JPH0735712A - Boiling observation system - Google Patents

Boiling observation system

Info

Publication number
JPH0735712A
JPH0735712A JP18266193A JP18266193A JPH0735712A JP H0735712 A JPH0735712 A JP H0735712A JP 18266193 A JP18266193 A JP 18266193A JP 18266193 A JP18266193 A JP 18266193A JP H0735712 A JPH0735712 A JP H0735712A
Authority
JP
Japan
Prior art keywords
boiling
chamber
observation
light
temperature distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18266193A
Other languages
Japanese (ja)
Other versions
JP2858615B2 (en
Inventor
Hiroaki Matsumoto
浩明 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP18266193A priority Critical patent/JP2858615B2/en
Publication of JPH0735712A publication Critical patent/JPH0735712A/en
Application granted granted Critical
Publication of JP2858615B2 publication Critical patent/JP2858615B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To provide a boiling observation system for measuring the state of bubbles or the microlayer thereof, the boiling state of entire liquid, and the temperature distribution of liquid three-dimensionally with high accuracy with no influence of the boiling state in order to make clear the boiling mechanism of liquid under microgravity. CONSTITUTION:The measuring light from the optical system in a physointerferometer 20 for observing bubbles and a microlayer thereof in a boiling fluid is branched into an observing light passing through a chamber 12 and a reference light detouring a chamber 12. Schlieren optical systems 19 for measuring the temperature distribution in the chamber 12 based on the interference fringes caused by the phase difference are disposed in the chamber in two perpendicular directions. Consequently, the temperature distribution on the cross-section can be determined in two directions within the chamber 12 and thereby the three-dimensional temperature distribution within the chamber 12 can be determined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小重力環境下におけ
る液体の沸騰状況を観察する為の装置に係り、特に容器
(チャンバー)中の沸騰液体の熱対流、温度勾配等の温
度分布を、精度よく観察できる沸騰観察装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for observing a boiling state of a liquid under a microgravity environment, and particularly, for a temperature distribution such as heat convection and temperature gradient of the boiling liquid in a container (chamber), The present invention relates to a boiling observation device that enables accurate observation.

【0002】[0002]

【従来の技術】無重力下における液体沸騰時の沸騰メカ
ニズムを解明する為の沸騰観察装置として、図3に示す
沸騰観察装置が従来使用されている。この沸騰観察装置
は、フィゾー干渉計46によりチャンバー内に発生した
気泡と、加熱プレートヒータ37面上に生成する沸騰気
泡のマイクロレイアーを観察し、またチャンバー40側
面に設置されている観察窓ガラス39,41を通して、
CCDカメラ42により沸騰状態を観察するものであ
り、沸騰している液中の温度分布については、チャンバ
ー40内に設置されている測温抵抗体43,44,4
5、3本により測温している。
2. Description of the Related Art A boiling observation apparatus shown in FIG. 3 has been conventionally used as a boiling observation apparatus for elucidating the boiling mechanism of liquid boiling under zero gravity. This boiling observation device observes the bubbles generated in the chamber by the Fizeau interferometer 46 and the micro-layer of the boiling bubbles generated on the surface of the heating plate heater 37, and the observation window glass 39 installed on the side surface of the chamber 40. , 41 through
The boiling state is observed by the CCD camera 42. Regarding the temperature distribution in the boiling liquid, the resistance temperature detectors 43, 44, 4 installed in the chamber 40 are used.
The temperature is measured with 5 or 3 lines.

【0003】この様に、液体の沸騰メカニズムの解明に
あたっては、(1)沸騰気泡生成時の気泡のマイクロレ
イアーの様子、(2)チャンバー内における液体の沸騰
状態の観測、および(3)チャンバー内の熱対流、温度
勾配等の温度分布状態、についてのデータの取得が必要
である。しかし、従来の沸騰観察装置では、上述した様
に液中の温度分布を、チャンバー内に設置された3本の
測温抵抗体により計測していたため、測温抵抗体が設置
されている3点の温度は計測できるが、その間の熱対流
の様子、温度勾配等の温度分布は、3点の計測温から推
定は可能としても、測温抵抗体が設置されている位置か
ら外れている部分についての温度分布は不明であり、さ
らには、チャンバー内全体の3次元的な温度分布につい
ては到底推測が困難であった。これらの問題点を解消す
るために測温抵抗体をチャンバー内全体に配置し計測す
ることも考えられるが、その場合測温抵抗体の存在が液
体全体の沸騰状態を乱す等の不具合が新たに生じる問題
がある。
Thus, in elucidating the boiling mechanism of the liquid, (1) the micro-layer of the bubble when the boiling bubble is generated, (2) the observation of the boiling state of the liquid in the chamber, and (3) the inside of the chamber It is necessary to obtain the data on the heat convection and the temperature distribution such as the temperature gradient. However, in the conventional boiling observation apparatus, since the temperature distribution in the liquid was measured by the three resistance temperature detectors installed in the chamber as described above, three resistance temperature detectors were installed. Temperature can be measured, but the temperature distribution such as heat convection and temperature gradient during that time can be estimated from the measured temperature at three points, but for the part that is out of the position where the resistance temperature detector is installed. It is difficult to estimate the three-dimensional temperature distribution in the entire chamber. In order to solve these problems, it is possible to arrange the RTD in the entire chamber for measurement, but in that case, the existence of the RTD disturbs the boiling state of the whole liquid, and so on. There are problems that arise.

【0004】また、測温抵抗体の計測精度が±0.5℃
程度しかないことから、微妙な温度変化は計測できない
という問題点があった。
Further, the measurement accuracy of the resistance temperature detector is ± 0.5 ° C.
Since there is only a degree, there is a problem that a subtle temperature change cannot be measured.

【0005】[0005]

【発明が解決しようとする課題】本発明は、チャンバー
内の液体全体の沸騰状態に影響することなく、チャンバ
ー内で沸騰している液体全体の温度分布を3次元的に計
測でき、しかも測温精度を上げて微少な温度変化も計測
できる沸騰観察装置を提供することを課題とする。
SUMMARY OF THE INVENTION The present invention can three-dimensionally measure the temperature distribution of the entire liquid boiling in the chamber without affecting the boiling state of the entire liquid in the chamber, and can measure the temperature. It is an object of the present invention to provide a boiling observation apparatus capable of increasing accuracy and measuring a minute temperature change.

【0006】[0006]

【課題を解決するための手段】本発明の沸騰観察装置
は、チャンバー内に発生した気泡と加熱プレートヒータ
面上に生成するマイクロレイアーを観測するために設置
されたフィゾー干渉計の光源からの光を、フィゾー干渉
計用に設定された光路の途中から分岐して、チャンバー
内を通過するように設定された観測光路を通る観測光と
チャンバーを迂回して設定された参照光路を通る参照光
とに分け、これら別々の光路を通過した後に、これらの
光を集めたときに生じる位相差による光の干渉状態を観
測して、チャンバー内の観測光路断面の温度分布を計測
するシュリーレン光学系を、チャンバーの直交する2方
向に各々設ける手段とした。
The boiling observation apparatus of the present invention is a light source from a light source of a Fizeau interferometer installed for observing bubbles generated in a chamber and micro layers generated on a heating plate heater surface. Is branched from the middle of the optical path set for the Fizeau interferometer, and the observation light passing through the observation optical path set to pass through the chamber and the reference light passing through the reference optical path set bypassing the chamber. , The Schlieren optical system that measures the temperature distribution of the cross section of the observation optical path in the chamber by observing the interference state of light due to the phase difference that occurs when these lights are collected after passing through these separate optical paths. The means was provided in each of two directions orthogonal to the chamber.

【0007】[0007]

【作用】上述の手段により、本発明の沸騰観察装置は、
チャンバー内に沸騰により発生した気泡と加熱プレート
ヒータ面上に生成するマイクロレイアーの観測ととも
に、チャンバー内の直交する2断面の温度分布を直接に
測定できるようになる。また、光学的測定があるので、
測温抵抗体等のように、温度分布測定に伴う沸騰現象を
乱すことがなく、液中の3次元的な温度分布を観測で
き、沸騰メカニズムの解明に有効なデータを取得するこ
とができる。また、フィゾー干渉計の光源から光をシュ
リーレン光学系に使用するようにしたので、測温精度が
5倍程度良くなり有効なデータ取得に寄与するととも
に、装置がコンパクト化され、微小重力下の沸騰現象の
測定に大いに寄与できる。
By the above means, the boiling observation apparatus of the present invention is
It becomes possible to directly measure the temperature distribution of two cross sections orthogonal to each other in the chamber, as well as observing bubbles generated by boiling in the chamber and micro layers generated on the heating plate heater surface. Also, because there are optical measurements,
Unlike a resistance thermometer, it does not disturb the boiling phenomenon associated with the temperature distribution measurement, the three-dimensional temperature distribution in the liquid can be observed, and effective data can be obtained for elucidating the boiling mechanism. In addition, since the light from the light source of the Fizeau interferometer is used for the Schlieren optical system, the temperature measurement accuracy is improved by about 5 times, which contributes to effective data acquisition, and the device is made compact and boiling under microgravity is achieved. It can greatly contribute to the measurement of phenomena.

【0008】[0008]

【実施例】以下、図面により本発明の沸騰観察装置の一
実施例を図面に基づき説明する。本実施例は、沸騰メカ
ニズムの解明にあたり必要な、(1)沸騰気泡生成時の
気泡のマイクロレイアーを観察するフィゾー干渉計によ
る装置、(2)チャンバー内における液体全体の沸騰状
態を観察する観察装置、および(3)チャンバー内の温
度分布を観察する本発明の沸騰観察装置の一実施例を一
体に組込んだ装置により説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the boiling observation apparatus of the present invention will be described below with reference to the drawings. The present embodiment is (1) a device using a Fizeau interferometer for observing the micro-layer of bubbles during the generation of boiling bubbles, and (2) an observation device for observing the boiling state of the entire liquid in the chamber, which is necessary for elucidating the boiling mechanism. And (3) one embodiment of the boiling observation apparatus of the present invention for observing the temperature distribution in the chamber will be described with an apparatus integrally incorporated.

【0009】図1は、光学系統をわかり易くして作成し
た装置の平面図で、1点鎖線でかこんだ符号20は、図
3で説明したフィゾー干渉計装置を示す。また、点線で
かこんだ符号19が本発明の一実施例としての沸騰観察
装置を示す。さらに図2は、図1の矢視A−Aを示し、
液体全体の沸騰状態を観察を行う装置を示す。
FIG. 1 is a plan view of an apparatus produced by making the optical system easy to understand. Reference numeral 20 surrounded by a chain line indicates the Fizeau interferometer apparatus described in FIG. Reference numeral 19 surrounded by a dotted line indicates a boiling observation device as one embodiment of the present invention. Further, FIG. 2 shows a view AA of FIG.
1 shows an apparatus for observing the boiling state of the whole liquid.

【0010】シュリーレン光学系を使用した沸騰観察装
置19では、前述した様にチャンバー12内の温度分布
を3次元的に計測する。図に示すように、He−Neレ
ーザー発振管01より出力されたレーザー光を、スペイ
シャルフィルター02により拡げた後、ビームスプリッ
タ04により一部の光の方向を曲げる。曲げられた光を
用いて、次のビームスプリッタ05でチャンバー12を
透過する観測光路を通す観測光1と、参照光とに分け
る。参照光は、ビームスプリッタ07でさらに2つの参
照光に分けられる。ここで、ビームスプリッタ07で直
角方向に曲げられた参照光を参照光1として、ビームス
プリッタ07を直進した参照光を参照光2とする。前記
チャンバー12を通過した観測光1は、参照光1とビー
ムスプリッタ14で再度交わり、ここで位相差が生じ、
その位相差による光の干渉状態をCCDカメラで観察す
ることにより、チャンバー12の観測光路横断面の温度
分布が計測できる。さらにビームスプリッタ04を直進
した観測光2は、ミラー11で光の方向を曲げ、観測光
1が通る観測光路と直交するチャンバー12の横方向に
設けられた観測光路を透過する。
In the boiling observation device 19 using the Schlieren optical system, the temperature distribution in the chamber 12 is three-dimensionally measured as described above. As shown in the figure, after the laser light output from the He—Ne laser oscillator tube 01 is expanded by the spatial filter 02, a part of the light direction is bent by the beam splitter 04. Using the bent light, the next beam splitter 05 separates the observation light 1 passing through the observation light path passing through the chamber 12 and the reference light. The reference light is further split into two reference lights by the beam splitter 07. Here, the reference light that is bent at a right angle by the beam splitter 07 is referred to as reference light 1, and the reference light that travels straight through the beam splitter 07 is referred to as reference light 2. The observation light 1 that has passed through the chamber 12 intersects again with the reference light 1 at the beam splitter 14, where a phase difference occurs,
By observing the interference state of light due to the phase difference with a CCD camera, the temperature distribution of the cross section of the observation optical path of the chamber 12 can be measured. Further, the observation light 2 traveling straight through the beam splitter 04 bends the direction of the light by the mirror 11 and passes through the observation light path provided in the lateral direction of the chamber 12 orthogonal to the observation light path through which the observation light 1 passes.

【0011】この観測光2は、ビームスプリッタ22で
前記ビームスプリッタ07を直進し、ミラー21で曲げ
られて入射した参照光2と交わり、ここで位相差が生
じ、その位相差による光の干渉状態をCCDカメラ24
で観察することにより、観測光1で温度分布が計測でき
る断面と直交する、断面における温度分布が計測でき
る。この様に、本実施例によればチャンバー12の直交
する2断面の温度分布が計測できるので、これを合成し
て観察することによりチャンバー12内の3次元的な温
度分布が観察できる。
The observation light 2 travels straight through the beam splitter 07 by the beam splitter 22 and intersects with the reference light 2 which is bent by the mirror 21 and is incident thereon, where a phase difference occurs, and an interference state of light due to the phase difference occurs. CCD camera 24
By observing at, the temperature distribution in the cross section orthogonal to the cross section in which the temperature distribution can be measured by the observation light 1 can be measured. As described above, according to the present embodiment, the temperature distributions of the two cross sections of the chamber 12 which are orthogonal to each other can be measured, and thus the three-dimensional temperature distribution in the chamber 12 can be observed by synthesizing and observing the temperature distributions.

【0012】また、温度の計測精度も、チャンバー12
内の観察流体部の厚みdを約10cmとして、光源に波長
λを632.8mmのNe−Neレーザを用いて観察した
場合、1本以上の干渉縞を観察するためには、 Δn=λ・N/d= 632.8×10-9・1/10×10-2= 6.3
28×10-6 沸騰液体を水とした場合、1℃当りの屈折率の変化は約
1×10-4/℃(20〜30℃において)であるから、測
定精度δは δ= 6.328×10-6/1×10-14 = 0.063℃<0.1 ℃ となり、前記した従来の測温抵抗体の計測精度±0.5
℃の5倍以上の精度で観察できる。
Further, the accuracy of temperature measurement is also measured by the chamber 12.
When the thickness d of the observation fluid portion inside is set to about 10 cm and a Ne-Ne laser having a wavelength λ of 632.8 mm is used as a light source, in order to observe one or more interference fringes, Δn = λ · N / d = 632.8 x 10 -9 / 1/10 x 10 -2 = 6.3
When 28 × 10 −6 boiling liquid is water, the change in refractive index per 1 ° C. is about 1 × 10 −4 / ° C. (at 20 to 30 ° C.), so the measurement accuracy δ is δ = 6.328 × 10 -6 / 1 × 10 -14 = 0.063 ° C <0.1 ° C, which is the measurement accuracy of the conventional resistance temperature detector ± 0.5.
It can be observed with an accuracy of more than 5 times the temperature.

【0013】次に、チャンバー12内に発生した気泡と
ガラスプレートヒータ09面上に生じたマイクロレイア
ー(液膜)の状態を観察するフィゾー干渉計装置20に
ついて説明する。光源は、前記した沸騰観察装置19の
シュリーレン光学系と同一のHe−Neレーザ発振管0
1を共有し、スペシャルフィルター02で拡げられ、ビ
ームスプリッタ04で直進透過した光を用いる。この光
は、ビームスプリッタ10を透過した後、コリメータレ
ンズ13で平行光にされ、ガラスプレートヒータ09に
向う。
Next, the Fizeau interferometer device 20 for observing the state of the bubbles generated in the chamber 12 and the microlayer (liquid film) generated on the surface of the glass plate heater 09 will be described. The light source is the same He-Ne laser oscillator tube 0 as the Schlieren optical system of the boiling observation device 19 described above.
1 is shared, the light expanded by the special filter 02, and the light straightly transmitted by the beam splitter 04 is used. After passing through the beam splitter 10, this light is collimated by the collimator lens 13 and directed to the glass plate heater 09.

【0014】こゝで、ガラスプレートヒータ09底部で
一部の光は反射し、再度コリメータレンズ13方向へ向
う。また、透過した光はガラスプレートヒータ09面上
に発生している沸騰気泡で一部反射して、もとの光路へ
向かって進む。なお、ガラスプレートヒータ09の底部
で反射せず、さらに沸騰気泡でも反射せず、チャンバー
12を透過する光が前記沸騰観察装置19における観測
光2として使用される。反射した2つの光は、ビームス
プリッタ10で曲げられCCDカメラ18へ向う。CC
Dカメラ18では、ミラー11から入りビームスプリッ
タで曲げられた光と反射した2つの光との間に生じる、
干渉状態を観察することによりガラスプレートヒータ0
9面上のマイクロレイアー、およびチャンバー12内に
発生した気泡を観察できる。
At this point, a part of the light is reflected at the bottom of the glass plate heater 09 and travels toward the collimator lens 13 again. Further, the transmitted light is partially reflected by the boiling bubbles generated on the surface of the glass plate heater 09 and travels toward the original optical path. The light that does not reflect at the bottom of the glass plate heater 09 and further does not reflect even boiling bubbles and that passes through the chamber 12 is used as the observation light 2 in the boiling observation device 19. The two reflected lights are bent by the beam splitter 10 toward the CCD camera 18. CC
In the D camera 18, the light that enters from the mirror 11 and is bent by the beam splitter and the two lights that are reflected are generated.
By observing the interference state, the glass plate heater 0
The micro layers on the 9th surface and the bubbles generated in the chamber 12 can be observed.

【0015】さらに、チャンバー12内の液体全体の沸
騰状態については、図2に示されるように、チャンバー
12の上部に設置されたCCDカメラ26により観察で
きる。この光源は、チャンバー12下部に設置された照
明28であり、この照明でチャンバー12内部の気泡を
照らす。なお、従来例を示す図3においては、この液体
全体の沸騰状態を観察する装置はフィゾー干渉計装置の
光学系と同じ面内を観測する様にしているが、前記沸騰
観察装置を設置したことにより、これらの面と垂直な面
を観測するようにしている。しかし、重力の影響の小さ
い微小重力下における流体沸騰の状態を観察するもので
あり、この差異は何等問題のないものである。
Further, the boiling state of the entire liquid in the chamber 12 can be observed by a CCD camera 26 installed above the chamber 12, as shown in FIG. This light source is an illumination 28 installed in the lower part of the chamber 12, and this illumination illuminates the bubbles inside the chamber 12. In FIG. 3 showing a conventional example, the device for observing the boiling state of the whole liquid is designed to observe the same plane as the optical system of the Fizeau interferometer device, but the boiling observation device is installed. Therefore, the planes perpendicular to these planes are observed. However, the purpose is to observe the state of fluid boiling under microgravity, where the influence of gravity is small, and this difference has no problem.

【0016】[0016]

【発明の効果】以上、述べた様に本発明の沸騰観察装置
によれば従来装置の観察で課題とされていた、沸騰液中
の温度分布を3次元的に、非常に精度よく計測すること
ができるようになる。さらにフィゾー干渉計と同一光源
を用いて計測を行う為、計測装置がコンパクトになり軽
量化され、微小重力下、すなわち宇宙空間又は微小重力
環境を発生できる航空機内への持込みが容易となる。更
には、従来装置もそのまま若しくは若干配置を変えただ
けで使用できるので、沸騰メカニズムの解明に必要とな
る観察データは、従来以上に詳しく取得できるようにな
る。
As described above, according to the boiling observation apparatus of the present invention, the temperature distribution in the boiling liquid, which has been a problem in the observation of the conventional apparatus, can be measured three-dimensionally and very accurately. Will be able to. Furthermore, since the same light source as that of the Fizeau interferometer is used for measurement, the measuring device becomes compact and lightweight, and it is easy to carry it in under microgravity, that is, in an outer space or in an aircraft capable of generating a microgravity environment. Furthermore, since the conventional apparatus can be used as it is or with only a slight change in the arrangement, the observation data necessary for elucidating the boiling mechanism can be obtained in more detail than before.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の沸騰観察装置の1実施例を示す平面
図。
FIG. 1 is a plan view showing an embodiment of a boiling observation device of the present invention.

【図2】図1の矢視A−A正面図。FIG. 2 is a front view taken along the line AA of FIG.

【図3】従来の沸騰観察装置を示す平面図。FIG. 3 is a plan view showing a conventional boiling observation device.

【符号の説明】[Explanation of symbols]

01,31 He−Neレーザ発振管 02,33 スペシャルフィルター(フォーカスレ
ンズ、ピンホール) 03,32 ミラー 04 ビームスプリッタ 05 ビームスプリッタ 06 コリメータレンズ 07 ビームスプリッタ 08 コリメータレンズ 09,37 ガラスプレートヒータ 10 ビームスプリッタ 11 ミラー 12 チャンバー 13 コリメータレンズ 14 ビームスプリッタ 15 ミラー 16 コリメータレンズ 17 CCDカメラ 18,34 CCDカメラ 19 シュリーレン光学系 20,46 フィゾー干渉計 21 ミラー 22 ビームスプリッタ 23 コリメータレンズ 24 CCDカメラ 25 観察窓ガラス 26,42 CCDカメラ 27 観察窓ガラス 28 照明 29,39,41 観察窓ガラス 35 ビームスプリッタ 36 コリメータレンズ 38 照明 40 チャンバー 43,44,45 測温抵抗体
01,31 He-Ne laser oscillation tube 02,33 Special filter (focus lens, pinhole) 03,32 Mirror 04 Beam splitter 05 Beam splitter 06 Collimator lens 07 Beam splitter 08 Collimator lens 09,37 Glass plate heater 10 Beam splitter 11 Mirror 12 Chamber 13 Collimator lens 14 Beam splitter 15 Mirror 16 Collimator lens 17 CCD camera 18,34 CCD camera 19 Schlieren optical system 20,46 Fizeau interferometer 21 Mirror 22 Beam splitter 23 Collimator lens 24 CCD camera 25 Observation window glass 26,42 CCD camera 27 Observation window glass 28 Illumination 29, 39, 41 Observation window glass 35 Beam splitter 36 Collimator Turens 38 Lighting 40 Chamber 43, 44, 45 Resistance temperature detector

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チャンバー内の加熱された液体の沸騰の
微少な状況を観察するための装置であって、沸騰液体の
気泡および気泡のマイクロレイアーを観察するフィゾー
干渉計を具えた沸騰観察装置において、前記フィゾー干
渉計の光学系から分岐して、前記チャンバー内の観測光
路を通過させる観測光と前記チャンバーを迂回する参照
光路を通過させる参照光とし、これらの光を各々対応す
る光路に通過させた後集めて、このとき生じる干渉縞に
より、前記観測光が通過するチャンバー内の温度分布を
計測するシュリーレン光学系を前記チャンバーの直交す
る2方向にそれぞれ設けたことを特徴とする沸騰観察装
置。
1. A device for observing a microscopic situation of boiling of a heated liquid in a chamber, the device comprising a Fizeau interferometer for observing bubbles of a boiling liquid and micro layers of the bubbles. , Branched from the optical system of the Fizeau interferometer to serve as observation light that passes through the observation light path inside the chamber and reference light that passes through the reference light path bypassing the chamber, and let these lights pass through the corresponding light paths. The boiling observation apparatus is characterized in that schlieren optical systems for collecting and then collecting the temperature distribution in the chamber through which the observation light passes are provided respectively in two directions orthogonal to each other by the interference fringes generated at this time.
JP18266193A 1993-07-23 1993-07-23 Boiling observation device Expired - Lifetime JP2858615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18266193A JP2858615B2 (en) 1993-07-23 1993-07-23 Boiling observation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18266193A JP2858615B2 (en) 1993-07-23 1993-07-23 Boiling observation device

Publications (2)

Publication Number Publication Date
JPH0735712A true JPH0735712A (en) 1995-02-07
JP2858615B2 JP2858615B2 (en) 1999-02-17

Family

ID=16122227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18266193A Expired - Lifetime JP2858615B2 (en) 1993-07-23 1993-07-23 Boiling observation device

Country Status (1)

Country Link
JP (1) JP2858615B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222749A1 (en) * 2021-04-20 2022-10-27 江苏科技大学 Visual pool boiling experiment system and working method therefor
WO2023284267A1 (en) * 2021-07-16 2023-01-19 中国华能集团清洁能源技术研究院有限公司 System for studying flow boiling in visual annular channel, and operating method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022222749A1 (en) * 2021-04-20 2022-10-27 江苏科技大学 Visual pool boiling experiment system and working method therefor
WO2023284267A1 (en) * 2021-07-16 2023-01-19 中国华能集团清洁能源技术研究院有限公司 System for studying flow boiling in visual annular channel, and operating method therefor

Also Published As

Publication number Publication date
JP2858615B2 (en) 1999-02-17

Similar Documents

Publication Publication Date Title
CN103267743B (en) A kind of apparatus for measuring refractive index and method
CN102175711B (en) Measuring method and device for coefficients of thermal expansion
JPS58210548A (en) Interference refractometer
WO2010084748A1 (en) Refractive index measuring apparatus
CN104808254B (en) High-precision absolute gravimeter optics frequency multiplier type laser interference system and application
CN106018345B (en) It is a kind of based on short relevant optical plate glass refractometry system and method
JPH07101166B2 (en) Interferometer
CN108226036A (en) Integrated laser material fuel factor measuring device based on double grating shear interference
Muller Double beam interferometry for electrochemical studies
JP2858615B2 (en) Boiling observation device
US2703033A (en) Optical arrangement for analysis of refractive index
CN105806493B (en) Compact non-aplanatism optical fiber point-diffraction interferometer based on spatial phase modulation
Nosoko et al. Improved interferometer for measuring unsteady film thickness
KR20120080669A (en) Fiber-optic hybrid interferometer
Gut et al. Applicability of interference TE~ 0-TM~ 0 modes and TE~ 0-TE~ 1 modes to the construction of waveguide sensors
CN101183027A (en) Microfluid temperature field measurement mechanism and method for measuring the same
JP3871183B2 (en) Method and apparatus for measuring three-dimensional shape of optical element
Rao et al. Differential interferometry in heat transfer
JPH01143906A (en) Measuring instrument for parallelism between front and rear surfaces of opaque body
Shukla et al. Interferometric determination of thickness of free-standing submicron Formvar films
Mayinger Fundamentals of holography and interferometry
Andrés et al. Measuring velocity fields in wind tunnels with holographic interferometry
JPS61213704A (en) Apparatus for measuring shape of wave front
JP2003021577A (en) Method and apparatus for measuring refractive-index distribution
Vikram et al. Analysis of Spacelab-III reconstructed wavefronts by nonholographic methods

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19981020