JPH0735861A - Distance measuring equipment - Google Patents

Distance measuring equipment

Info

Publication number
JPH0735861A
JPH0735861A JP3270062A JP27006291A JPH0735861A JP H0735861 A JPH0735861 A JP H0735861A JP 3270062 A JP3270062 A JP 3270062A JP 27006291 A JP27006291 A JP 27006291A JP H0735861 A JPH0735861 A JP H0735861A
Authority
JP
Japan
Prior art keywords
light
beam splitter
photodetector
split
linearly polarized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3270062A
Other languages
Japanese (ja)
Inventor
Norito Suzuki
範人 鈴木
Akito Okamoto
炳人 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Izumi Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP3270062A priority Critical patent/JPH0735861A/en
Publication of JPH0735861A publication Critical patent/JPH0735861A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To allow accurate measurement of phase difference which is not susceptible to the fluctuation in the quantity of reflected light even at high optical beat frequency. CONSTITUTION:In the distance measuring equipment, one linearly polarized light 41 of two adjacent longitudinal modes emitted from a gas laser source 2 having an internal resonator is passed through a quarter wavelength plate having orientation of 45 deg. and converted into a circularly polarized light 43. Linearly polarized light 42 of the other mode is passed through a half wavelength plate 28 and optically rotated by 45 deg.. Both lights 43, 44 are superposed and split by means of a beam splitter 22. One split beam passes through a polarized beam spiitter 30 and a quarter wavelength plate 32 of orientation 45 deg. and impinges on an object 10 and the reflected light therefrom impinges on an optical detector 60. The other split beam passes, as a reference light, through a polarized beam splitter 34 and split in two directions toward optical detectors 62, 64.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、強度変調されたレー
ザ光の被測定物による反射光と基準光との間の位相差を
測定することにより、被測定物までの距離(絶対距離)
を測定する距離測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention measures the phase difference between the reflected light of an intensity-modulated laser beam reflected by an object to be measured and a reference light to determine the distance (absolute distance) to the object to be measured.
The present invention relates to a distance measuring device for measuring.

【0002】[0002]

【従来の技術】この種の距離測定装置の従来例を図3に
示す。
2. Description of the Related Art A conventional example of this type of distance measuring device is shown in FIG.

【0003】レーザ光源2は、例えば内部鏡型He −N
e レーザのような、内部共振器を有する気体レーザ光源
であり、このレーザ光源2の隣合う二つの縦モードは直
線偏光してしかも振動方向が互いに直交している。この
二つのモードの直線偏光31、32を方位が45°の偏
光子6を通すと、両モード間隔の周波数(例えば1〜
1.2GHz)の光ビートが発生し正弦波状に強度変調
された光33が得られる。
The laser light source 2 is, for example, an internal mirror type He-N.
This is a gas laser light source having an internal resonator, such as an e-laser. Two adjacent longitudinal modes of the laser light source 2 are linearly polarized and their vibration directions are orthogonal to each other. When these two modes of linearly polarized light 31 and 32 are passed through the polarizer 6 having an azimuth of 45 °, the frequencies (eg, 1 to
An optical beat of 1.2 GHz) is generated, and the light 33 intensity-modulated in a sine wave is obtained.

【0004】この光33をビーム分割器8で二つに分割
し、一方の光34を被測定物10に入射させ、それから
の反射光34をビーム分割器8で反射させて光検出器1
2に導いてそこで電気信号に変換する一方、ビーム分割
器8で分割された他方の光35を基準光として光検出器
14に導いてそこで電気信号に変換する。両光検出器1
2、14で得られる、光ビート周波数を有する二つの交
流信号間には、ビーム分割器8から光検出器14に至る
光路長と、ビーム分割器8から被測定物10間を往復し
て光検出器12に至る光路長との差に相当する位相差が
存在するので、両交流信号の位相差を位相差計16で計
測することにより、光が被測定物10との間を往復した
時間を割り出し、それから被測定物10までの距離(絶
対距離)を求めることができる。
This light 33 is split into two by the beam splitter 8, one light 34 is made incident on the object to be measured 10, and the reflected light 34 from it is reflected by the beam splitter 8 to be detected by the photodetector 1.
On the other hand, the light is guided to 2 and converted into an electric signal there, while the other light 35 split by the beam splitter 8 is guided to the photodetector 14 as a reference light and converted into an electric signal there. Both photodetectors 1
Between the two AC signals having the optical beat frequency, which are obtained in 2 and 14, the optical path length from the beam splitter 8 to the photodetector 14 and the light traveling back and forth between the beam splitter 8 and the DUT 10 are measured. Since there is a phase difference corresponding to the difference with the optical path length reaching the detector 12, the time during which light travels back and forth between the object to be measured 10 is measured by measuring the phase difference between both AC signals with the phase difference meter 16. Then, the distance (absolute distance) to the DUT 10 can be obtained.

【0005】[0005]

【発明が解決しようとする課題】上記のような距離測定
装置においては、二つの縦モード間隔の周波数を高くす
るほど測定の感度が高くなるので好ましいが、その反
面、位相差計16では高い周波数におけるわずかな位相
差を測定しなければならないので位相差測定が難しくな
り、そのため従来の装置構成では測定感度の向上に関し
限界がある。
In the distance measuring device as described above, the higher the frequency of the two longitudinal mode intervals, the higher the sensitivity of the measurement becomes, which is preferable. However, the phase difference meter 16 has a high frequency. Since it is necessary to measure a slight phase difference at, the phase difference measurement becomes difficult, and therefore there is a limit in improving the measurement sensitivity in the conventional device configuration.

【0006】例えば、位相差計16にはディジタル型の
ものやベクトル電圧計が考えられるが、位相差角度の最
小目盛を例えば2π/1000とすると、ディジタル型
では80MHz程度が限界であり、それ以上の周波数に
対しては現状ではベクトル電圧計を用いる必要がある。
しかし、ベクトル電圧計の場合でも、光ビート周波数が
1GHzに近づくと位相測定誤差が極端に大きくなる。
しかも上記従来の装置では、被測定物10による反射光
の光量が、被測定物10までの距離、被測定物10に光
が当たる場所、被測定物10の反射率等によって変化す
るので、光検出器12から出力される電気信号のレベル
も変化し、このことも高い周波数での位相差測定を難し
くしている。
For example, the phase difference meter 16 may be a digital type or a vector voltmeter, but if the minimum scale of the phase difference angle is, for example, 2π / 1000, the digital type has a limit of about 80 MHz and more. It is necessary to use a vector voltmeter for the frequency of.
However, even in the case of the vector voltmeter, the phase measurement error becomes extremely large when the optical beat frequency approaches 1 GHz.
Moreover, in the above-described conventional device, the amount of light reflected by the object to be measured 10 varies depending on the distance to the object to be measured 10, the position where the light is incident on the object to be measured 10, the reflectance of the object to be measured 10, The level of the electrical signal output from the detector 12 also changes, which also makes it difficult to measure the phase difference at high frequencies.

【0007】そこでこの発明は、高い光ビート周波数に
おいても、反射光量の変化の影響を受けることなく、正
確な位相差測定を可能にする光学系を有する距離測定装
置を提供することを主たる目的とする。
Therefore, it is a main object of the present invention to provide a distance measuring device having an optical system that enables accurate phase difference measurement without being affected by changes in the amount of reflected light even at high optical beat frequencies. To do.

【0008】[0008]

【発明の概要】この発明の距離測定装置は、強度変調さ
れたレーザ光の被測定物による反射光と基準光との間の
位相差を測定することにより被測定物までの距離を測定
する装置において、内部共振器を有する気体レーザ光源
と、このレーザ光源の隣合う二つの縦モードの一方のモ
ードの直線偏光を円偏光に変換する移相手段と、他方の
モードの直線偏光を45°旋光させるかまたは同光の4
5°方向の成分を取り出す偏光手段と、前記両手段から
得られる光を重ね合わせて干渉を起こさせる干渉手段と
を設け、この干渉手段からの光を前記強度変調されたレ
ーザ光として用いることを特徴とする。
SUMMARY OF THE INVENTION A distance measuring device of the present invention is a device for measuring a distance to an object to be measured by measuring a phase difference between a reflected light of an object to be measured and a reference light of intensity-modulated laser light. , A gas laser light source having an internal resonator, a phase shift means for converting linearly polarized light of one of two adjacent longitudinal modes of the laser light source into circularly polarized light, and linearly polarized light of the other mode by 45 ° Let or 4 of the same light
A polarizing means for extracting a component in the 5 ° direction and an interfering means for superimposing the light obtained from the both means to cause interference are provided, and the light from the interfering means is used as the intensity-modulated laser light. Characterize.

【0009】上記構成によれば、被測定物による反射光
と基準光との間の位相差にかかわる量を三角関数の演算
によって、しかも反射光量の変化の影響を受けることな
く求めるのに必要な正弦信号および余弦信号を光学的に
作り出すことができる。その結果、高い光ビート周波数
においても、反射光量の変化の影響を受けることなく、
正確な位相差測定が可能になり、それによって測定感度
の向上を図ることができる。
With the above arrangement, it is necessary to obtain the amount of the phase difference between the light reflected by the object to be measured and the reference light by the calculation of the trigonometric function and without being affected by the change in the amount of reflected light. Sine and cosine signals can be produced optically. As a result, even at high optical beat frequencies, without being affected by changes in the amount of reflected light,
Accurate phase difference measurement is possible, which can improve measurement sensitivity.

【0010】[0010]

【実施例】図1は、この発明の一実施例に係る距離測定
装置を示す構成図である。この実施例の距離測定装置は
次のように構成されている。
1 is a block diagram showing a distance measuring device according to an embodiment of the present invention. The distance measuring device of this embodiment is configured as follows.

【0011】即ち、レーザ光源2は、従来例の場合と同
様、内部共振器を有する気体レーザ光源であり、このレ
ーザ光源2の隣合う二つの縦モードの直線偏光41、4
2を第1の偏光ビーム分割器18で分離する。
That is, the laser light source 2 is a gas laser light source having an internal resonator, as in the case of the conventional example, and the two linearly polarized light beams 41, 4 of adjacent two longitudinal modes of the laser light source 2 are adjacent to each other.
2 is separated by the first polarized beam splitter 18.

【0012】分離された一方のモードの直線偏光41
は、方位が45°の第1の1/4波長板20を透過させ
て90°のリターデイションを与えて円偏光43に変換
した後、ビーム分割器22に入射させる。この実施例で
は、この1/4波長板20によって前述した移相手段を
構成している。
Linearly polarized light 41 of one mode separated
Is transmitted through the first quarter-wave plate 20 having an azimuth of 45 °, is given a retardation of 90 ° to be converted into circularly polarized light 43, and is then incident on the beam splitter 22. In this embodiment, the quarter-wave plate 20 constitutes the phase shifting means described above.

【0013】分離された他方のモードの直線偏光42
は、二つの反射器24、26で反射させて前記ビーム分
割器22に前記円偏光43側とは直角方向から入射させ
るのであるが、その間に、1/2波長板28を透過させ
て45°だけ偏光面を回転(即ち旋光)させる。それに
よって得られる直線偏光を図中に符号44で示す。この
実施例では、この1/2波長板28によって前述した偏
光手段を構成している。
Linearly polarized light 42 of the other mode separated
Is reflected by the two reflectors 24 and 26 and is made incident on the beam splitter 22 from a direction perpendicular to the circularly polarized light 43 side, and in the meantime, it is transmitted through the ½ wavelength plate 28 and 45 °. Only the plane of polarization is rotated (that is, optical rotation). The linearly polarized light obtained thereby is indicated by reference numeral 44 in the figure. In this embodiment, the half-wave plate 28 constitutes the above-mentioned polarization means.

【0014】ビーム分割器22に入射した円偏光43お
よび直線偏光44は、そこで重ね合わされると共に二方
向に分割される。分割された一方の光43、44は測定
光として第2の偏光ビーム分割器30に入射させ、他方
の光43、44は基準光として第3の偏光ビーム分割器
34に入射させる。
The circularly polarized light 43 and the linearly polarized light 44 incident on the beam splitter 22 are superposed there and split into two directions. One of the split lights 43 and 44 is made incident on the second polarized beam splitter 30 as measurement light, and the other light 43 and 44 is made incident on the third polarized beam splitter 34 as reference light.

【0015】偏光ビーム分割器30を透過するのは、円
偏光43のp成分および45°傾いた直線偏光44のp
成分のみであり、この両成分は干渉を起こす。即ち、こ
の偏光ビーム分割器30からは、強度変調された直線偏
光(光ビート)45が得られる。この直線偏光45のビ
ート周波数は、レーザ光源2からの二つの縦モードの直
線偏光41、42間の周波数である。この実施例では、
この偏光ビーム分割器30によって、偏光ビーム分割器
34と共に、前述した干渉手段を構成している。
The polarized beam splitter 30 transmits the p component of the circularly polarized light 43 and the p component of the linearly polarized light 44 inclined at 45 °.
There are only components, and both components cause interference. That is, the intensity-modulated linearly polarized light (optical beat) 45 is obtained from the polarized beam splitter 30. The beat frequency of the linearly polarized light 45 is the frequency between the linearly polarized lights 41 and 42 of the two longitudinal modes from the laser light source 2. In this example,
The polarized beam splitter 30 together with the polarized beam splitter 34 constitutes the above-mentioned interference means.

【0016】この直線偏光45を方位が45°の第2の
1/4波長板32を透過させると円偏光46になり、こ
れを被測定物10に入射させる。被測定物10からの反
射光も円偏光46であり、これを再び1/4波長板32
を透過させると、元の直線偏光45とは90°振動面が
ずれた直線偏光47となる。従ってこの直線偏光47
は、偏光ビーム分割器30で反射されて第1の光検出器
60に入射し、そこで電気信号S1 に変換される。
When this linearly polarized light 45 is transmitted through the second quarter-wave plate 32 having an azimuth angle of 45 °, it becomes circularly polarized light 46, which is incident on the object to be measured 10. The reflected light from the DUT 10 is also circularly polarized light 46, which is again converted into quarter wave plate 32.
Is transmitted, it becomes a linearly polarized light 47 whose vibration plane is shifted by 90 ° from the original linearly polarized light 45. Therefore, this linearly polarized light 47
Is reflected by the polarized beam splitter 30 and incident on the first photodetector 60, where it is converted into an electrical signal S 1 .

【0017】一方、前記ビーム分割器22で分割された
他方の光43、44は、第3の偏光ビーム分割器34に
入射させる。この偏光ビーム分割器34では、円偏光4
3のs成分および45°傾いた直線偏光44のs成分が
反射して干渉を起こし、強度変調された直線偏光(光ビ
ート)48が得られる一方、円偏光43のp成分および
直線偏光44のp成分が透過して干渉を起こし、強度変
調された直線偏光(光ビート)49が得られる。これら
の直線偏光48、49のビート周波数も、レーザ光源2
からの二つの縦モードの直線偏光41、42間の周波数
である。そして両直線偏光48、49は第2の光検出器
62および第3の光検出器64にそれぞれ入射し、そこ
で電気信号S2 およびS3 にそれぞれ変換される。この
実施例では、この偏光ビーム分割器34によっても、上
記偏光ビーム分割器30と同様、前述した干渉手段を構
成している。
On the other hand, the other light 43, 44 split by the beam splitter 22 is made incident on the third polarized beam splitter 34. In this polarized beam splitter 34, circularly polarized light 4
The s-component of 3 and the s-component of the linearly polarized light 44 inclined at 45 ° cause interference and produce intensity-modulated linearly polarized light (optical beat) 48, while the p-component of the circularly polarized light 43 and the linearly polarized light 44 The p component transmits and causes interference, and intensity-modulated linearly polarized light (optical beat) 49 is obtained. The beat frequencies of these linearly polarized light 48 and 49 are also the laser light source 2
Is a frequency between the linearly polarized light 41 and 42 of the two longitudinal modes. Both linearly polarized lights 48 and 49 then enter the second photodetector 62 and the third photodetector 64, respectively, where they are converted into electrical signals S 2 and S 3 , respectively. In this embodiment, the polarized beam splitter 34 also constitutes the above-mentioned interference means, like the polarized beam splitter 30.

【0018】ここで、レーザ光源2からの二つの縦モー
ドの直線偏光41、42間の角周波数をω、光検出器6
0に入射する反射光47と光検出器62および64に入
射する基準光48および49との間の位相差をφ、時間
をtとすると、各光検出器60、62および64から
は、それぞれ、数1または数2に示すような組合せの電
気信号S1 、S2 およびS3 が得られる。電気信号S1
にかかっている係数Aは、従来例の所で説明した反射光
量の変化を表すものであり、未知である。
Here, the angular frequency between the linearly polarized lights 41 and 42 of the two longitudinal modes from the laser light source 2 is ω, and the photodetector 6
Assuming that the phase difference between the reflected light 47 incident on 0 and the reference light 48 and 49 incident on the photodetectors 62 and 64 is φ and the time is t, from the photodetectors 60, 62 and 64, respectively, , The electric signals S 1 , S 2 and S 3 of the combination shown in the equation 1 or the equation 2 are obtained. Electrical signal S 1
The coefficient A that depends on V represents the change in the amount of reflected light described in the conventional example, and is unknown.

【0019】[0019]

【数1】S1 =Asin(ωt+φ) S2 =sinωt S3 =cosωt## EQU1 ## S 1 = A sin (ωt + φ) S 2 = sinωt S 3 = cosωt

【数2】S1 =Acos(ωt+φ) S2 =cosωt S3 =sinωt[Equation 2] S 1 = A cos (ωt + φ) S 2 = cosωt S 3 = sinωt

【0020】この電気信号S1 とS2 、および、電気信
号S1 とS3 とを、第1および第2のミキサ66および
68でそれぞれ掛け合わせると、数3または数4に示す
ような電気信号S4 およびS5 が得られる。
When the electric signals S 1 and S 2 and the electric signals S 1 and S 3 are multiplied by the first and second mixers 66 and 68, respectively, the electric signals as shown in Formula 3 or Formula 4 are obtained. The signals S 4 and S 5 are obtained.

【0021】[0021]

【数3】 S4 =S1 ・S2 =Asin(ωt+φ)・sinωt S5 =S1 ・S3 =Asin(ωt+φ)・cosωt[Equation 3] S 4 = S 1 · S 2 = A sin (ωt + φ) · sin ωt S 5 = S 1 · S 3 = A sin (ωt + φ) · cosωt

【数4】 S4 =S1 ・S2 =Acos(ωt+φ)・cosωt S5 =S1 ・S3 =Acos(ωt+φ)・sinωt[Equation 4] S 4 = S 1 · S 2 = Acos (ωt + φ) · cosωt S 5 = S 1 · S 3 = Acos (ωt + φ) · sin ωt

【0022】そしてこのような電気信号S4 およびS5
に基づいて、演算回路70において、前記位相差φにか
かわる量を算出する。その一例を示すと次のとおりであ
る。
And such electrical signals S 4 and S 5
Based on the above, the arithmetic circuit 70 calculates an amount related to the phase difference φ. The example is as follows.

【0023】即ち上記電気信号S4 およびS5 は、三角
関数の和と積の関係により、数5または数6のように変
換することができ、そのように変換した電気信号S4
5から、平均値を求める等して、直流成分のみを取り
出すと、数7に示すような電気信号S6 およびS7 が得
られる。
That is, the electric signals S 4 and S 5 can be converted as shown in Expression 5 or Expression 6 according to the relationship between the sum and product of trigonometric functions, and the electric signals S 4 thus converted,
If only the DC component is extracted from S 5 , for example, by calculating the average value, electric signals S 6 and S 7 as shown in Equation 7 are obtained.

【0024】[0024]

【数5】 S4 =(A/2){cosφ−cos(2ωt+φ)} S5 =(A/2){sin(2ωt+φ)+sinφ}[Equation 5] S 4 = (A / 2) {cosφ−cos (2ωt + φ)} S 5 = (A / 2) {sin (2ωt + φ) + sinφ}

【数6】 S4 =(A/2){cosφ+cos(2ωt+φ)} S5 =(A/2){sin(2ωt+φ)−sinφ}## EQU6 ## S 4 = (A / 2) {cosφ + cos (2ωt + φ)} S 5 = (A / 2) {sin (2ωt + φ) -sinφ}

【数7】S6 =(A/2)cosφ S7 =(A/2)sinφ[Equation 7] S 6 = (A / 2) cosφ S 7 = (A / 2) sinφ

【0025】そして、数7の両電気信号S6 、S7 の割
算を行うことにより、tanφを求めることができる。こ
のようにすれば、前述した反射光量の変化を表す係数A
は消えるので、反射光量の変化の影響を全く受けなくな
る。目的とする位相差φをこのtanφの形で指示しても
良いし、更に必要に応じてそれの逆三角関数を求めるこ
とにより、位相差φを算出することもできる。
Then, tan φ can be obtained by dividing both electric signals S 6 and S 7 of the equation ( 7 ). By doing so, the coefficient A representing the change in the amount of reflected light described above can be obtained.
Disappears, and is completely unaffected by changes in the amount of reflected light. The target phase difference φ may be indicated in the form of this tan φ, or the phase difference φ can be calculated by further obtaining the inverse trigonometric function of the tan φ.

【0026】このような三角関数の演算は、周波数ωが
高い(例えば前述したように1〜1.2GHz程度)場
合でも、極めて高い精度でしかも高速に行うことができ
るので、正確な位相差測定が可能になり、それによって
測定感度の向上を図ることができる。
Even if the frequency ω is high (for example, about 1 to 1.2 GHz as described above), the calculation of such a trigonometric function can be performed with extremely high accuracy and at high speed, so that accurate phase difference measurement can be performed. This makes it possible to improve the measurement sensitivity.

【0027】図2は、この発明の他の実施例に係る距離
測定装置を示す構成図である。
FIG. 2 is a block diagram showing a distance measuring device according to another embodiment of the present invention.

【0028】図1の実施例との相違点を主体に説明する
と、この実施例においては、反射器24と26との間に
図1の実施例のような1/2波長板28は設けていな
い。従って、偏光ビーム分割器18で分離された直線偏
光42はそのままビーム分割器22に入射し、偏光ビー
ム分割器30および34には、この直線偏光42および
前述した円偏光43が入射する。
The difference from the embodiment of FIG. 1 will be mainly described. In this embodiment, a half-wave plate 28 as in the embodiment of FIG. 1 is provided between the reflectors 24 and 26. Absent. Therefore, the linearly polarized light 42 separated by the polarized beam splitter 18 enters the beam splitter 22 as it is, and the linearly polarized light 42 and the circularly polarized light 43 described above enter the polarized beam splitters 30 and 34.

【0029】しかしこの実施例では、偏光ビーム分割器
30および34を直線偏光42の振動面に対して方位4
5°だけ傾けており、従って偏光ビーム分割器30では
直線偏光42および円偏光43のp成分のみが透過し、
これによって図1の実施例の場合と同様、強度変調され
た直線偏光(光ビート)45が得られる。また、偏光ビ
ーム分割器34では直線偏光42および円偏光43のs
成分が反射し、p成分が透過し、これによって図1の実
施例の場合と同様、強度変調された二つの直線偏光(光
ビート)48および49が得られる。即ちこの実施例で
は、上記のように傾けた偏光ビーム分割器30および3
4のそれぞれによって、前述した偏光手段および干渉手
段を一体的に構成している。
However, in this embodiment, the polarization beam splitters 30 and 34 are placed in the azimuth 4 with respect to the plane of vibration of the linearly polarized light 42.
Therefore, the polarized beam splitter 30 transmits only the p components of the linearly polarized light 42 and the circularly polarized light 43,
As a result, intensity-modulated linearly polarized light (optical beat) 45 is obtained as in the case of the embodiment of FIG. Further, in the polarization beam splitter 34, the linear polarization 42 and the circular polarization 43
The component reflects and the p component transmits, which results in two intensity-modulated linearly polarized light (optical beats) 48 and 49, as in the embodiment of FIG. That is, in this embodiment, the polarized beam splitters 30 and 3 tilted as described above are used.
The polarization means and the interference means described above are integrally formed by each of the four.

【0030】この実施例によれば、図1の実施例で用い
ていた1/2波長板28が不要になるので、より簡単な
構成で同じ目的を達成することができる。
According to this embodiment, the half-wave plate 28 used in the embodiment of FIG. 1 is unnecessary, so that the same object can be achieved with a simpler structure.

【0031】なお、以上の実施例はいずれも、位相差φ
を含む一つの光ビートと、位相差φを含まずかつ位相が
互いに90°異なる二つの光ビートとを作る構成である
が、前述したような移相手段、偏光手段、および干渉手
段を用いれば、数8に示すような位相差φを含みかつ位
相が互いに90°異なる二つの光ビートと、位相差φを
含まない一つの光ビートとを作ることもでき、その場合
も上記と同様の三角関数の演算によって、位相差φにか
かわる量を高速かつ正確に算出することができる。
In each of the above embodiments, the phase difference φ
One optical beat that includes the optical beat and two optical beats that do not include the phase difference φ and are different in phase by 90 ° are formed. However, if the phase shift means, the polarization means, and the interference means described above are used, , It is also possible to make two optical beats including the phase difference φ and different in phase from each other by 90 °, and one optical beat not including the phase difference φ, and in that case, the same triangular shape as above. By calculating the function, the amount related to the phase difference φ can be calculated quickly and accurately.

【0032】[0032]

【数8】Asin(ωt+φ) Acos(ωt+φ) sinωt(またはcosωt)[Equation 8] Asin (ωt + φ) Acos (ωt + φ) sinωt (or cosωt)

【0033】[0033]

【発明の効果】以上のようにこの発明によれば、被測定
物による反射光と基準光との間の位相差にかかわる量を
三角関数の演算によって、しかも反射光量の変化の影響
を受けることなく求めるのに必要な正弦信号および余弦
信号を光学的に作り出すことができる。その結果、高い
光ビート周波数においても、反射光量の変化の影響を受
けることなく、正確な位相差測定が可能になり、それに
よって測定感度の向上を図ることができる。
As described above, according to the present invention, the amount of the phase difference between the light reflected by the object to be measured and the reference light is calculated by a trigonometric function, and is affected by the change in the amount of reflected light. The sine and cosine signals needed to obtain the desired signal can be generated optically. As a result, even at a high optical beat frequency, accurate phase difference measurement can be performed without being affected by changes in the amount of reflected light, thereby improving the measurement sensitivity.

【0034】また、前述したような偏光手段と干渉手段
を互いに一体のものとすれば、より簡単な構成で同じ目
的を達成することができる。
If the above-mentioned polarization means and interference means are integrated with each other, the same object can be achieved with a simpler structure.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の一実施例に係る距離測定装置を示
す構成図である。
FIG. 1 is a configuration diagram showing a distance measuring device according to an embodiment of the present invention.

【図2】 この発明の他の実施例に係る距離測定装置を
示す構成図である。
FIG. 2 is a configuration diagram showing a distance measuring device according to another embodiment of the present invention.

【図3】 従来の距離測定装置の一例を示す構成図であ
る。
FIG. 3 is a configuration diagram showing an example of a conventional distance measuring device.

【符号の説明】[Explanation of symbols]

2 レーザ光源 10 被測定物 18 第1の偏光ビーム分割器 20 第1の1/4波長板 22 ビーム分割器 28 1/2波長板 30 第2の偏光ビーム分割器 32 第2の1/4波長板 34 第3の偏光ビーム分割器 60 第1の光検出器 62 第2の光検出器 64 第3の光検出器 66 第1のミキサ 68 第2のミキサ 70 演算回路 2 laser light source 10 DUT 18 first polarized beam splitter 20 first quarter wavelength plate 22 beam splitter 28 1/2 wavelength plate 30 second polarized beam splitter 32 second quarter wavelength Plate 34 Third polarized beam splitter 60 First photodetector 62 Second photodetector 64 Third photodetector 66 First mixer 68 Second mixer 70 Arithmetic circuit

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 強度変調されたレーザ光の被測定物によ
る反射光と基準光との間の位相差を測定することにより
被測定物までの距離を測定する装置において、内部共振
器を有する気体レーザ光源と、このレーザ光源の隣合う
二つの縦モードの一方のモードの直線偏光を円偏光に変
換する移相手段と、他方のモードの直線偏光を45°旋
光させるかまたは同光の45°方向の成分を取り出す偏
光手段と、前記両手段から得られる光を重ね合わせて干
渉を起こさせる干渉手段とを設け、この干渉手段からの
光を前記強度変調されたレーザ光として用いることを特
徴とする距離測定装置。
1. An apparatus for measuring a distance to an object to be measured by measuring a phase difference between reflected light of an intensity-modulated laser beam by an object to be measured and a reference light, a gas having an internal resonator. A laser light source, a phase shift means for converting linearly polarized light in one of two adjacent longitudinal modes of the laser light source into circularly polarized light, and linearly polarized light in the other mode is rotated by 45 ° or 45 ° of the same light. Polarizing means for extracting a directional component and interference means for causing interference by superimposing light obtained from both means are used, and the light from the interference means is used as the intensity-modulated laser light. Distance measuring device.
【請求項2】 前記偏光手段および干渉手段が互いに一
体のものである請求項1記載の距離測定装置。
2. The distance measuring device according to claim 1, wherein the polarization means and the interference means are integral with each other.
【請求項3】 内部共振器を有する気体レーザ光源の隣
合う二つの縦モードの直線偏光を第1の偏光ビーム分割
器で分離し、分離された一方のモードの直線偏光を方位
45°の第1の1/4波長板を透過させて円偏光に変換
し、分離された他方のモードの直線偏光を1/2波長板
を透過させて45°旋光させ、この両方の光を共通のビ
ーム分割器で重ね合わせると共に二方向に分割し、この
分割された一方の光を第2の偏光ビーム分割器および方
位45°の第2の1/4波長板を透過させて被測定物に
入射させ、それからの反射光を再び第2の1/4波長板
を透過させかつ第2の偏光ビーム分割器で反射させて第
1の光検出器に入射させ、前記ビーム分割器で分割され
た他方の光を第3の偏光ビーム分割器によって二方向に
分割し、この分割された一方の光を第2の光検出器に入
射させ、かつ他方の光を第3の光検出器に入射させるよ
う構成したことを特徴とする距離測定装置。
3. The first polarization beam splitter separates two adjacent linear polarizations of a longitudinal mode of a gas laser light source having an internal resonator, and the separated linear polarization of one mode is divided into a first polarization beam having an azimuth of 45 °. It is transmitted through the 1/4 wavelength plate of 1 to be converted into circularly polarized light, and the separated linearly polarized light of the other mode is transmitted through the 1/2 wavelength plate and rotated by 45 °, and both of these lights are divided into a common beam. And split the light into two directions by passing it through a second polarization beam splitter and a second quarter-wave plate with an azimuth of 45 °, and make it enter the object to be measured. The reflected light from it is transmitted again through the second quarter-wave plate and reflected by the second polarized beam splitter to enter the first photodetector, and the other light split by the beam splitter is reflected. Is split in two directions by a third polarization beam splitter, A distance measuring device characterized in that one light is made incident on the second photodetector and the other light is made incident on the third photodetector.
【請求項4】 内部共振器を有する気体レーザ光源の隣
合う二つの縦モードの直線偏光を第1の偏光ビーム分割
器で分離し、分離された一方のモードの直線偏光を方位
45°の第1の1/4波長板を透過させて円偏光に変換
し、この光と上記のようにして分離された他方のモード
の直線偏光の両方を共通のビーム分割器で重ね合わせる
と共に二方向に分割し、この分割された一方の光を方位
45°の第2の偏光ビーム分割器および方位45°の第
2の1/4波長板を透過させて被測定物に入射させ、そ
れからの反射光を再び第2の1/4波長板を透過させか
つ第2の偏光ビーム分割器で反射させて第1の光検出器
に入射させ、前記ビーム分割器で分割された他方の光を
方位45°の第3の偏光ビーム分割器によって二方向に
分割し、この分割された一方の光を第2の光検出器に入
射させ、かつ他方の光を第3の光検出器に入射させるよ
う構成したことを特徴とする距離測定装置。
4. A first polarization beam splitter separates two adjacent linearly polarized lights of a longitudinal mode of a gas laser light source having an internal resonator, and the separated linearly polarized light of one mode has an azimuth of 45 °. The light is transmitted through the 1/4 wave plate of 1 to be converted into circularly polarized light, and both this light and the linearly polarized light of the other mode separated as described above are superposed by a common beam splitter and split into two directions. Then, one of the split lights is transmitted through the second polarization beam splitter having an azimuth of 45 ° and the second quarter wavelength plate having an azimuth of 45 ° to be incident on the object to be measured, and the reflected light from the object is reflected. The light is again transmitted through the second quarter-wave plate, reflected by the second polarized beam splitter, and made incident on the first photodetector, and the other light split by the beam splitter has an azimuth of 45 °. The third polarized beam splitter splits the beam in two directions, One light is incident on the second photodetector, and the distance measuring apparatus characterized by being configured so as to be incident the other light to the third light detector.
【請求項5】 前記第1の光検出器および第2の光検出
器からの電気信号を互いに掛け合わせる第1のミキサ
と、前記第1の光検出器および第3の光検出器からの電
気信号を互いに掛け合わせる第2のミキサと、両ミキサ
からの電気信号に基づいて、被測定物による反射光と基
準光との間の位相差にかかわる量を算出する演算手段と
を更に備える請求項3または4記載の距離測定装置。
5. A first mixer for multiplying electric signals from the first photodetector and the second photodetector with each other, and electricity from the first photodetector and the third photodetector. A second mixer for multiplying signals by each other, and an arithmetic means for calculating an amount related to a phase difference between the reflected light by the object to be measured and the reference light, based on electric signals from both mixers. The distance measuring device according to 3 or 4.
JP3270062A 1991-09-20 1991-09-20 Distance measuring equipment Pending JPH0735861A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3270062A JPH0735861A (en) 1991-09-20 1991-09-20 Distance measuring equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3270062A JPH0735861A (en) 1991-09-20 1991-09-20 Distance measuring equipment

Publications (1)

Publication Number Publication Date
JPH0735861A true JPH0735861A (en) 1995-02-07

Family

ID=17480991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3270062A Pending JPH0735861A (en) 1991-09-20 1991-09-20 Distance measuring equipment

Country Status (1)

Country Link
JP (1) JPH0735861A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951618B1 (en) * 2008-02-19 2010-04-09 한국과학기술원 Absolute distance measurement method and system using optical frequency generator
KR101106797B1 (en) * 2009-10-27 2012-01-20 두산디에스티주식회사 Laser system of using direct locking method on coherent beam combining

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100951618B1 (en) * 2008-02-19 2010-04-09 한국과학기술원 Absolute distance measurement method and system using optical frequency generator
KR101106797B1 (en) * 2009-10-27 2012-01-20 두산디에스티주식회사 Laser system of using direct locking method on coherent beam combining

Similar Documents

Publication Publication Date Title
US7333214B2 (en) Detector for interferometric distance measurement
US10895477B2 (en) Sine-cosine optical frequency encoder devices based on optical polarization properties
JP3791975B2 (en) Homodyne interferometer and its reception method
CN105992934B (en) Interferometric sensor
US4702603A (en) Optical phase decoder for interferometers
EP0200978B1 (en) Static interferometric ellipsometer
US4583855A (en) Optical phase measuring apparatus
KR101214854B1 (en) A heterodyne interferometer using dual-mode light source
JP3413945B2 (en) Fringe counting displacement interferometer
JPH0735861A (en) Distance measuring equipment
JPH0612333B2 (en) Automatic birefringence measuring device
JPH02115701A (en) Laser interferometric length measuring meter
KR101235274B1 (en) Long-term stabilized heterodyne interferometer and readout sensor for biochemical fluidic channel using the interferometer
EP0461773A2 (en) Linear pitch, and yaw displacement measuring interferometer
Di Sante et al. Multipoint optical fiber vibrometer
JP2992829B2 (en) Laser length gauge
CN110260781A (en) Laser interferometer non-orthogonal errors modification method and device based on liquid crystal phase shifter
WO2023062891A1 (en) Optical heterodyne interference measurement device and optical heterodyne interference measurement method
JPH08278202A (en) Optical device for polarization analysis and polarization analyzer using the device
JP3122687B2 (en) Angle detector
JPH04155260A (en) Rotational speed measuring apparatus
JP2981927B2 (en) Multi-phase splitting optical system
JPH06167304A (en) Displacement sensor
RU2340879C1 (en) Device for measuring polarisation parameters of optical radiation
JP2723977B2 (en) Rotation speed measurement method