JPH0736946B2 - Manufacturing method of corrosion resistant high strength marine propeller - Google Patents

Manufacturing method of corrosion resistant high strength marine propeller

Info

Publication number
JPH0736946B2
JPH0736946B2 JP62163919A JP16391987A JPH0736946B2 JP H0736946 B2 JPH0736946 B2 JP H0736946B2 JP 62163919 A JP62163919 A JP 62163919A JP 16391987 A JP16391987 A JP 16391987A JP H0736946 B2 JPH0736946 B2 JP H0736946B2
Authority
JP
Japan
Prior art keywords
propeller
present
manufacturing
fatigue strength
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62163919A
Other languages
Japanese (ja)
Other versions
JPS6411065A (en
Inventor
信太郎 松尾
正洋 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP62163919A priority Critical patent/JPH0736946B2/en
Publication of JPS6411065A publication Critical patent/JPS6411065A/en
Publication of JPH0736946B2 publication Critical patent/JPH0736946B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は優れた耐食性と高靭性および高腐食疲労強度を
併わせもつ舶用プロペラ(インペラも含む)の製造法に
関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a marine propeller (including an impeller) having excellent corrosion resistance, high toughness, and high corrosion fatigue strength.

(従来の技術) 従来から、舶用プロペラ材料には銅合金系材料が使用さ
れている。銅合金の内、プロペラ材として多く使用され
ているニツケルアルミニウム青銅鋳物でも、舶用プロペ
ラ材料にとつて最も重要な海水中での腐食疲労強度は18
kgf/mm2(繰返数2×107回)程度である。
(Prior Art) Conventionally, copper alloy-based materials have been used as marine propeller materials. Among nickel alloy bronze castings, which are widely used as propeller materials among copper alloys, the most important corrosion fatigue strength in marine water is 18 for marine propeller materials.
It is about kgf / mm 2 (repeated number 2 × 10 7 times).

従つて腐食疲労強度の高いプロペラ材料が開発されれば
プロペラ翼厚を薄くすることが可能になり、軽量で高効
率なプロペラが設計できる。
Therefore, if a propeller material with high corrosion fatigue strength is developed, the propeller blade thickness can be reduced, and a lightweight and highly efficient propeller can be designed.

このようなプロペラを具備する船舶は従来の船舶より推
進効率を向上させることができ、船舶の省エネルギーに
大きく貢献できる。また、寒冷地域を航行する船舶では
氷塊との接触を考慮すると衝撃値の高い材料が好まし
い。
A ship equipped with such a propeller can improve propulsion efficiency more than a conventional ship, and can greatly contribute to energy saving of the ship. Further, in a ship traveling in a cold region, a material having a high impact value is preferable in consideration of contact with an ice block.

このような理由から海水中での高い腐食疲労強度と高い
衝撃値を有するステンレス系プロペラ材料の開発が要望
されていた。
For these reasons, there has been a demand for the development of a stainless steel propeller material having a high corrosion fatigue strength in seawater and a high impact value.

しかし、ステンレス系プロペラ鋳物はステンレス溶湯を
鋳物砂で製作した鋳型(砂型)で鋳造して、型ばらしし
た鋳物を熱処理するのが通例であつた。熱処理は炭化物
を固溶させて腐食疲労強度を向上させるため900〜1,150
℃の高温で行われ、ステンレス系プロペラ実用化の隘路
であつた。
However, in the case of a stainless steel propeller casting, it is customary to cast a molten stainless steel in a mold (sand mold) made of foundry sand and heat treat the cast product. The heat treatment is 900 to 1,150 to improve the corrosion fatigue strength by dissolving the carbide in solid solution.
It was carried out at a high temperature of ℃, and was a bottleneck for the practical use of stainless steel propellers.

また、重量が20〜90トンもある大型プロペラ鋳物では熱
伝導率の低い鋳物砂で形成された砂型では冷却速度が約
0.1℃/minと著しく遅く質量効果による機械的性質の低
下が大きかつた。さらにプロペラの場合、曲面形状をし
ており、ピツチ、レーキなどが制限されているため、こ
れらの熱処理による変形がステンレス系プロペラ実用化
上の問題であつた。
Also, for large propeller castings with a weight of 20 to 90 tons, the cooling rate is about the same for sand molds made of molding sand with low thermal conductivity.
Remarkably slow at 0.1 ° C / min, and the deterioration of mechanical properties due to the mass effect was large. Further, in the case of a propeller, since it has a curved shape and pitches, rakes, etc. are limited, deformation due to these heat treatments has been a problem in practical application of stainless steel propellers.

(発明が解決しようとする問題点) 本発明は、海水中で高い腐食疲労強度を有すると共に、
衝撃値の優れたプロペラの製造法を提供しようとするも
のである。
(Problems to be Solved by the Invention) The present invention has high corrosion fatigue strength in seawater,
It is intended to provide a method for manufacturing a propeller having an excellent impact value.

(問題点を解決するための手段) 本発明は重量%で炭素;0.08%以下、珪素;0.1〜1.5%、
マンガン;0.1〜3%、クロム;16〜19%、ニッケル;4.5
〜7.5%、モリブデン;0.5〜2%および通常の不純物を
含有し、残部が実質的に鉄からなるステンレス鋼溶湯を
冷却可能なプロペラ鋳型に注湯し、融点から500℃の間
を急冷する高強度舶用プロペラの製造法である。
(Means for Solving the Problems) In the present invention, carbon in weight%; 0.08% or less; silicon; 0.1 to 1.5%;
Manganese; 0.1-3%, Chromium; 16-19%, Nickel; 4.5
~ 7.5%, molybdenum; 0.5 ~ 2% and ordinary impurities, the balance is stainless steel molten metal consisting essentially of iron is poured into a coolable propeller mold and rapidly cooled between the melting point and 500 ° C. This is a method for manufacturing a strong marine propeller.

なお本発明にいうプロペラには、インペラを含む意味で
用いられる。
The propeller used in the present invention is meant to include an impeller.

本発明は高耐食性および高い腐食疲労強度が得られるよ
うに化学組成を限定している点、及び鋳造後熱処理を必
要としない点を特徴とするものである。
The present invention is characterized by limiting the chemical composition so as to obtain high corrosion resistance and high corrosion fatigue strength, and not requiring heat treatment after casting.

熱処理を不要とするため、本発明では炭化物の溶解度が
減少する900℃以下を急冷することによつて炭化物を固
溶させ、従来実施されていた900〜1000℃の再熱処理と
同じ作用をさせるものである。このため、鋳型を鋳物砂
と異なり、格段に熱伝導率のよい金属粒で形成し、かつ
鋳型内に冷却水の貫流できる金属管を埋めこんで造型し
たものを使用するものである。これにより従来鋳型の熱
伝達の悪い砂型冷却と異なり、砂よりも20〜30倍も熱伝
導のよい金属粒よりなる鋳型を用いる上、さらに冷却水
を通して強制的に冷却させるので冷却速度は砂型に比較
して著しく大きくなる。
In order to eliminate the need for heat treatment, in the present invention, the solubility of carbide is reduced to 900 ° C or lower to rapidly solidify the carbide, and the same action as that of the reheat treatment of 900 to 1000 ° C that has been conventionally performed is performed. Is. For this reason, unlike the molding sand, the mold is formed of metal particles having a remarkably good thermal conductivity, and a metal pipe through which cooling water can flow is embedded in the mold for molding. As a result, unlike sand mold cooling, which has poor heat transfer in conventional molds, a mold made of metal particles with 20 to 30 times better thermal conductivity than sand is used, and cooling water is forcedly cooled, so the cooling rate is It will be significantly larger in comparison.

従来のステンレス系舶用プロペラ材は耐食性を保持する
とと共に機械的性質を改善するため900〜1,000℃の溶体
化処理は避けることできなかつた。
Conventional stainless steel propeller materials for marine vessels maintain corrosion resistance and improve mechanical properties, so solution treatment at 900 to 1,000 ℃ cannot be avoided.

しかし、本発明は鋳造後、融点から500℃迄を急冷する
ことにより、900〜1,1500℃の再加熱を必要としないの
で、高温加熱時のプロペラ変形がない上に省エネルギー
になる。
However, since the present invention does not require reheating at 900 to 1,1500 ° C by rapidly cooling from the melting point to 500 ° C after casting, there is no propeller deformation during high temperature heating and energy saving.

また、従来の熱処理ではクロム炭化物は固溶できてもδ
フエライトの形状は改善することができず大型プロペラ
材の衝撃値の向上は望めなかつた。
In addition, even if chromium carbide can form a solid solution in the conventional heat treatment,
The shape of the ferrite could not be improved and the impact value of the large propeller material could not be improved.

しかし、本発明は冷却可能なプロペラ鋳型に注湯し、凝
固区間を急冷することにより、大型プロペラでも微細な
δフエライトを得ることができ、高い衝撃値が得られ
る。
However, in the present invention, fine δ-ferrite can be obtained even with a large propeller by pouring molten metal into a coolable propeller mold and rapidly cooling the solidification section, and a high impact value can be obtained.

本発明は舶用プロペラのみでなく海水中で腐食疲労強度
を必要とするインペラなど耐海水材料に有利に適用でき
る。
INDUSTRIAL APPLICABILITY The present invention can be advantageously applied not only to marine propellers but also to seawater-resistant materials such as impellers that require corrosion fatigue strength in seawater.

(作用) 本発明の舶用プロペラにおいて、その合金組成を前述の
ように規定したのは以下の理由による。
(Operation) In the marine propeller of the present invention, the alloy composition thereof is defined as described above for the following reason.

〔炭素C〕[Carbon C]

クロム炭化物を形成し、本発明のプロペラの耐食性、腐
食疲労強度を左右する重要な元素である。0.08%以上で
はクロム炭化物が析出し、耐食性や腐食疲労強度を害す
るので上限を0.08%とする。(以下、%は重量%を意味
する) 〔珪素Si〕 溶解時の脱酸剤として、0.1%以上添加する必要があ
る。しかし添加量が1.5%を超えると脆化するので上限
を1.5%とする。
It is an important element that forms chromium carbide and affects the corrosion resistance and corrosion fatigue strength of the propeller of the present invention. If it is 0.08% or more, chromium carbide is precipitated, which impairs corrosion resistance and corrosion fatigue strength, so the upper limit is made 0.08%. (Hereinafter,% means% by weight) [Silicon Si] It is necessary to add 0.1% or more as a deoxidizing agent at the time of melting. However, if the amount added exceeds 1.5%, the material becomes brittle, so the upper limit is made 1.5%.

〔マンガンMn〕(Manganese Mn)

珪素と同様、脱酸剤として0.1%以上の添加が必要であ
るが、3%を越えると脆化するので上限を3%とする。
Similar to silicon, it is necessary to add 0.1% or more as a deoxidizer, but if it exceeds 3%, embrittlement occurs, so the upper limit is 3%.

〔クロムCr〕(Chromium Cr)

本発明において、耐食性を保持するために最も有効な元
素で、耐食性保持の点から16%以上添加することが望ま
しい。しかしクロムはフエライト生成元素であることか
らフエライト量を15%以下に制限することゝ、クロム量
が19%を超えると脆化が著しく、腐食疲労強度を低下さ
せるので上限を19%とする。
In the present invention, it is the most effective element for maintaining the corrosion resistance, and it is desirable to add 16% or more from the viewpoint of maintaining the corrosion resistance. However, since chromium is a ferrite-generating element, the amount of ferrite is limited to 15% or less. When the amount of chromium exceeds 19%, embrittlement is remarkable and the corrosion fatigue strength decreases, so the upper limit is 19%.

〔ニツケルNi〕[Nickel Ni]

クロムの添加量が、上記のとおり、16〜19%の範囲でニ
ツケルを添加して、常温でマルテンサイト組織を得、し
かも、耐食性を保持するためには、最低4.5%のニツケ
ルが必要である。一方ニツケル量が7.5%を超えるとオ
ーステナイト相量が多くなり、特に耐力の低下を招くの
でその上限を7.5%とする。
As described above, nickel is added in the range of 16 to 19% to obtain a martensite structure at room temperature, and at least 4.5% nickel is required to maintain corrosion resistance. . On the other hand, when the amount of nickel exceeds 7.5%, the amount of austenite phase increases, and particularly the yield strength decreases, so the upper limit is made 7.5%.

〔モリブデンMo〕[Molybdenum Mo]

耐食性の向上に有効な元素で0.5%以上の添加が必要で
ある。しかし2%を超えると逆に強度が低く脆性も著し
いのでその上限を2%とする。
It is an element effective for improving the corrosion resistance and must be added in an amount of 0.5% or more. However, if it exceeds 2%, the strength is low and the brittleness is remarkable, so the upper limit is made 2%.

〔実施例〕〔Example〕

次に、本発明のプロペラ製造法の一実施例を示し、本発
明の効果を説明する。
Next, one example of the propeller manufacturing method of the present invention will be shown to explain the effects of the present invention.

第1表は本発明プロペラ材料の化学成分を示したもの
で、試料NO.1〜NO4は本発明材料、試料NO.5〜NO.11は比
較材料、試料NO.12〜13は現用プロペラ材料でその化学
成分を表2に示す。
Table 1 shows the chemical composition of the propeller material of the present invention. Samples NO.1 to NO4 are the materials of the present invention, samples NO.5 to NO.11 are comparative materials, and samples NO.12 to 13 are the current propeller materials. The chemical components are shown in Table 2.

これらの機械的性質、腐食疲労強度を第3表に、また鋳
型、冷却方法、熱処理などの製造条件を同じく第3表に
示す。
Table 3 shows these mechanical properties and corrosion fatigue strength, and Table 3 also shows manufacturing conditions such as mold, cooling method and heat treatment.

化学成分が本発明範囲外では冷却速度の大きい本発明の
製造法でも供試材NO.5〜NO.8にみられるように腐食疲労
強度は23kgf/mm2以下と本発明材の29〜30kgf/mm2に比較
して著しく低い。
Corrosion fatigue strength is 23 kgf / mm 2 or less and 29 to 30 kgf of the present invention material as seen in the test materials NO.5 to NO.8 even in the production method of the present invention where the chemical composition is outside the scope of the present invention and the cooling rate is large. Remarkably lower than / mm 2 .

また、化学成分が本発明内でも、従来の砂型で製作し、
900〜1000℃熱処理したものはNO.9〜NO.11の合金にみら
れるように腐食疲労強度が24〜26kg/m2と本発明材の29
〜30kgf/mm2に比較して低い値しか得られないし、衝撃
値が本発明材に比較して低い。
In addition, even if the chemical composition is within the scope of the present invention, it is manufactured with a conventional sand mold,
The one that was heat-treated at 900 to 1000 ℃ had a corrosion fatigue strength of 24 to 26 kg / m 2 as shown in the alloys of NO.9 to NO.
Only a low value can be obtained as compared to -30 kgf / mm 2 , and the impact value is low as compared with the material of the present invention.

本発明で鋳型を形成する金属粒としては鋼粒を使用し、
鋼粒の粒径は0.5mmから0.08mmのもので粘結材にはセメ
ントを用い自然硬化させた鋳型を用いた。また、鋼粒鋳
型内に配置した金属製冷却管には市販の炭素鋼管を使用
し、水道水を冷却水として使用した。また試験材は50kg
高周波炉で溶解し、それぞれの鋳型に注湯した。
Steel particles are used as the metal particles forming the mold in the present invention,
The grain size of the steel grains was 0.5 mm to 0.08 mm, and cement was used as the binder for the natural hardening mold. A commercially available carbon steel pipe was used as the metal cooling pipe arranged in the steel grain mold, and tap water was used as cooling water. The test material is 50 kg
It was melted in a high frequency furnace and poured into each mold.

500℃以下を冷却してもかまわないが、炭化物析出によ
る鋭敏化作用は500℃以下はほとんど認められないの
で、実用性の面から急冷は500℃迄とした。
It may be cooled to 500 ° C or lower, but since the sensitizing effect due to the precipitation of carbides is hardly recognized at 500 ° C or lower, the rapid cooling was set to 500 ° C from the viewpoint of practicality.

供試材の腐食疲労強度試験はウエラー式回転曲げ腐食疲
労試験機を使用し、繰返し速度3,400rpm、試験片直径6m
m、天然海水中、室温などの試験条件で実施した。
For the corrosion fatigue strength test of the test material, use a werer type rotary bending corrosion fatigue tester, repetition rate 3,400 rpm, test piece diameter 6 m
m, natural seawater, room temperature and other test conditions.

本発明で高い腐食疲労強度と高い衝撃値が得られたのは
次のような本発明の特徴による。
The high corrosion fatigue strength and the high impact value obtained by the present invention are as follows.

(1)化学成分を限定し、耐食性と機械的性質の優れた
範囲の化学成分にしたこと。
(1) The chemical components are limited so that they have excellent corrosion resistance and mechanical properties.

(2)凝固点近傍から急冷するため従来の砂型鋳物では
得られない結晶粒およびδフエライトの微細な鋳物が得
られること。
(2) Since it is rapidly cooled from near the freezing point, it is possible to obtain a fine casting of crystal grains and δ-ferrite, which cannot be obtained by a conventional sand casting.

(3)凝固点近傍だけでなく500℃迄急冷することによ
り、従来の鋳物にみられる結晶粒および析出物の粗大成
長を防止したこと。
(3) Preventing coarse growth of crystal grains and precipitates found in conventional castings by quenching not only near the freezing point but also to 500 ° C.

(4)急冷されるため金属内のガス状欠陥が少ないこ
と。
(4) There are few gaseous defects in the metal because it is rapidly cooled.

(発明の効果) 上述したように本発明によると海水中の高い腐食疲労強
度を有するだけでなく健全な鋳物が得られるなどの効果
を有し、従つて本発明方法を舶用プロペラ、インペラな
ど海水中で腐食疲労強度を必要とする機器材料の製造に
使用すると機器の小型軽量化が可能となり、船舶の推進
効率の向上をもたらし省エネルギーに大きく貢献でき
る。
(Effects of the Invention) As described above, according to the present invention, not only it has a high corrosion fatigue strength in seawater but also a sound casting can be obtained. Among them, when it is used to manufacture equipment materials that require corrosion fatigue strength, the equipment can be made smaller and lighter, which improves the propulsion efficiency of ships and contributes greatly to energy conservation.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】重量%で炭素;0.08%以下、珪素;0.1〜1.5
%、マンガン;0.1〜3%、クロム;16〜19%、ニッケル;
4.5〜7.5%、モリブデン;0.5〜2%および通常の不純物
を含有し、残部が実質的に鉄からなるステンレス鋼溶湯
を冷却可能なプロペラ鋳型に注湯し、融点から500℃の
間を急冷することを特徴とする高強度舶用プロペラの製
造法。
1. Carbon by weight%; 0.08% or less; Silicon; 0.1-1.5
%, Manganese; 0.1-3%, chromium; 16-19%, nickel;
4.5-7.5%, molybdenum; 0.5-2% and usual impurities are contained, and the balance is made of iron, and the stainless steel melt is poured into a coolable propeller mold and quenched between the melting point and 500 ° C. A method for manufacturing a high-strength marine propeller characterized by the following.
JP62163919A 1987-07-02 1987-07-02 Manufacturing method of corrosion resistant high strength marine propeller Expired - Lifetime JPH0736946B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62163919A JPH0736946B2 (en) 1987-07-02 1987-07-02 Manufacturing method of corrosion resistant high strength marine propeller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62163919A JPH0736946B2 (en) 1987-07-02 1987-07-02 Manufacturing method of corrosion resistant high strength marine propeller

Publications (2)

Publication Number Publication Date
JPS6411065A JPS6411065A (en) 1989-01-13
JPH0736946B2 true JPH0736946B2 (en) 1995-04-26

Family

ID=15783315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62163919A Expired - Lifetime JPH0736946B2 (en) 1987-07-02 1987-07-02 Manufacturing method of corrosion resistant high strength marine propeller

Country Status (1)

Country Link
JP (1) JPH0736946B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111377043A (en) * 2020-03-25 2020-07-07 安徽志恒智能装备制造有限公司 Propeller casting process and propeller

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59140327A (en) * 1983-01-31 1984-08-11 Kobe Steel Ltd Manufacture of corrosion resistant stainless steel material
JPS59179263A (en) * 1983-03-30 1984-10-11 Komatsu Ltd Local hardening method of cast iron
JPS6092455A (en) * 1983-10-26 1985-05-24 Hitachi Ltd Cast steel for water turbine for seawater pump

Also Published As

Publication number Publication date
JPS6411065A (en) 1989-01-13

Similar Documents

Publication Publication Date Title
JP7457843B2 (en) Steel plate for polar marine construction and its manufacturing method
WO2014139453A1 (en) Ultrahigh strength ferritic steel strengthened by using cu-rich nanoclusters, and manufacturing thereof
CN110724872A (en) High manganese austenitic steel with ultralow-temperature impact toughness and manufacturing method of hot rolled plate thereof
CN111363905B (en) Heat treatment method for casting alloyed high manganese steel frog
CN108715951A (en) A kind of the nickel chromium iron system high temperature alloy and preparation method of heterogeneous structure
CN103305772B (en) A kind of high rigidity slag stock pump pump housing and preparation method thereof
CN114717467A (en) Hypereutectic high-chromium cast iron material, preparation method and application thereof
JP3483493B2 (en) Cast steel for pressure vessel and method of manufacturing pressure vessel using the same
WO2023165611A1 (en) Steel for high-toughness corrosion-resistant christmas tree valve bodies smelted at high scrap ratio, and heat treatment method and production method therefor
CN115261713B (en) Preparation method of high-hardness high-toughness wear-resistant high-chromium cast iron
CN114875318B (en) Dispersed delta phase strengthened low-density high-strength and high-toughness steel and manufacturing method thereof
JP3328967B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance
CN112877610B (en) Pitting-resistant multi-component precipitation hardening stainless steel and heat treatment process thereof
JPH0432145B2 (en)
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JPH0736946B2 (en) Manufacturing method of corrosion resistant high strength marine propeller
CN114807769A (en) Double-phase heat-resistant steel with controllable TCP phase distribution and application thereof
CN114635077A (en) Super austenitic stainless steel and preparation method thereof
CN111363969A (en) Corrosion-resistant marine accessory and manufacturing method thereof
CN111155030A (en) Marine air valve steel and preparation process thereof
JP3576234B2 (en) Cast steel for steam turbine cabin or pressure vessel
JPH1036944A (en) Martensitic heat resistant steel
CN103233170A (en) Steel for hot working mold and production method thereof
JPS63183156A (en) Manufacture of marine propeller
JP3250263B2 (en) Manufacturing method of martensitic stainless steel seamless steel pipe excellent in toughness and stress corrosion cracking resistance