処理した触媒の存在下に行う方法(特開
昭51−98243号公報)、(2)ルテニウム触媒及びコバ
ルト、ニツケル、銅の炭酸塩もしくは塩基性炭酸塩の水
溶液の存在下に行う方法、(3)少なくとも一種の周期
律表第VIII族元素の還元されたカチオンを触媒とし、水
及びアルカリ剤を存在させて行なう方法(特公昭56−22
850号公報)などがあり、一般に水もしくは水溶液を共
存させると、対応するシクロオレフインの選択率や収率
が上がり、好ましい方法とされている。(Prior Art) Regarding the partial hydrogenation method of such monocyclic aromatic hydrocarbons,
For example, (1) a method in the presence of a ruthenium catalyst and a neutral or acidic aqueous solution containing a Group Ia metal, a Group IIa metal, Mn, Zn, or a chloride or sulfate of ammonia (JP-A-
142536) or in the presence of a catalyst previously treated with an aqueous solution containing salts of these metals (JP-A-51-98243), (2) ruthenium catalyst and cobalt, nickel, copper carbonate. Alternatively, a method carried out in the presence of an aqueous solution of a basic carbonate, (3) a method carried out in the presence of water and an alkaline agent using a reduced cation of at least one Group VIII element of the periodic table as a catalyst (Japanese Patent Publication No. −22
No. 850), etc., and generally, the coexistence of water or an aqueous solution increases the selectivity and yield of the corresponding cycloolefin, which is a preferable method.
(発明が解決しようとする問題点) しかしながら本発明者らの検討によると、かかる水溶液
を共存させる方法においては、添加物の陰イオやアルカ
リにより、反応器などの接液部において材料の腐食が進
行したり、反応器から溶出する金属によつて触媒の活性
や選択性が低下する現象が発生することが明らかとな
り、実用化に際し小さからぬ障害となることが判つた。
特に触媒の活性や選択性の低下は、シクロオレフイン類
を安定に得ることを困難にせしめると共に、経済的に不
利益をもたらすので、この触媒劣化を防止する方法が極
めて重要となる。(Problems to be Solved by the Invention) However, according to the studies by the present inventors, in the method of coexisting such an aqueous solution, the corrosion of the material in the liquid contact part such as the reactor is caused by the anion and the alkali of the additive. It was revealed that the progress of the metal and the elution of the metal from the reactor cause a decrease in the activity and selectivity of the catalyst, and it was found to be a considerable obstacle to practical use.
In particular, a decrease in the activity and selectivity of the catalyst makes it difficult to obtain cycloolefins in a stable manner and economically disadvantageous. Therefore, a method of preventing this catalyst deterioration is extremely important.
一方、かかる反応器の材質が反応に与える影響について
は、原理的、定量的に取扱われた例はなく、一般に使用
されるオーステナイト系ステンレス鋼においては、反応
への悪影響は主成分である鉄によるものが大きいと推察
されるが、他方では、鉄被毒を受けたルテニウム触媒が
むしろシクロオレフインの選択率向上に有効であるとい
う著述(J.Chem.Tech.Biotechnol.32巻691〜708頁′8
2)もあるなど、その解釈は様々であり、現実的な反応
系の選択がなされていないのが現状といえる。On the other hand, regarding the influence of the material of such a reactor on the reaction, there is no principle or quantitative treatment, and in the commonly used austenitic stainless steel, the adverse effect on the reaction is due to the iron as the main component. On the other hand, it is presumed that ruthenium catalysts poisoned with iron are more effective in improving the selectivity of cycloolefins (J. Chem. Tech. Biotechnol. 32: 691-708 '). 8
There are various interpretations such as 2), and it can be said that the actual situation is that no realistic reaction system is selected.
(問題点を解決するための手段) 本発明者らはかかる問題点を解決すべく、反応器材質
や、金属イオンが反応に与える影響を詳細に検討、定量
化し、本発明に到達したものである。即ち、反応系にお
いて、触媒上に鉄が触媒に対して2重量%以上蓄積しな
い反応雰囲気下で反応を行なわしめることにより、目的
とするシクロオレフイン類を高選択率、高収率で、しか
も長期間安定した触媒活性のもとに製造できることを見
出し、本発明を完成した。(Means for Solving the Problems) In order to solve the problems, the inventors of the present invention arrived at the present invention by studying and quantifying the effects of reactor materials and metal ions on the reaction in detail. is there. That is, in the reaction system, by carrying out the reaction in a reaction atmosphere in which iron does not accumulate on the catalyst in an amount of 2% by weight or more with respect to the catalyst, the desired cycloolefins can be obtained with high selectivity, high yield, and long duration. The present invention has been completed based on the finding that the catalyst can be produced under stable catalytic activity for a period of time.
本発明における単環芳香族炭化水素とは、ベンゼン、ト
ルエン、キシレン類、その他の低級アルキルベンゼン類
をいう。これら原料は含有する鉄分を適当な方法、例え
ば、フイルター処理や吸着処理などによつて除去したの
ち、反応系へ導入される。部分水素化反応はルテニウム
触媒と水および原料の液相懸濁法によつて連続的または
回分的に行なわれる。使用される水には場合によつては
適当な添加物例えば金属塩やアルカリ剤を添加して行な
われる。通常、水素圧力は1〜200kg/cm2G、好ましくは
10〜100kg/cm2Gであり、反応温度は室温〜250℃、好ま
しくは100〜200℃である。The monocyclic aromatic hydrocarbon in the present invention refers to benzene, toluene, xylenes and other lower alkylbenzenes. These raw materials are introduced into the reaction system after the iron content contained therein is removed by an appropriate method such as a filter treatment or an adsorption treatment. The partial hydrogenation reaction is carried out continuously or batchwise by a liquid phase suspension method of a ruthenium catalyst, water and a raw material. The water used is optionally added with suitable additives such as metal salts and alkaline agents. Usually, the hydrogen pressure is 1 to 200 kg / cm 2 G, preferably
A 10~100kg / cm 2 G, the reaction temperature is room temperature to 250 DEG ° C., preferably from 100 to 200 ° C..
本発明者らの検討によれば、かかる条件下に部分水素化
反応を長時間継続すると、反応器材質に鉄を主生物とす
る材料例えばオーステナイト系ステンレス鋼などを使用
した場合、接液部表面より溶出する鉄がルテニウム触媒
上に経済的に蓄積し、触媒が有する活性や選択性が著し
く損なわれることが判明した。更に特筆すべきことは、
かかる触媒上に蓄積した鉄量は、共存する水中の鉄量と
は比較にならない程大きく、換言すれば、触媒のもつ吸
着力によつて水中の鉄濃度が低下し、接液部よりの鉄溶
出を促進するかの如き状況に至ることが判明した。この
ため、触媒上への鉄の蓄積は、その触媒が吸着力を失う
まで継続することになるが、かかる溶出鉄を大量に吸着
した触媒は、もはや部分水素化反応の触媒として実用に
耐えるものではない。According to the study of the present inventors, when the partial hydrogenation reaction is continued for a long time under such conditions, when a material mainly containing iron as a reactor material such as austenitic stainless steel is used, the liquid contact surface It was found that more eluting iron economically accumulated on the ruthenium catalyst, and the activity and selectivity of the catalyst were significantly impaired. What's more remarkable is that
The amount of iron accumulated on such a catalyst is incomparably larger than the amount of iron in coexisting water, in other words, the iron concentration in water decreases due to the adsorption force of the catalyst, and It was found that a situation such as promoting dissolution was reached. Therefore, the accumulation of iron on the catalyst continues until the catalyst loses its adsorptive power, but a catalyst that adsorbs a large amount of such eluted iron is no longer practical as a catalyst for the partial hydrogenation reaction. is not.
かかるルテニウム触媒上の鉄の蓄積量と活性や選択性の
低下との相関は本発明により初めて明確にされたもので
あり、実用上極めて重要な知見である。鉄の蓄積が、何
故反応の活性や選択性を低下せしめるかは定かではない
が、蓄積した鉄がルテニウム表面の反応活性点の濃度や
性質を大きく変化させ、シクロオレフインへ転化せしめ
るのに有効何な活性点が減少するためと考えられる。The correlation between the amount of iron accumulated on the ruthenium catalyst and the decrease in activity and selectivity is clarified for the first time by the present invention, and is an extremely important knowledge for practical use. It is not clear why the accumulation of iron reduces the activity or selectivity of the reaction, but it is effective for the accumulated iron to greatly change the concentration and properties of the reaction active sites on the surface of ruthenium and to convert it to cycloolefin. It is considered that the number of active sites is reduced.
従つて、原料に同伴されてくる鉄や、鉄を構成成分にも
つ反応器自身から反応液中に溶出してくる鉄の量が少な
ければ少ないほど、触媒の活性や選択性を長期間にわた
つて維持することができ、好ましい反応雰囲気であると
いえる。工業的あるいは経済的見地からは、劣化触媒の
再生や一部廃棄などの操作がプロセスの一部となること
が一般的であることから、かかる貴金属触媒の価格や、
再生や廃棄にかかる費用などを考慮に入れて、触媒上の
鉄の蓄積速度を抑制しなければならないが、触媒の活性
や選択性を維持しうる鉄の蓄積上限量に至るまでの期間
が少なくとも500時間以上でなければ実用的であるとは
言えない。ここで触媒の活性や選択性を維持しうる鉄の
蓄積上限量は、触媒の形態や、担体の種類により異なる
が、ルテニウムに対し、2重量%以下である。Therefore, the smaller the amount of iron entrained in the raw material and the amount of iron eluted from the reactor itself having iron as a constituent component into the reaction solution, the longer the activity and selectivity of the catalyst are extended. Therefore, it can be said that it is a preferable reaction atmosphere. From an industrial or economic point of view, it is common for operations such as regeneration and partial disposal of deteriorated catalysts to be part of the process, so the price of such precious metal catalysts,
The rate of iron accumulation on the catalyst must be controlled by taking into account the costs of regeneration and disposal, but the period until the upper limit of iron accumulation that can maintain the activity and selectivity of the catalyst is at least reached. Unless it is more than 500 hours, it is not practical. The upper limit of the amount of iron that can maintain the activity and selectivity of the catalyst depends on the form of the catalyst and the type of carrier, but is 2% by weight or less based on ruthenium.
この様な環境を設定するためには、接液部の材質を工夫
することが最も簡明かつ効果的である。In order to set up such an environment, it is most simple and effective to devise the material of the liquid contact part.
例えば、水への添加剤としてアルカリ剤を用いる場合
は、耐アルカリ性が強い材料としてニツケル、ジルコニ
ウム、タンタルもしくはこれらを主成分とする合金類を
掲げることができるが、実用的、経済的見地からはニツ
ケルが好ましいものといえる。For example, when an alkaline agent is used as an additive to water, nickel, zirconium, tantalum or alloys containing these as a main component can be listed as a material having strong alkali resistance, but from a practical and economical point of view. Nickel is preferred.
又、経済的な面を更に考慮すれば、鉄を主成分とする材
料、例えばオーステナイト系ステンレス鋼を用いる場合
において一般に不動態化剤と呼ばれる防食剤例えばクロ
ム酸塩、モルブデン酸塩、タングステン酸塩などを反応
系へ添加することによつて鉄の溶出を抑制する方法は、
極めて効果が大きく、実用的である。この方法において
は、触媒上への鉄の蓄積を完全に抑えることが現実的に
は困難であるが、前述の鉄蓄積上限量に至る時間を大巾
に増大させることができる。Further, when further considering the economical aspect, an anticorrosive agent generally called a passivating agent such as a chromate salt, a morbudate salt, a tungstate salt when a material containing iron as a main component, for example, an austenitic stainless steel is used. The method of suppressing the elution of iron by adding such as to the reaction system is
It is extremely effective and practical. In this method, it is practically difficult to completely suppress the accumulation of iron on the catalyst, but the time to reach the above-mentioned upper limit of iron accumulation can be greatly increased.
(効果) 本発明の如く、触媒上に実質的に鉄が蓄積しない反応雰
囲気下で反応することにより、単環芳香族炭化水素の部
分水素化反応を、長期間にわたり、活性や選択性を維持
して行なうことができる。(Effect) As in the present invention, by reacting in a reaction atmosphere in which iron does not substantially accumulate on the catalyst, the partial hydrogenation reaction of a monocyclic aromatic hydrocarbon is maintained for a long period of time while maintaining activity and selectivity. You can do it.
(実施例) 以下実施例をもつて本発明を更に詳述するが、本発明は
これら例によつて何ら制限されるものではない。(Examples) The present invention will be described in more detail with reference to examples below, but the present invention is not limited to these examples.
実施例1 水酸化ランタンに1%のルテニウムを担持した触媒3.5
g、水280ml、水酸化ナトリウム7.0g、酸化亜鉛70mg、及
びベンゼン140mlを内面にニツケルメツキを施した内容
積1のオートクレーブに仕込み、撹拌しながら170
℃、水素圧50Kg/cm2Gでベンゼンの部分水素化反応を行
なつた。反応液を経時的に抜き出し、有機相をガスクロ
マトグラフイーで分析したところ、ベンゼン転化率40%
となるのに要した時間は27分であり、このときのシクロ
ヘキセン選択率は75.0%であつた。Example 1 Catalyst with 1% ruthenium supported on lanthanum hydroxide 3.5
g, 280 ml of water, 7.0 g of sodium hydroxide, 70 mg of zinc oxide, and 140 ml of benzene were charged into an autoclave with an internal volume of 1 having a nickel plating on the inner surface, and 170 with stirring.
A partial hydrogenation reaction of benzene was carried out at ℃ and hydrogen pressure of 50 kg / cm 2 G. The reaction solution was withdrawn over time, and the organic phase was analyzed by gas chromatography. The benzene conversion rate was 40%.
It took 27 minutes to obtain the cyclohexene selectivity of 75.0%.
他の生成物はシクロヘキンサンであつた。The other product was cyclohexynsan.
又、反応終了後、触媒を回収し、触媒中の鉄濃度を測定
したところ21ppm(重量)であつた。After the completion of the reaction, the catalyst was recovered and the iron concentration in the catalyst was measured and found to be 21 ppm (weight).
実施例2 実施例1と同じ触媒40g、水800ml、水酸化ナトリウム20
g、酸化亜鉛400mgを油水分離槽を付属槽として有し、接
液部にニツケルメツキを施した連続流通反応装置に仕込
み、150℃、水素圧50kg/cm2Gにおいて、イオウなどの被
毒物質を含まないベンゼンを2/Hrで供給し、連続的
にベンゼの部分水素化反応を行なつた。流通反応開始10
時間後のベンゼン転化率は33%、シクロヘキセン選択率
は70%であり、100時間後では転化率32%、選択率70
%、更に500時間後では、転化率31%、選択率71%と、
転化率、選択率の変化はほとんどなく、シクロヘキセン
が安定して得られた。又、500時間後の触媒を取り出
し、触媒中の熱濃度を測定したところ、42ppmであつ
た。Example 2 The same catalyst as in Example 1 40 g, water 800 ml, sodium hydroxide 20
g, zinc oxide 400 mg as an auxiliary tank with an oil-water separation tank, and put it in a continuous flow reactor with a nickel plating on the wetted part, and at 150 ° C, hydrogen pressure 50 kg / cm 2 G Benzene containing no hydrogen was supplied at 2 / Hr to continuously carry out the partial hydrogenation reaction of benze. Distribution reaction started 10
The conversion rate of benzene after 33 hours is 33% and the selectivity of cyclohexene is 70%. After 100 hours, the conversion rate is 32% and the selectivity is 70%.
%, And after another 500 hours, conversion rate 31%, selectivity 71%,
Cyclohexene was obtained stably with almost no change in conversion or selectivity. Also, the catalyst after 500 hours was taken out and the heat concentration in the catalyst was measured and found to be 42 ppm.
比較例1 原料より鉄が混入してくることを想定し、硫酸第一鉄の
水溶液を鉄量として1mg/Hrの供給量となる様に反応系に
常時添加していつた以外は実施例2と同様の操作を行な
つた。このときの流通反応時間と転化率、選択率及び触
媒中の鉄濃度の推移を表1に示す。Comparative Example 1 Assuming that iron was mixed in from the raw material, Example 1 was repeated except that an aqueous solution of ferrous sulfate was constantly added to the reaction system so that the iron amount was 1 mg / Hr. The same operation was performed. Table 1 shows the transition reaction time, conversion rate, selectivity and transition of iron concentration in the catalyst.
比較例2 連続流通反応装置として接液部がSUS316製であるものを
使用する以外は実施例2と同様の操作を行なつた。この
ときの流通反応時間と転化率、選択率及び触媒中の鉄濃
度の推移を表2に示す。 Comparative Example 2 The same operation as in Example 2 was performed, except that the liquid contacting part made of SUS316 was used as the continuous flow reactor. Table 2 shows transitions of the flow reaction time, conversion rate, selectivity and iron concentration in the catalyst.
実施例3 反応系に不動態化剤としてクロム酸ナトリウム160mgを
添加し、以後200時間毎に100mgを追加添加した以外は、
比較例2と同様の操作を行なつた。その結果を表3に示
す。 Example 3 Except that 160 mg of sodium chromate was added as a passivating agent to the reaction system and 100 mg was added additionally every 200 hours thereafter.
The same operation as in Comparative Example 2 was performed. The results are shown in Table 3.
Claims (1)
及び亜鉛化合物の共存下、液相において水素により部分
水素化するに際し、反応器の接液部分の材質としてニッ
ケル、ジルコニウム、タンタルを主成分とする鉄との合
金類、又はオーステナイト系ステンレス鋼を用い反応系
に不動態化剤として働く防食剤を添加することによつ
て、上記ルテニウム触媒上に鉄がルテニュウム触媒に対
して2重量%以上蓄積しない反応雰囲気下において反応
を行わしめることを特徴とする触媒劣化防止方法。1. When a monocyclic aromatic hydrocarbon is partially hydrogenated with hydrogen in a liquid phase in the coexistence of a ruthenium catalyst and water and a zinc compound, nickel, zirconium and tantalum are mainly used as materials for the liquid contact portion of the reactor. 2% by weight of iron relative to the ruthenium catalyst is added to the ruthenium catalyst by adding an anti-corrosion agent that acts as a passivating agent to the reaction system using an alloy with iron as a component or austenitic stainless steel. A method for preventing catalyst deterioration, which is characterized in that the reaction is performed in a reaction atmosphere that does not accumulate the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60204370A JPH0739353B2 (en) | 1985-09-18 | 1985-09-18 | How to prevent catalyst deterioration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60204370A JPH0739353B2 (en) | 1985-09-18 | 1985-09-18 | How to prevent catalyst deterioration |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6267033A JPS6267033A (en) | 1987-03-26 |
JPH0739353B2 true JPH0739353B2 (en) | 1995-05-01 |
Family
ID=16489388
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60204370A Expired - Lifetime JPH0739353B2 (en) | 1985-09-18 | 1985-09-18 | How to prevent catalyst deterioration |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0739353B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1032251C (en) * | 1991-08-13 | 1996-07-10 | 旭化成工业株式会社 | Method for pretreating catalyst slurry and method for continuous partial hydrogentation of monocyclic aromatic hydrocarbon by use of pretreated catalyst slurry |
WO1993003836A1 (en) * | 1991-08-13 | 1993-03-04 | Asahi Kasei Kogyo Kabushiki Kaisha | Pretreatment of catalyst slurry and continuous partial hydrogenation of monocyclic aromatic hydrocarbon with pretreated catalyst slurry |
US5414171A (en) * | 1992-02-26 | 1995-05-09 | Catalytica, Inc. | Process and washed catalyst for partially hydrogenating aromatics to produce cycloolefins |
US5334790A (en) * | 1992-02-26 | 1994-08-02 | Catalytica | Process and catalyst for partially hydrogenating aromatics to produce cycloolefins |
JP2646986B2 (en) * | 1993-12-22 | 1997-08-27 | 三菱化学株式会社 | Method for producing cycloolefin |
KR100271507B1 (en) * | 1995-11-01 | 2000-11-15 | 야마모토 카즈모토 | Method for reactivating ruthenium catalyst |
EP3218105B1 (en) * | 2014-11-14 | 2020-10-14 | Celanese International Corporation | Processes for improving acetic acid yield by removing iron |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8007111A (en) * | 1980-12-31 | 1982-07-16 | Nl Org Zuiver Wetenschapp | PROCESS FOR THE PREPARATION OF A CYCLOALOQUE BY PARTIAL HYDROGENATION OF THE SIMILAR AROMATIC HYDROCARBON. |
-
1985
- 1985-09-18 JP JP60204370A patent/JPH0739353B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6267033A (en) | 1987-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0739353B2 (en) | How to prevent catalyst deterioration | |
JP5147053B2 (en) | Method for producing cycloolefin | |
EP0582895B1 (en) | Production of aliphatic primary amines | |
EP0187805B1 (en) | Process for hydrolysing nitriles | |
CN102112418A (en) | Method for producing cycloolefin and production apparatus | |
US5973218A (en) | Process for producing cycloolefin | |
JPH09327694A (en) | Removal of arsenic in water | |
JP2925129B2 (en) | Method for producing cycloolefin | |
JPH07106991B2 (en) | Partial hydrogenation method | |
JP2780652B2 (en) | Ruthenium-based regenerated catalyst | |
JPH0129174B2 (en) | ||
CA1189821A (en) | Electrochemical maintenance of optimum catalytic activity in copper-catalyzed nitrile hydrolysis processes | |
JPH0645561B2 (en) | Styrene-containing material purification method | |
JP2646986B2 (en) | Method for producing cycloolefin | |
JPH0867882A (en) | Hydrogenation of benzene in hydrocarbon oil | |
JP4033976B2 (en) | Method for producing cycloolefin | |
JP2979991B2 (en) | Method for producing cycloolefin | |
JP2606113B2 (en) | Method for producing cyclohexene | |
JPH0639399B2 (en) | Partial hydrogenation method for monocyclic aromatic hydrocarbons | |
JPH08165255A (en) | Production of cycloolefin | |
JPS59115745A (en) | Catalyst for wet oxydation treatment | |
CN1044704C (en) | Preparation of cycloolefin | |
JPS59115744A (en) | Wet type oxidation processing catalyst | |
JPH0259809B2 (en) | ||
JPH0366018B2 (en) |