JPH0739228Y2 - Light heat treatment device - Google Patents

Light heat treatment device

Info

Publication number
JPH0739228Y2
JPH0739228Y2 JP1988156678U JP15667888U JPH0739228Y2 JP H0739228 Y2 JPH0739228 Y2 JP H0739228Y2 JP 1988156678 U JP1988156678 U JP 1988156678U JP 15667888 U JP15667888 U JP 15667888U JP H0739228 Y2 JPH0739228 Y2 JP H0739228Y2
Authority
JP
Japan
Prior art keywords
semiconductor wafer
susceptor
transparent quartz
quartz tube
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1988156678U
Other languages
Japanese (ja)
Other versions
JPH0276835U (en
Inventor
俊治 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP1988156678U priority Critical patent/JPH0739228Y2/en
Publication of JPH0276835U publication Critical patent/JPH0276835U/ja
Application granted granted Critical
Publication of JPH0739228Y2 publication Critical patent/JPH0739228Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は、半導体装置の製造プロセスにおける半導体ウ
ェハの光加熱処理装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to an optical heating apparatus for a semiconductor wafer in a semiconductor device manufacturing process.

〔考案の概要〕[Outline of device]

本考案は、半導体装置の製造プロセスに用いられる半導
体ウェハの光加熱処理装置に関するものであり、更に詳
しくは、透明石英管内の半導体ウェハを輻射光吸収効率
のよいサセプタを介して光加熱ランプにより加熱し、こ
の半導体ウェハの温度を放射温度計により測定・制御す
る光加熱処理装置に関する。
The present invention relates to a semiconductor wafer optical heating apparatus used in a semiconductor device manufacturing process. More specifically, the semiconductor wafer in a transparent quartz tube is heated by a light heating lamp through a susceptor having a high radiation light absorption efficiency. However, the present invention relates to an optical heat treatment apparatus for measuring and controlling the temperature of this semiconductor wafer with a radiation thermometer.

〔従来の技術〕[Conventional technology]

半導体装置の製造プロセスにおいて、SiあるいはGaAs等
の化合物からなる半導体ウェハの熱酸化膜形成あるいは
イオン注入層の活性化等、1000℃前後での高温加熱処理
が行われる。従来この目的のためには、抵抗加熱による
電気炉加熱処理装置により数分から数十分の時間をかけ
て行うのが通常であった。この方法は電気炉に大電力を
必要とし、処理時間が長いので製造効率が悪く、また不
純物の再拡散防止など特に短時間の熱処理を必要とする
場合には適さなかった。
In a semiconductor device manufacturing process, high-temperature heat treatment at around 1000 ° C. is performed such as formation of a thermal oxide film of a semiconductor wafer made of a compound such as Si or GaAs or activation of an ion implantation layer. Conventionally, for this purpose, it has been usual to carry out the heating for several minutes to several tens of minutes using an electric furnace heat treatment apparatus by resistance heating. This method requires a large amount of electric power in the electric furnace, and the processing time is long, so that the manufacturing efficiency is poor, and it is not suitable when a heat treatment for a short time such as preventing re-diffusion of impurities is required.

そこで近年光加熱ランプの輻射光の照射により、数秒か
ら数十秒の短時間で光加熱処理を行うRTA(Rapid Therm
al Annealing)法あるいはRTP(Rapid Thermal Proces
s)法が実用化されつつある。第2図は従来の光加熱処
理装置の一例を示す図である。これを同図に基づき説明
すると、透明石英管4内の半導体ウェハ1は炭素あるい
はシリコン等の材料からなるサセプタ2上に載置され、
石英ハロゲンランプ等の光加熱ランプ6により上下から
光加熱処理される。半導体ウェハ1の温度はサセプタ2
に耐熱接着剤9により接着された熱電対8により、熱起
電力として間接的に検出される(例えば特開昭61-14273
7号公報)。
Therefore, in recent years, RTA (Rapid Thermium) that performs light heating processing in a short time of several seconds to several tens of seconds by radiating radiant light from a light heating lamp.
al Annealing) method or RTP (Rapid Thermal Proces)
s) The method is being put to practical use. FIG. 2 is a diagram showing an example of a conventional light heat treatment apparatus. This will be described with reference to FIG. 1. The semiconductor wafer 1 in the transparent quartz tube 4 is placed on the susceptor 2 made of a material such as carbon or silicon,
Light heating is performed from above and below by a light heating lamp 6 such as a quartz halogen lamp. The temperature of the semiconductor wafer 1 is the susceptor 2
A thermocouple 8 bonded to the above with a heat-resistant adhesive 9 indirectly detects it as a thermoelectromotive force (for example, JP-A-61-14273).
No. 7).

また、従来の光加熱処理装置の他の例として第3図に示
すごとく、ごく最近では半導体ウェハの温度を放射温度
計により測定・制御する方法が用いられるようになって
きた。これを同図に基づき説明する。透明石英管4内の
半導体ウェハ1は、通常熱容量を小さくし熱応答性を良
くするために、保持治具3上に単独で載置する。光加熱
ランプ6により光加熱処理された半導体ウェハ1の温度
は、透明石英管4に溶接された分岐管10の端部に耐熱接
着剤12等により気密に接着された覗き窓11を介して、放
射温度計5により測定・制御するように構成されたもの
である。(例えばR.E.Sheets,Mat.Res.Soc.Symp.Proc.,
52,191(1986))。
Further, as another example of the conventional light heat treatment apparatus, as shown in FIG. 3, very recently, a method of measuring and controlling the temperature of a semiconductor wafer by a radiation thermometer has been used. This will be described with reference to FIG. The semiconductor wafer 1 in the transparent quartz tube 4 is usually placed alone on the holding jig 3 in order to reduce the heat capacity and improve the thermal response. The temperature of the semiconductor wafer 1 which has been subjected to the light heating treatment by the light heating lamp 6 is passed through the observation window 11 which is airtightly adhered to the end portion of the branch tube 10 welded to the transparent quartz tube 4 with the heat resistant adhesive 12 or the like. It is configured to be measured and controlled by the radiation thermometer 5. (For example RESheets, Mat.Res.Soc.Symp.Proc.,
52 , 191 (1986)).

この変型として、半導体ウェハ4を石英製のサセプタ上
に載置する従来例も知られている(例えば特開昭61-130
834号公報)。
As this modification, a conventional example in which the semiconductor wafer 4 is placed on a susceptor made of quartz is also known (for example, JP-A-61-130).
No. 834).

〔考案が解決しようとする課題〕[Problems to be solved by the device]

前述した従来の光加熱処理装置のうち、第2図に示す熱
電対を用いて半導体ウェハの温度を測定・制御する方式
は、熱電対8の検出端が半導体ウェハに直接接触してい
ないため、正確な温度測定が困難であり、なおかつ金属
製の熱電対8と耐熱接着剤9とが透明石英管4内に存在
するので、半導体ウェハ1を汚染するという問題点があ
った。
Among the above-described conventional light heat treatment apparatuses, the method of measuring and controlling the temperature of the semiconductor wafer by using the thermocouple shown in FIG. 2 has a detection end of the thermocouple 8 which is not in direct contact with the semiconductor wafer. Accurate temperature measurement is difficult, and since the metal thermocouple 8 and the heat-resistant adhesive 9 are present in the transparent quartz tube 4, there is a problem that the semiconductor wafer 1 is contaminated.

また、第3図に示す分岐管10と覗き窓11を介して放射温
度計5を用いて半導体ウェハ1の温度を測定・制御する
従来の他の方式は、放射温度計5の検出素子の測定波長
が4.5μm以上の例えばPE(Pyroelectric)素子を使用
すると共に、覗き窓11に4.5μm以上にまで透過波長範
囲を持つフッ化カルシウム(CaF2等特殊な材料を使う必
要があった。この理由は、第4図に示した放射温度計の
検出素子、光加熱ランプ光源および各材料の透過波長の
波長範囲の相互関係に基づく。すなわち、加熱されたS
i、GaAs等の半導体ウェハ1からの輻射光を透明石英管
4の壁を直接介して放射温度計により測定・制御しよう
とすると、検出素子としては石英の透明波長範囲内であ
る4.5μm以下に測定感度を持つSi、Ge、PbsまたはPbSe
等からなるものを用いなければならない。ところが、こ
れらの検出素子の測定波長範囲にある輻射光は、Si、Ga
As等の半導体ウェハ1を透過するので、放射温度計5に
対向する光加熱ランプ6の輻射光をも検出してしまい、
半導体ウェハ1の温度の正確な測定・制御が不可能であ
った。そこで、石英の透過波長範囲(0.155〜4.5μm)
より長波長側まで透過するCaF2(透過波長範囲0.13〜12
μm)等の材料からなる覗き窓11を石英管4に溶接され
た分岐管10の端部に設け、この覗き窓11を介して、石英
の透過波長範囲より長波長側に測定波長範囲をもつPE検
出素子(測定波長範囲8〜13μm)等を有する放射温度
計5を用いる必要があった。
Further, another conventional method of measuring and controlling the temperature of the semiconductor wafer 1 using the radiation thermometer 5 through the branch pipe 10 and the viewing window 11 shown in FIG. 3 is to measure the detection element of the radiation thermometer 5. For example, it is necessary to use a PE (Pyroelectric) element having a wavelength of 4.5 μm or more and a special material such as calcium fluoride (CaF 2) having a transmission wavelength range of 4.5 μm or more for the viewing window 11. Is based on the interrelationship of the detection element of the radiation thermometer, the light source of the optical heating lamp and the wavelength range of the transmission wavelength of each material shown in Fig. 4. That is, the heated S
If the radiation light from the semiconductor wafer 1 such as i or GaAs is measured and controlled by the radiation thermometer directly through the wall of the transparent quartz tube 4, the detection element is 4.5 μm or less, which is within the transparent wavelength range of quartz. Si, Ge, Pbs or PbSe with measurement sensitivity
Must be used. However, the radiant light in the measurement wavelength range of these detection elements is Si, Ga
Since it passes through the semiconductor wafer 1 such as As, the radiant light of the light heating lamp 6 facing the radiation thermometer 5 is also detected,
It was impossible to accurately measure and control the temperature of the semiconductor wafer 1. Therefore, the transmission wavelength range of quartz (0.155 to 4.5 μm)
CaF 2 that transmits to longer wavelengths (transmission wavelength range 0.13 to 12
A viewing window 11 made of a material such as μm) is provided at the end of the branch pipe 10 welded to the quartz tube 4, and the measurement wavelength range is provided on the longer wavelength side than the transmission wavelength range of quartz through this viewing window 11. It was necessary to use the radiation thermometer 5 having a PE detection element (measurement wavelength range 8 to 13 μm) and the like.

このような複雑な構造の装置は高価であり、内部の洗浄
等の保守に際して細心の注意を払う必要があった。更に
光加熱ランプ6による加熱に際して、分岐管10や覗き窓
11部分が直接加熱されることはないとはいえ、高温に達
する可能性のある部分であり、熱膨張係数の異なる2種
類の材料を気密に接着する耐熱接着剤12の信頼性が問題
であった。特にGaAs等熱処理で有毒ガスが発生したり、
アルシン(AsH3)等の有毒ガスを導入して熱処理を行う
場合は、この装置は信頼性の点で使用できなかった。
An apparatus having such a complicated structure is expensive, and it is necessary to pay close attention to maintenance such as cleaning the inside. Furthermore, when heating with the light heating lamp 6, a branch pipe 10 and a viewing window
Although the 11th part is not heated directly, it is a part that may reach high temperature, and the reliability of the heat-resistant adhesive 12 that hermetically bonds two types of materials with different thermal expansion coefficients is a problem. It was Especially, toxic gas is generated by heat treatment such as GaAs,
When introducing a toxic gas such as arsine (AsH 3 ) for heat treatment, this device could not be used in terms of reliability.

従って本考案の課題は、透明石英管中の半導体ウェハを
光加熱処理をするにあたり、半導体ウェハの温度を正確
にしかも熱応答性よく測定・制御することであり、これ
に加えて半導体ウェハの汚染の懸念がなく、装置の洗浄
等の保守が容易であり、しかも有毒ガスを用いる場合で
も有毒ガスのリークの危険性のない光加熱処理装置を提
供することである。
Therefore, an object of the present invention is to measure and control the temperature of the semiconductor wafer accurately and with good thermal response when the semiconductor wafer in the transparent quartz tube is subjected to light heating treatment. SUMMARY OF THE INVENTION It is an object of the present invention to provide an optical heat treatment apparatus which is free from the concern of, and is easy to maintain, such as cleaning the apparatus, and has no risk of leakage of toxic gas even when toxic gas is used.

〔課題を解決するための手段〕[Means for Solving the Problems]

前述した課題を解決するため、本考案による光加熱処理
装置は次のようにして構成される。
In order to solve the above-mentioned problems, the light heat treatment apparatus according to the present invention is configured as follows.

半導体ウェハを、光加熱ランプの輻射光を効率よく吸収
する材料よりなるサセプタ上に載置し、このサセプタは
さらに透明石英製の保持治具上に載置して透明石英管内
に置かれる。半導体ウェハは、透明石英管の外部に位置
し、かつサセプタの下方に配置した光加熱ランプによ
り、サセプタを介して間接的に加熱される。半導体ウェ
ハの温度は、透明石英管の外部に位置し、かつ半導体ウ
ェハを上方からのぞむ位置に配置した放射温度計によ
り、透明石英管の壁を直接介して測定・制御される。
The semiconductor wafer is mounted on a susceptor made of a material that efficiently absorbs the radiant light of the light heating lamp, and this susceptor is further mounted on a transparent quartz holding jig and placed in a transparent quartz tube. The semiconductor wafer is indirectly heated through the susceptor by a light heating lamp located outside the transparent quartz tube and arranged below the susceptor. The temperature of the semiconductor wafer is measured and controlled directly through the wall of the transparent quartz tube by a radiation thermometer located outside the transparent quartz tube and arranged at a position where the semiconductor wafer is viewed from above.

上述のように構成された装置において、サセプタの材料
は炭素または炭化ケイ素等、光加熱ランプの輻射光を効
率よく吸収し、1300℃程度の高温でも安定であり、しか
も半導体ウェハに汚染をもたらさない高純度のものが使
用される。
In the device configured as described above, the material of the susceptor efficiently absorbs the radiant light of the light heating lamp, such as carbon or silicon carbide, is stable even at a high temperature of about 1300 ° C, and does not cause contamination to the semiconductor wafer. High-purity ones are used.

またサセプタの形状は、半導体ウェハ載置面側の平坦性
に優れ、厚さは1mm以上5mm以下が望ましく、2mm以上3mm
以下が更に望ましい。平面形状は、載置する半導体ウェ
ハより広く、かつ光加熱ランプの輻射光が直接放射温度
計に入射しない投影面積をもつものであればよい。
The shape of the susceptor is excellent in flatness on the semiconductor wafer mounting surface side, and the thickness is preferably 1 mm or more and 5 mm or less, and 2 mm or more and 3 mm or less.
The following is more desirable. The planar shape may be any as long as it is wider than the semiconductor wafer to be mounted and has a projected area where the radiant light of the light heating lamp does not directly enter the radiation thermometer.

放射温度計としては、石英の透過波長範囲(0.155〜4.5
μm)に感度をもつ通常のSi、Ge、PbS、PbSe等の検出
素子をもつものが用いられる。
As a radiation thermometer, the transmission wavelength range of quartz (0.155 to 4.5
The one having a detection element such as ordinary Si, Ge, PbS, or PbSe having a sensitivity of (μm) is used.

〔作用〕[Action]

光加熱ランプの輻射光はサセプタにより吸収されてこれ
を加熱し、半導体ウェハは主としてサセプタの平坦な半
導体ウェハ載置面からの熱伝導により間接的に加熱され
る。半導体ウェハの温度は、透明石英管の壁を直接介し
て、放射温度計により測定・制御される。光加熱ランプ
の輻射光は、半導体ウェハより広い面積を持つサセプタ
に効率よく吸収されるので、放射温度計に直接入射する
ことはなく、半導体ウェハの正確な温度測定が可能とな
る。サセプタの厚さは1mm以上5mm以下であるので、薄す
ぎて機械的に脆かったり温度分布特性が悪いことがな
く、また逆に厚すぎて熱応答特性が悪くなることがな
い。
Radiant light from the light heating lamp is absorbed by the susceptor to heat it, and the semiconductor wafer is indirectly heated mainly by heat conduction from the flat semiconductor wafer mounting surface of the susceptor. The temperature of the semiconductor wafer is measured and controlled by a radiation thermometer directly through the wall of the transparent quartz tube. The radiant light of the light heating lamp is efficiently absorbed by the susceptor having a larger area than that of the semiconductor wafer, so that the temperature of the semiconductor wafer can be accurately measured without directly entering the radiation thermometer. Since the thickness of the susceptor is 1 mm or more and 5 mm or less, it is not too thin and mechanically fragile, and the temperature distribution characteristic is not bad, and conversely, it is not too thick and the heat response characteristic is not bad.

さらに本考案による光加熱処理装置は分岐管や覗き窓、
接着部分がないので、有毒ガスのリークの心配がなく信
頼性に優れ、また洗浄等の保守が容易である。
Furthermore, the light heating processing device according to the present invention is provided with
Since there is no adhesive part, there is no concern about leakage of toxic gas, it is highly reliable, and maintenance such as cleaning is easy.

また、透明石英管内には熱電対や耐熱接着剤等が存在し
ないので、半導体ウェハが不純物により汚染される懸念
がない。
Further, since there is no thermocouple or heat-resistant adhesive in the transparent quartz tube, there is no concern that the semiconductor wafer will be contaminated with impurities.

〔実施例〕〔Example〕

以下、本考案の実施例について図面を参照しながら説明
する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

実施例1 第1図は本考案による光加熱装置を示す図である。本実
施例では、半導体ウェハ1としてイオン注入処理を行っ
たGaAs化合物を例にとり、このイオン注入層の活性化処
理を行う場合について装置の説明を行う。
Embodiment 1 FIG. 1 is a view showing a light heating device according to the present invention. In this embodiment, a GaAs compound that has been subjected to an ion implantation process is used as an example of the semiconductor wafer 1, and the apparatus will be described for the case where this ion implantation layer is activated.

載置面が平坦で、かつ半導体ウェハより広い面積をもつ
厚さ2mmの炭素からなるサセプタ2を透明石英製の保持
治具3上に置き、さらにこのサセプタ2上に半導体ウェ
ハ1を載置して、透明石英管4中に挿入する。透明石英
管4の両端には、第1図には記していないが、ガス導入
孔とガス排出孔とが接続されており、このガス導入孔よ
りアルシン(AsH3)を導入しガス排出孔より透明石英管
4外の排ガス処理装置に導く。サセプタ2の下方かつ透
明石英管の外部に石英ハロゲンランプによる光加熱ラン
プ6と反射板7とを配置し、サセプタ2を下面から光加
熱し、これによりサセプタ2上に密着して載置した半導
体ウェハ1を間接的に加熱する。透明石英管4の外部に
位置し、かつサセプタ2上の半導体ウェハ1をのぞむ位
置に配置したSi検出素子をもつ放射温度計5を用い、半
導体ウェハ1の温度を測定する。放射温度計5の温度情
報出力は、第1図には記してないが演算装置に入力さ
れ、設定温度850℃と比較演算して出力信号となし、次
に出力制御装置を介して光加熱ランプ6の出力が制御さ
れる。これにより半導体ウェハ1は、設定温度に速やか
にかつ精度よく加熱され、イオン注入層の活性化処理が
なされる。
A susceptor 2 having a flat mounting surface and having a larger area than the semiconductor wafer and made of carbon and having a thickness of 2 mm is placed on a holding jig 3 made of transparent quartz, and the semiconductor wafer 1 is placed on the susceptor 2. And insert it into the transparent quartz tube 4. Although not shown in FIG. 1, a gas introduction hole and a gas discharge hole are connected to both ends of the transparent quartz tube 4, and arsine (AsH 3 ) is introduced from this gas introduction hole to the gas discharge hole. It is led to an exhaust gas treatment device outside the transparent quartz tube 4. A light heating lamp 6 made of a quartz halogen lamp and a reflecting plate 7 are arranged below the susceptor 2 and outside the transparent quartz tube, and the susceptor 2 is optically heated from the lower surface, whereby a semiconductor mounted closely on the susceptor 2 is mounted. The wafer 1 is indirectly heated. The temperature of the semiconductor wafer 1 is measured using a radiation thermometer 5 having a Si detection element which is located outside the transparent quartz tube 4 and is located on the susceptor 2 at a position overlooking the semiconductor wafer 1. Although not shown in FIG. 1, the temperature information output of the radiation thermometer 5 is input to the arithmetic unit and compared with the set temperature of 850 ° C. to produce an output signal, and then the light heating lamp via the output control unit. The output of 6 is controlled. As a result, the semiconductor wafer 1 is quickly and accurately heated to the set temperature, and the ion implantation layer is activated.

実施例2 本実施例も第1図に基づき説明する。本実施例では、半
導体ウェハ1として熱酸化膜による絶縁層を形成するシ
リコンウェハを例にとり装置の説明を行う。
Embodiment 2 This embodiment will also be described with reference to FIG. In this embodiment, the semiconductor wafer 1 will be described by taking a silicon wafer on which an insulating layer of a thermal oxide film is formed as an example.

載置面が平坦で、かつ半導体ウェハよりも広い面積をも
つ厚さ3mmの炭化ケイ素/炭素/炭化ケイ素(SiC/C/Si
C)3層構造のサセプタ2上にシリコンの半導体ウェハ
1を載置し、透明石英製保持治具3で保持して透明石英
管4中に挿入する。透明石英管4の両端には、第1図に
は記してないがガス導入孔およびガス排出孔が設けられ
ており、このガス導入孔より酸素ガスを導入し、ガス排
出孔より透明石英管4外部へ排出する。サセプタ2の下
方かつ透明石英管4の外部には、Xeアークランプによる
光加熱ランプ6と反射板7を配置し、サセプタ2を下面
から光加熱し、これによりサセプタ2上に密着載置した
半導体ウェハ1を間接的に加熱する。透明石英管4の外
部に位置し、かつサセプタ2上の半導体ウェハ1をのぞ
む位置に配置したSi検出素子をもつ放射温度計5を用
い、半導体ウェハ1の温度を測定する。放射温度計5の
温度情報出力は、第1図には記していないが演算装置に
入力され、設定温度1200℃と比較演算して出力信号とな
し、次に出力制御装置を介して光加熱ランプ6の出力を
制御する。これにより半導体ウェハ1は設定温度に速や
かにかつ精度よく加熱され、熱酸化膜による絶縁層が形
成される。
3mm thick silicon carbide / carbon / silicon carbide (SiC / C / Si) with a flat mounting surface and a larger area than the semiconductor wafer.
C) A semiconductor wafer 1 made of silicon is placed on a susceptor 2 having a three-layer structure, held by a holding jig 3 made of transparent quartz, and inserted into a transparent quartz tube 4. Although not shown in FIG. 1, a gas introduction hole and a gas discharge hole are provided at both ends of the transparent quartz tube 4. Oxygen gas is introduced through the gas introduction hole and the transparent quartz tube 4 is introduced through the gas discharge hole. Discharge to the outside. Below the susceptor 2 and outside the transparent quartz tube 4, a light heating lamp 6 by a Xe arc lamp and a reflecting plate 7 are arranged to heat the susceptor 2 from the lower surface, and thereby a semiconductor mounted closely on the susceptor 2 is mounted. The wafer 1 is indirectly heated. The temperature of the semiconductor wafer 1 is measured using a radiation thermometer 5 having a Si detection element which is located outside the transparent quartz tube 4 and is located on the susceptor 2 at a position overlooking the semiconductor wafer 1. Although not shown in FIG. 1, the temperature information output of the radiation thermometer 5 is input to an arithmetic unit and compared with a set temperature of 1200 ° C. to obtain an output signal, and then an optical heating lamp via an output control unit. 6 output control. As a result, the semiconductor wafer 1 is quickly and accurately heated to the set temperature, and an insulating layer made of a thermal oxide film is formed.

以上、本考案の実施例について説明してきたが、サセプ
タ2の材料としては、炭素または炭化ケイ素が単独で、
または組み合わせて多層構造として用いられ、他に窒化
ケイ素(Si3N4)も炭素または炭化ケイ素と組み合わせ
て多層構造となして使用することができる。要は光加熱
ランプの輻射光を効率よく吸収し、1300℃程度まで安定
で半導体ウェハ1に汚染をもたらさない高純度の材料で
あればよい。またサセプタ2の厚さは1mm以上5mm以下が
望ましく、2mm以上3mm以下がより望ましい。この厚さが
1mm未満では機械的に脆く、割れたり欠けたりし易く、
また温度分布特性が悪くなる。また5mmを超える厚さの
ものは、熱応答特性が悪くなり、RTA、RTPの目的にそぐ
わなくなる。
Although the embodiments of the present invention have been described above, carbon or silicon carbide alone is used as the material of the susceptor 2.
Alternatively, they may be used in combination as a multi-layer structure, and silicon nitride (Si 3 N 4 ) may be used in combination with carbon or silicon carbide to form a multi-layer structure. The point is that a high-purity material that efficiently absorbs the radiant light of the light heating lamp, is stable up to about 1300 ° C., and does not cause contamination of the semiconductor wafer 1 is required. Further, the thickness of the susceptor 2 is preferably 1 mm or more and 5 mm or less, more preferably 2 mm or more and 3 mm or less. This thickness
If it is less than 1 mm, it is mechanically brittle and easily cracks or chips,
In addition, the temperature distribution characteristic becomes worse. In addition, if the thickness exceeds 5 mm, the thermal response characteristics deteriorate, and the purpose of RTA and RTP is defeated.

更にサセプタ2の形状は載置する半導体ウェハ1より広
く、かつ光加熱ランプ6の輻射光が直接放射温度計5に
入射しないだけの投影面積をもつものが用いられる。
Further, the shape of the susceptor 2 is wider than that of the semiconductor wafer 1 to be mounted, and the susceptor 2 has a projected area such that the radiant light of the light heating lamp 6 does not directly enter the radiation thermometer 5.

また放射温度計の検出素子としては、本実施例で用いた
Siの他に、Ge、PbS、PbSe等石英の透過波長範囲に感度
をもつものが使用される。
The detection element of the radiation thermometer was used in this example.
In addition to Si, those having sensitivity in the transmission wavelength range of quartz such as Ge, PbS, and PbSe are used.

本考案による光加熱処理装置は、本実施例中に述べた用
途の他に、例えば、InP化合物半導体のイオン注入層を
ホスフィン(PH3)ガス中で活性化処理を行うような場
合に用いることも可能である。
The light heat treatment apparatus according to the present invention may be used, for example, in the case where the ion implantation layer of InP compound semiconductor is subjected to activation treatment in phosphine (PH 3 ) gas, in addition to the use described in this embodiment. Is also possible.

〔考案の効果〕[Effect of device]

以上詳述したように、本考案による光加熱処理装置は、
輻射光吸収効率のよいサセプタ上に載置した半導体ウェ
ハの温度が透明石英管の壁を介して放射温度計を用いて
直接測定・制御され、光加熱ランプからの直接入射光に
よる妨害をうけることなく正確な光加熱処理が可能とな
る。サセプタの厚さが最適値に選ばれるので、熱応答特
性も優れている。熱電対測温による従来法と比較して、
半導体ウェハ汚染の心配がなく、また半導体ウェハその
ものを測温するので温度制御が精度よく行われる。
As described in detail above, the light heat treatment apparatus according to the present invention is
The temperature of a semiconductor wafer mounted on a susceptor with a high efficiency of absorbing radiant light is directly measured and controlled using a radiation thermometer through the wall of a transparent quartz tube, and is interfered by the direct incident light from a light heating lamp. Accurate light heat treatment is possible. Since the thickness of the susceptor is selected to be the optimum value, the thermal response characteristics are also excellent. Compared with the conventional method by thermocouple temperature measurement,
There is no concern about contamination of the semiconductor wafer, and the temperature of the semiconductor wafer itself is measured, so that temperature control is performed accurately.

また、CaF2等の覗き窓を介して放射温度計により温度制
御する従来の光加熱処理装置と比較すると、耐熱接着剤
等による接着部が存在しないので信頼性が向上し、アル
シンやホスフィン等有毒ガスを用いる加熱処理が安全に
行なえる。更にまた透明石英管の構造が簡単なので、保
守が容易でかつ安価に作成できる。更に半導体ウェハと
放射温度計との間には、透明石英管の壁以外に障害物と
なるものが存在しないので、半導体ウェハの多数枚チャ
ージによる生産用大型炉での多点測温・制御や、1枚の
半導体ウェハ上を走査しながら測温することが容易に可
能となるなど、半導体装置の製造プロセスにおける寄与
は大きい。
In addition, compared with the conventional optical heat treatment device that controls the temperature with a radiation thermometer through a viewing window such as CaF 2 , reliability is improved because there is no adhesive part such as heat resistant adhesive, and arsine, phosphine, etc. are available. The heat treatment using poisonous gas can be performed safely. Furthermore, since the structure of the transparent quartz tube is simple, it is easy to maintain and can be manufactured at low cost. Furthermore, since there are no obstacles between the semiconductor wafer and the radiation thermometer other than the wall of the transparent quartz tube, multipoint temperature measurement / control in a large production furnace by charging many semiconductor wafers This makes a great contribution to the manufacturing process of a semiconductor device, such that the temperature can be easily measured while scanning one semiconductor wafer.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案による光加熱処理装置を示す図、第2
図および第3図は従来の光加熱処理装置の例を示す図、
第4図は放射温度計の検出素子、光加熱ランプ光源およ
び各材料の透過波長の波長範囲を示す図である。 1……半導体ウェハ 2……サセプタ 3……保持治具 4……透明石英管 5……放射温度計 6……光加熱ランプ
FIG. 1 is a view showing a light heating apparatus according to the present invention, and FIG.
FIG. 3 and FIG. 3 are views showing an example of a conventional light heat treatment apparatus,
FIG. 4 is a diagram showing the wavelength range of the transmission wavelength of the detection element of the radiation thermometer, the light source of the light heating lamp, and each material. 1 ... Semiconductor wafer 2 ... Susceptor 3 ... Holding jig 4 ... Transparent quartz tube 5 ... Radiation thermometer 6 ... Optical heating lamp

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】透明石英からなる保持治具を透明石英管の
内部に配置し、 炭素および炭化ケイ素のうちの少なくとも一つの材料か
らなり、1mm以上5mm以下の厚さをもち、半導体ウェハを
直接載置するサセプタを上記保持治具で保持し、 光加熱ランプを上記透明石英管の外部でかつ、上記サセ
プタの下方に配置し、 放射温度計を上記透明石英管の外部でかつ、上記半導体
ウェハをのぞむ位置に配置し、 上記放射温度計により、上記半導体ウェハの温度を測定
・制御することを特徴とする光加熱処理装置。
1. A holding jig made of transparent quartz is arranged inside a transparent quartz tube, made of at least one material of carbon and silicon carbide, and having a thickness of 1 mm or more and 5 mm or less, directly bonding a semiconductor wafer. The susceptor to be placed is held by the holding jig, the light heating lamp is placed outside the transparent quartz tube and below the susceptor, and the radiation thermometer is placed outside the transparent quartz tube and the semiconductor wafer. An optical heat treatment apparatus which is arranged at a position where the temperature of the semiconductor wafer is measured and controlled by the radiation thermometer.
JP1988156678U 1988-12-02 1988-12-02 Light heat treatment device Expired - Lifetime JPH0739228Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1988156678U JPH0739228Y2 (en) 1988-12-02 1988-12-02 Light heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1988156678U JPH0739228Y2 (en) 1988-12-02 1988-12-02 Light heat treatment device

Publications (2)

Publication Number Publication Date
JPH0276835U JPH0276835U (en) 1990-06-13
JPH0739228Y2 true JPH0739228Y2 (en) 1995-09-06

Family

ID=31435431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1988156678U Expired - Lifetime JPH0739228Y2 (en) 1988-12-02 1988-12-02 Light heat treatment device

Country Status (1)

Country Link
JP (1) JPH0739228Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014220331A (en) * 2013-05-07 2014-11-20 株式会社リコー Electromagnetic wave irradiation apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60211947A (en) * 1984-04-06 1985-10-24 Hitachi Ltd Annealing device by indirect heating

Also Published As

Publication number Publication date
JPH0276835U (en) 1990-06-13

Similar Documents

Publication Publication Date Title
Roozeboom et al. Rapid thermal processing systems: A review with emphasis on temperature control
JP3119641B2 (en) Vertical heat treatment equipment
WO1998038673A1 (en) Substrate temperature measuring instrument, method of measuring substrate temperature, substrate heating method and heat treatment device
KR960013995B1 (en) Method for measuring surface temperature of semiconductor wafer substrate and heat-treating apparatus
KR101624217B1 (en) Apparatus including heating source reflective filter for pyrometry
US7075037B2 (en) Heat treatment apparatus using a lamp for rapidly and uniformly heating a wafer
US20010036706A1 (en) Thermal processing apparatus for introducing gas between a target object and a cooling unit for cooling the target object
JP2007524828A (en) Thermo-optic filter and infrared sensor using the same
JPH06120149A (en) System and method for monitoring of particles
TW200842332A (en) Substrate temperature measurement by infrared transmission
JPH07134069A (en) Method for monitoring temperature of substrate
JPH0739228Y2 (en) Light heat treatment device
JPH0691147B2 (en) Bonding wafer inspection method
JPS6037116A (en) Optical irradiating furnace
US6140145A (en) Integrated infrared detection system
JP3042229B2 (en) Substrate heating device
JP2001093882A (en) Temperature measuring device and vacuum treating device equipped with the same
Yuasa et al. Single crystal silicon micromachined pulsed infrared light source
Lassig et al. Kinetics of rapid thermal oxidation of silicon
JPS60137027A (en) Optical irradiation heating method
JPH10144618A (en) Heater for manufacturing semiconductor device
JPH0442025A (en) Method and apparatus for measuring temperature of wafer
JP2001221689A (en) Infrared light source and infrared gas analyzer
KR930001898B1 (en) Vacuum reaction furnace
JPH07151606A (en) Instrument for measuring temperature of substrate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term