JPH0735245B2 - Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution - Google Patents

Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution

Info

Publication number
JPH0735245B2
JPH0735245B2 JP10967886A JP10967886A JPH0735245B2 JP H0735245 B2 JPH0735245 B2 JP H0735245B2 JP 10967886 A JP10967886 A JP 10967886A JP 10967886 A JP10967886 A JP 10967886A JP H0735245 B2 JPH0735245 B2 JP H0735245B2
Authority
JP
Japan
Prior art keywords
reaction
tank
pipe
cyclone
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10967886A
Other languages
Japanese (ja)
Other versions
JPS62270406A (en
Inventor
誠一 小石
義男 柄沢
Original Assignee
日東機械株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東機械株式会社 filed Critical 日東機械株式会社
Priority to JP10967886A priority Critical patent/JPH0735245B2/en
Publication of JPS62270406A publication Critical patent/JPS62270406A/en
Publication of JPH0735245B2 publication Critical patent/JPH0735245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/0011Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00105Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling
    • B01J2219/00112Controlling the temperature by indirect heating or cooling employing heat exchange fluids part or all of the reactants being heated or cooled outside the reactor while recycling involving reactant solids

Description

【発明の詳細な説明】 イ、発明の目的 〔産業上の利用分野〕 本発明は高濃度次亜塩素酸ソーダ水溶液の連続製造装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION A. Purpose of the Invention [Field of Industrial Application] The present invention relates to an apparatus for continuously producing a high-concentration sodium hypochlorite aqueous solution.

〔従来の技術〕[Conventional technology]

酸化剤・漂白剤・消毒剤等として有用な次亜塩素酸ソー
ダ(NaOCl)の高濃度水溶液(以下、次亜液と略記す
る)は工業的には高濃度カセイ(苛性)ソーダ水溶液に
塩素ガスを吹込んで、 2NaOH+Cl2→NaOCl+NaCl↓+H2O の塩素化反応を行わせる。
A high-concentration aqueous solution of sodium hypochlorite (NaOCl), which is useful as an oxidizing agent, bleaching agent, disinfectant, etc. (hereinafter abbreviated as "hypo-sub-liquid") is industrially used as a high-concentration caustic (caustic) soda aqueous solution with chlorine gas. Blow in to cause a chlorination reaction of 2NaOH + Cl 2 → NaOCl + NaCl ↓ + H 2 O.

副生される食塩(NaCl)は反応系液相での飽和量を越え
ると析出していく。十分な反応を行わせた後反応槽内の
析出食塩結晶分を含む反応液を固液分離操作して食塩結
晶分を実質的に除去した高濃度次亜液を得る。製造され
た高濃度次亜液はそのまま、或は適当な濃度に調整され
て、或は結晶体(NaOCl・5H2O)として晶出操作されて
製品とされる。
By-produced salt (NaCl) will precipitate when the saturated amount in the liquid phase of the reaction system is exceeded. After sufficient reaction, the reaction solution containing the precipitated salt crystal component in the reaction vessel is subjected to solid-liquid separation operation to obtain a highly concentrated hyposublimate in which the salt crystal component is substantially removed. The produced high-concentration hypothionite is used as it is, or adjusted to an appropriate concentration, or crystallized as a crystal (NaOCl.5H 2 O) to obtain a product.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

(1)従来の次亜液の製造は回分式であり、連続式と称
するものも回分式の変形的なもので、実際上は製品品質
の一定性などの諸点で連続式の本来的長所を十分には有
するものではない。
(1) The conventional method for producing hypochlorous liquid is a batch method, and what is called a continuous method is also a variation of the batch method. In practice, the continuous method has the inherent advantages in terms of consistency of product quality. It does not have enough.

(2)塩素化反応を円滑に速やかに十分に行わせるため
には原料たる高濃度カセイソーダ水溶液中に塩素ガスを
各部均一に十分に混入させた状態にしてやる必要があ
る。そこで従来は反応槽内に攪拌羽根や攪拌スクリュー
等の動力攪拌装置を具備させて上記両者を可及的十分に
攪拌混合するようにしている。
(2) In order to carry out the chlorination reaction smoothly and swiftly, it is necessary to uniformly mix chlorine gas in each part of the high-concentration caustic soda aqueous solution as a raw material. Therefore, conventionally, a power stirring device such as a stirring blade or a stirring screw is provided in the reaction tank to stir and mix both of them as much as possible.

しかし反応槽内には副生食塩結晶のスラリーがかなり多
量に存在することから、その多量のスラリーの存在自体
が円滑・速やかな塩素化反応の進行を阻害すると共に、
攪拌抵抗が大きくそのために動力攪拌装置のエネルギ消
費が多い上に、反応槽内の原料液全体の十分な攪拌流動
状態が得られにくく、反応槽内の原料液の塩素化反応が
実際上局所的に不均一化しやすい。反応の不均一は生成
物の品質の不均一化を招来する。動力攪拌装置を強力な
ものにすると装置全体が大型化していくし、消費エネル
ギが更に多くなる。
However, since a large amount of by-product salt crystal slurry is present in the reaction tank, the presence of the large amount of slurry itself hinders the smooth and rapid progress of the chlorination reaction, and
The stirring resistance is large, so that the energy consumption of the power stirring device is large, and it is difficult to obtain a sufficient stirring and fluidized state of the entire raw material liquid in the reaction tank, and the chlorination reaction of the raw material liquid in the reaction tank is actually localized. It is easy to make uneven. Heterogeneity of the reaction leads to inhomogeneous product quality. If the power stirring device is made stronger, the size of the entire device will increase and the energy consumption will increase.

(3)多量の副生食塩結晶スラリーを含む原料液の攪拌
流動により反応槽内壁面や攪拌部材に機械的摩耗・損傷
を与えやすく耐久性を低下させる。又食塩結晶スラリー
が反応槽内壁面や攪拌部材にスケールとして固着生長
し、そのスケール除去を定期的に或は必要に応じてかな
り頻繁に行う必要もあった。
(3) The inner wall surface of the reaction vessel and the stirring member are liable to be mechanically worn or damaged by stirring and flowing of the raw material liquid containing a large amount of the by-product salt crystal slurry, and the durability is lowered. Further, the salt crystal slurry adhered and grew as a scale on the inner wall surface of the reaction tank and the stirring member, and the scale had to be removed regularly or quite frequently as needed.

本発明は上記に鑑みて提案されたもので、上記のような
諸問題点を有しない。合理的な高濃度次亜液の連続製造
装置を提供することを目的とする。
The present invention has been proposed in view of the above, and does not have the above problems. It is an object of the present invention to provide a reasonable continuous production apparatus for high concentration hypothionite.

ロ、発明の構成 〔問題点を解決するための手段〕 本発明は下記A〜Eの構成を特徴とする高濃度次亜塩素
酸ソーダ水溶液の連続製造装置を要旨とする。
B. Structure of the Invention [Means for Solving the Problems] The present invention is summarized by an apparatus for continuously producing a high-concentration sodium hypochlorite aqueous solution, which is characterized by the following structures A to E.

A、槽の上部側に高濃度カセイソーダ水溶液の入口管
と、循環反応液の噴流入口管とを備え、槽の下部におい
て槽内の略中心部に開口する塩素ガスの吹込みノズルを
備えるとともに、槽の下部側に反応液の取出し管を備
え、、前記循環反応液噴流入口管は管軸線を槽の内壁面
に対して略接線方向にして配設してなる縦型反応槽と、 B、前記縦型反応槽の反応液取出管と略同じ或は低い高
さ位置関係にあり、槽の内壁面に対して管軸線を略接線
方向にして配設し、前記反応液取出管と連絡させた反応
液噴流入口管と、槽内の遠心分離作用で食塩結晶分が実
質的に分離された槽内反応液の一部を分取する反応液分
取管とを具備させてなるサイクロンと、 C、前記サイクロンの反応液分取管から分取される食塩
結晶分を実質的に含まない反応液を前記分取管より連続
的に分取して前記縦型反応槽の循環反応液噴流入口管へ
圧送するポンプ装置と、 D、前記サイクロンの反応液分取管から前記縦型反応槽
の循環反応液噴流入口管へ至る、前記ポンプ装置を含む
反応液送路中に介在させた反応液冷却器と、 E、前記サイクロンの下部出口管から連続的に流出する
食塩結晶分を含む反応液を高濃度次亜塩素酸ソーダ水溶
液分と食塩結晶分とに分離する固液分離器。
A, an inlet pipe for a high-concentration caustic soda aqueous solution and a jet inlet pipe for a circulating reaction liquid are provided on the upper side of the tank, and a chlorine gas blowing nozzle that opens to a substantially central portion in the tank at the lower part of the tank is provided. A vertical reaction tank comprising a reaction solution take-out pipe on the lower side of the tank, wherein the circulating reaction solution jet inlet pipe is arranged with its tube axis substantially tangential to the inner wall surface of the tank; The reaction solution take-out pipe of the vertical reaction tank has a height position that is substantially the same as or lower than that of the reaction liquid take-out pipe, and the pipe axis is arranged substantially tangential to the inner wall surface of the tank so as to communicate with the reaction liquid take-out pipe. A cyclone comprising a reaction liquid jet inlet pipe, and a reaction liquid collecting pipe for collecting a part of the reaction liquid in the tank in which the salt crystal content is substantially separated by the centrifugal separation action in the tank, C, a reaction liquid containing substantially no salt crystal fraction collected from the cyclone reaction liquid collecting pipe A pump device for continuously collecting from the preparative pipe and forcing it to the circulating reaction liquid jet inlet pipe of the vertical reaction tank; and D, a circulation reaction of the vertical reaction tank from the reaction liquid collecting pipe of the cyclone. A reaction solution cooler interposed in a reaction solution feed path including the pump device to the liquid jet inlet tube; and E, a reaction solution containing a salt crystal component continuously flowing out from a lower outlet tube of the cyclone, Solid-liquid separator for separating sodium hypochlorite aqueous solution and salt crystals.

〔作 用〕 即ち上記の縦型反応槽内には、槽上部側の高濃度カセ
イソーダ水溶液入口管から原料液たる高濃度カセイソー
ダ水溶液が所定の単位時間当り供給量をもって連続的に
導入される。
[Operation] That is, the high-concentration caustic soda aqueous solution, which is a raw material liquid, is continuously introduced into the vertical reaction tank from the high-concentration caustic soda aqueous solution inlet pipe on the upper side of the tank at a predetermined supply rate per unit time.

同じく槽上部側の循環反応液噴流入口管からは、サイ
クロン側から反応液分取管とポンプ装置により分取さ
れ、該入口管に圧送された食塩結晶分を実質的に含まな
い反応液が所定の単位時間当り供給量をもって噴流とし
て連続的に導入される。
Similarly, a circulating reaction solution jet inlet pipe on the upper side of the tank is provided with a reaction liquid which is dispensed from the cyclone side by a reaction liquid collecting pipe and a pump device and which is pumped to the inlet pipe and substantially free of a salt crystal component. Is continuously introduced as a jet flow with the supply amount per unit time.

上記の循環反応液噴流入口管は管軸線を反応槽の内壁面
に対して略接線方向にして配設してあるから上記の導入
循環反応液は該入口管から反応槽内に反応槽内周壁に沿
う旋回噴流として流れ込む。
Since the circulating reaction solution jet inlet pipe is arranged with its tube axis substantially tangential to the inner wall surface of the reaction tank, the introduced circulating reaction liquid flows from the inlet pipe into the reaction tank and the inner wall of the reaction tank. It flows in as a swirling jet along.

その結果反応槽内の液全体が効果的に旋回的乱流となっ
て流動状態となる。
As a result, the entire liquid in the reaction tank effectively becomes a swirling turbulent flow and becomes a fluidized state.

一方縦型反応槽内には、槽の下部において槽内の略中
心部に開口する塩素ガス吹込みノズルから塩素ガスが所
定の単位時間当りの供給量をもって連続的に吹込み導入
されて反応槽内の原料液に混入して原料液の塩素化反応
がなされる。
On the other hand, in the vertical reaction tank, chlorine gas is continuously blown into the reaction tank at a predetermined supply amount per unit time from a chlorine gas injection nozzle that opens at approximately the center of the reaction tank at the bottom of the reaction tank. The chlorination reaction of the raw material liquid is carried out by mixing with the raw material liquid inside.

反応液は反応槽下部側の出口管から反応槽内の水頭圧で
連続的に反応槽外へ流出していく。反応槽内の液量は導
入液量(高濃度カセイソーダ水溶液+循環反応液)と流
出液量を略同等に調整することにより常に所定の略一定
量に保たせる。
The reaction liquid continuously flows out of the reaction tank from the outlet pipe on the lower side of the reaction tank by the water head pressure in the reaction tank. The amount of liquid in the reaction tank can be kept at a predetermined substantially constant amount by adjusting the amount of introduced liquid (high-concentration caustic soda solution + circulation reaction liquid) and the amount of effluent to be substantially equal.

而して反応槽内の液は槽下部側の出口管から連続的に流
出していくことにより槽内を上部側から下部側へ旋回し
ながら下降流動する。これに対して反応槽内に槽下部側
から吹込まれた塩素ガスはその気泡が上記旋回下降流動
液に対して向流状態となって上昇し、上昇過程で旋回下
降流動液に激しく巻込まれて反応槽内の液全体に各部均
一に細かく分散混入する。これにより反応槽内の原料液
が各部均一に塩素化反応する。
Thus, the liquid in the reaction tank continuously flows out from the outlet pipe on the lower side of the tank, and descends while swirling from the upper side to the lower side in the tank. On the other hand, in the chlorine gas blown into the reaction tank from the lower side of the tank, its bubbles rise in a countercurrent state to the swirling down flowing liquid, and are vigorously entrained in the swirling down flowing liquid during the rising process. Each part is uniformly and finely dispersed and mixed in the entire liquid in the reaction tank. As a result, the raw material liquid in the reaction tank is uniformly chlorinated at each part.

塩素化反応で析出する固体粒子たる副生食塩結晶分は析
出するはじから旋回下降流動液の旋回遠心力で反応槽内
壁側へ遠心分離され、反応槽内壁に沿って下降し、反応
槽下部側の出口管から連続的に流出する反応液と共に反
応槽外へ連続的に出ていく。これにより反応槽内は多量
の副生食塩結晶スラリーの存在しない状態に常に保持さ
れる。
The by-product salt crystals, which are solid particles that are precipitated by the chlorination reaction, are spun from the depositing edge to the inner wall of the reaction tank by the swirling centrifugal force of the swirling downward fluid, descending along the inner wall of the reaction tank, and the lower part of the reaction tank. And the reaction liquid continuously flowing out of the outlet pipe of the above. As a result, the inside of the reaction vessel is always kept in a state in which a large amount of by-product salt crystal slurry does not exist.

その結果、反応槽内の液は多量の副生食塩結晶が存在す
ることによる見掛け比重の増加がないので、反応槽内へ
導入される循環反応液噴流の比較的小さい流動エネルギ
でもって反応槽内の液全体が十分に効果的に旋回的乱流
となって反応槽下方へ流動下降し、これに対して向流上
昇する吹込み塩素ガスが各部均一に混入すること、多量
の副生食塩結晶スラリーが存在することによる塩素化反
応の進行阻害を生じないことから、反応槽内では常に円
滑・速やかな各部均一な塩素化反応が連続的に実行され
る。
As a result, since the apparent specific gravity of the liquid in the reaction tank does not increase due to the presence of a large amount of by-produced salt crystals, the circulating reaction liquid jet introduced into the reaction tank has a relatively small flow energy to allow the reaction liquid to flow into the reaction tank. The entire liquid in the form of a swirling turbulent flow effectively and downwardly flows downward in the reaction tank, while the blown chlorine gas that rises countercurrently is uniformly mixed in each part, and a large amount of by-product salt crystals Since the progress of the chlorination reaction is not hindered by the presence of the slurry, a smooth and rapid uniform chlorination reaction in each part is continuously executed in the reaction tank.

又反応槽内に生じる副生食塩結晶分は上記したように反
応槽下部側の出口管から連続的に流出する反応液と共に
反応槽外へ連続的に出ていき多量の食塩結晶のスラリー
を生じないので、そのスラリーの反応槽内壁面に対する
スケールとしての固着・生長は実質的に生ぜず、生じて
も極めて緩慢であり、反応槽内のスケール除去を頻繁に
行う必要性も除去される。
As described above, the by-produced salt crystal component produced in the reaction vessel continuously flows out of the reaction vessel together with the reaction solution continuously flowing out of the outlet pipe on the lower side of the reaction vessel to produce a large amount of salt crystal slurry. Since the slurry does not adhere to and grows on the inner wall surface of the reaction vessel as a scale, it does not substantially occur, and even if it occurs, it is extremely slow, and the need for frequent scale removal in the reaction vessel is eliminated.

そして反応槽内に常時存在する固体粒子としての食塩結
晶の絶対量は少ないから、従来のような食塩結晶スラリ
ーの流動に伴なう反応槽内壁面の機械的摩耗・損傷も大
幅に軽減される。
Since the absolute amount of salt crystals as solid particles that are always present in the reaction tank is small, the mechanical wear and damage on the inner wall surface of the reaction tank due to the conventional flow of salt crystal slurry is significantly reduced. .

反応槽下部側の反応液出口管から連続的に流出する、
副生食塩結晶分を含む反応液はサイクロンの反応液噴流
入口管からサイクロン内へ連続的に導入される。
It continuously flows out from the reaction solution outlet pipe on the lower side of the reaction tank,
The reaction liquid containing the by-produced salt crystal component is continuously introduced into the cyclone through the reaction liquid jet inlet pipe of the cyclone.

この場合、サイクロンの反応液噴流入口管は前記反応槽
の反応液出口管と略同じ或は低い高さ位置関係にしたか
ら、該入口管からサイクロン内に反応液が反応槽内の高
い水頭圧により噴流となって連続的に導入される。そし
て該反応液噴流入口管はサイクロン槽の内壁面に対して
管軸線を略接線方向にして配設してあるから上記の導入
反応液は該入口管からサイクロン内にサイクロン内周壁
に沿う旋回噴流として流れ込む。
In this case, since the reaction liquid jet inlet pipe of the cyclone is located at the same height position as or lower than the reaction liquid outlet pipe of the reaction tank, the reaction liquid flows from the inlet pipe into the cyclone at a high head pressure in the reaction tank. It becomes a jet and is continuously introduced. Since the reaction solution jet inlet pipe is arranged with the pipe axis line substantially tangential to the inner wall surface of the cyclone tank, the introduced reaction liquid is swirled into the cyclone from the inlet pipe along the inner wall of the cyclone. Flows in as.

而して、サイクロン内に旋回流として流れ込んだ反応液
中の食塩結晶分はサイクロン内壁側へ遠心分離され、サ
イクロン内壁に沿って下降し、サイクロン下部の出口管
から連続的に流出する反応液と共にサイクロン外へ連続
的に出ていく。
Thus, the salt crystal component in the reaction solution that has flowed into the cyclone as a swirl flow is centrifugally separated toward the cyclone inner wall side, descends along the cyclone inner wall, and together with the reaction solution that continuously flows out from the outlet pipe at the bottom of the cyclone. It continuously goes out of the cyclone.

サイクロン内の反応液は、上記のようにサイクロン下
部の出口管から連続的に流出する一方、食塩結晶がサイ
クロン内壁に遠心分離されて食塩結晶分を実質的に含ま
ない反応液部分の一部が分取管とポンプ装置によりサイ
クロン外へ分取され、それが前記循環反応液として前記
反応槽の循環反応液噴流入口管へ連続的に圧送される。
The reaction liquid in the cyclone continuously flows out from the outlet pipe at the lower part of the cyclone as described above, while the salt crystals are centrifugally separated on the inner wall of the cyclone and a part of the reaction liquid portion substantially not containing the salt crystal components is generated. The cyclone is taken out of the cyclone by a preparative pipe and a pump device, and is continuously pumped as the circulating reaction liquid to the circulating reaction liquid jet inlet pipe of the reaction tank.

この場合その循環反応液はサイクロンの反応液分取管か
ら反応槽の循環反応液噴流入口管へ至る送路に介在させ
た冷却器により反応槽で保有した反応熱をうばわれて略
常温程度まで冷却されて反応槽内へ循環導入される。
In this case, the circulating reaction liquid is exposed to the heat of reaction held in the reaction tank by the cooler interposed in the passage from the cyclone reaction liquid collecting pipe to the circulating reaction liquid jet inlet pipe of the reaction tank, and is heated to about room temperature. It is cooled and circulated into the reaction tank.

サイクロン内の液量は反応槽側からの導入液量と、流出
液量(下部出口管からの流出量+分取管からの分取量)
を略同等に調整することにより常に所定の略一定量に保
たせる。
The amount of liquid in the cyclone is the amount of liquid introduced from the reaction tank side and the amount of effluent (amount of outflow from the lower outlet pipe + amount of aliquot from the preparative pipe)
Are adjusted to be substantially equal to each other so that they are always maintained at a predetermined substantially constant amount.

サイクロンの下部出口管から連続的に流出する、食塩
結晶を含む反応液は固液分離器で製品たる高濃度次亜液
と副生食塩結晶分とに固液分離操作される、このように
して連続的に得られる高濃度次亜液は実質的に経時的品
質変動・不均一のないものである。
The reaction liquid containing salt crystals, which continuously flows out from the lower outlet pipe of the cyclone, is subjected to solid-liquid separation operation in the solid-liquid separator into the high-concentration hyposub-liquid and the by-product salt crystal component, in this way. The high-concentration hypothalite solution obtained continuously has substantially no quality fluctuation with time and unevenness.

かくして小型・省エネルギ型で、連続製造装置としての
特長点を十分に具備した、目的の高濃度次亜液連続製造
装置が構成される。
Thus, the intended high-concentration secondary sub-liquid continuous production apparatus is constructed, which is compact and energy-saving, and which is fully equipped with the features of a continuous production apparatus.

〔実施例〕〔Example〕

図面は一実施例装置を示すもので、第1図は装置全体の
系統図、第2図は反応槽の一部切欠き平面図、第3図は
サイクロンの一部切欠き平面図である。
The drawings show the apparatus of one embodiment, FIG. 1 is a systematic diagram of the entire apparatus, FIG. 2 is a partially cutaway plan view of a reaction tank, and FIG. 3 is a partially cutaway plan view of a cyclone.

1は縦円筒型の反応槽、11は該槽の上部側に配設した高
濃度カセイソーダ水溶液入口管であり、不図示の貯溜部
から給送される高濃度カセイソーダ水溶液aが該入口管
11により反応槽1内に所定の単位時間当り供給量をもっ
て連続的に導入される。
Reference numeral 1 is a vertical cylindrical reaction tank, 11 is a high-concentration caustic soda aqueous solution inlet pipe disposed on the upper side of the tank, and the high-concentration caustic soda aqueous solution a fed from a reservoir (not shown) is the inlet pipe.
11 is continuously introduced into the reaction tank 1 at a predetermined supply amount per unit time.

12は同じく槽1の上部側に配設した循環反応液噴流入口
管であり、第2図示のようにその管軸線を槽1の内壁面
に対して略接線方向にして配設してある。この入口管12
から反応槽1内に後述するサイクロン2内の、食塩結晶
分が遠心分離されて該食塩結晶分を実質的に含まない反
応液の一部が循環反応液c2として噴流の状態で所定の単
位時間当り供給量で導入される。
Reference numeral 12 is a circulating reaction solution jet inlet pipe similarly arranged on the upper side of the tank 1, and its pipe axis is arranged substantially tangential to the inner wall surface of the tank 1 as shown in FIG. This inlet pipe 12
In the cyclone 2 to be described later in the reaction tank 1, a portion of the reaction solution in which the salt crystal component is centrifugally separated and does not substantially contain the salt crystal component is a circulating reaction liquid c2 in a jet state for a predetermined unit time. Introduced at a per supply rate.

13は槽1の下部において槽1内の略中心部に開口させた
塩素ガス吹込みノズルであり、このノズルで不図示の塩
素ガス源からの塩素ガスbが槽1内に所定の単位時間当
り供給量で吹込まれ、槽1内の原料液たる高濃度カセイ
ソーダ水溶液の塩素化反応がなされる。
Reference numeral 13 denotes a chlorine gas blowing nozzle opened at a substantially central portion in the tank 1 in the lower portion of the tank 1. With this nozzle, chlorine gas b from a chlorine gas source (not shown) is supplied into the tank 1 for a predetermined unit time. The high-concentration caustic soda aqueous solution, which is the raw material liquid in the tank 1, is chlorinated by the supplied amount.

図示した実施例の塩素ガス吹込みノズル13は液相中に開
口しているが、気相中に開口させることもある。
Although the chlorine gas blowing nozzle 13 of the illustrated embodiment is opened in the liquid phase, it may be opened in the gas phase.

14は槽1の下部側に配設した反応液取出管であり、本例
の場合この取出管14も前記循環反応液噴流入口管12と同
様に第2図示のように管軸線を槽1の内壁面に対して略
接線方向にして配設して、槽1内を旋回下降流動してき
た反応液c1がそのまま自然に流れ込み易くしてある。15
は槽1の上蓋板、16はその上蓋板の中央部に該板を貫通
させて設けたガス抜き管を示す。
Reference numeral 14 denotes a reaction solution take-out pipe arranged on the lower side of the tank 1, and in the case of this example, the take-out pipe 14 also has a pipe axis line of the tank 1 as shown in FIG. The reaction liquid c1 swirling and descending in the tank 1 is naturally allowed to flow naturally as it is by arranging it in a direction substantially tangential to the inner wall surface. 15
Is an upper cover plate of the tank 1, and 16 is a gas vent pipe provided at the center of the upper cover plate so as to penetrate the plate.

以上の反応槽1の作用効果は前記作用の項の〜に記
載した通りである。
The above-described action and effect of the reaction tank 1 are as described in the above items of action.

2は略下半部を逆円錐状にすぼめた円筒サイクロン、21
はそのサイクロンの逆円錐部よりも上側位置に設けた反
応液噴流入口管であり、第3図示のように管軸線をサイ
クロン槽の内壁面に対して略接線方向にして設けてあ
る。22は該入口管21と略同じ高さ位置で、反応液分取口
をサイクロン槽内の略中心線位置に位置させて設けた反
応液分取管、23はサイクロン2の逆円錐部下端の反応液
出口管である。
2 is a cylindrical cyclone in which the lower half is roughly conical, 21
Is a reaction solution jet inlet pipe provided at a position higher than the inverted conical portion of the cyclone, and the pipe axis is provided substantially tangential to the inner wall surface of the cyclone tank as shown in FIG. 22 is a reaction liquid collection pipe provided at a position substantially the same height as the inlet pipe 21 with the reaction liquid collection port being located at a substantially center line position in the cyclone tank, and 23 is the lower end of the inverted cone of the cyclone 2. It is a reaction solution outlet pipe.

前記の反応槽1と上記のサイクロン2は、反応槽1側の
反応液取出管14の位置に対してサイクロン2側の反応液
噴流入口管21が略同じ或はそれよりも低い高さ位置とな
る相互高さ位置関係で設置して、それ等の管14・21を配
管17で連絡してある。
In the reaction tank 1 and the cyclone 2, the reaction liquid jet inlet pipe 21 on the cyclone 2 side is substantially the same as or lower than the position of the reaction liquid take-out pipe 14 on the reaction tank 1 side. The pipes 14 and 21 are connected to each other by a pipe 17 so that the pipes 14 and 21 are connected to each other.

反応槽1内を旋回下降して取出管14に入った反応液c1は
配管17を通ってサイクロン2の入口管21からサイクロン
内へ、反応槽内の高い水頭圧で旋回噴流となって所定の
単位時間当り供給量で導入され、含有している食塩結晶
分がサイクロン内壁側へ遠心分離される。サイクロン2
内のサイクロン中心線寄り部分の反応液は含有食塩結晶
分がサイクロン内壁側へ遠心分離されて実質的に食塩結
晶分を含まない液である。その実質的に食塩結晶分を含
まない反応液c2の一部が分取管22によりポンプ装置3で
サイクロン2外へ連続的に分取される。
The reaction liquid c1 swirling and descending in the reaction tank 1 and entering the take-out pipe 14 passes through the pipe 17 into the cyclone from the inlet pipe 21 of the cyclone 2 and becomes a swirling jet flow due to the high head pressure in the reaction tank. The salt crystal component introduced and supplied per unit time is centrifuged to the inner side of the cyclone. Cyclone 2
The reaction solution in the portion close to the cyclone center line in the inside is a solution containing substantially no salt crystal content because the contained salt crystal content is centrifuged toward the inner wall side of the cyclone. A part of the reaction liquid c2 that does not substantially contain a salt crystal component is continuously collected outside the cyclone 2 by the pump device 3 by the separation pipe 22.

その分取反応液c2がポンプ装置3で配管31を通して反応
槽1の循環反応液噴流入口管12へ圧送されて反応槽1内
へ所定の単位時間当り供給量をもって導入される。
The preparative reaction liquid c2 is pumped by the pump device 3 through the pipe 31 to the circulating reaction liquid jet inlet pipe 12 of the reaction tank 1 and introduced into the reaction tank 1 at a predetermined supply amount per unit time.

4は配管31の途中に介入させて冷却器であり、循環反応
液c2は該冷却器で反応槽1で保有した反応熱が奪熱され
て常温程度に冷却され、反応槽1内へ導入される。冷却
器4は反応液分取管22とポンプ装置3との間の配管途中
に配設してもよい。
Reference numeral 4 denotes a cooler which is interposed in the middle of the pipe 31, and the circulating reaction liquid c2 is deprived of the reaction heat retained in the reaction tank 1 by the cooler and cooled to about room temperature and introduced into the reaction tank 1. It The cooler 4 may be arranged in the middle of the pipe between the reaction liquid collecting pipe 22 and the pump device 3.

5は固液分離器であり、サイクロン2の下部の反応液出
口管23から連続的に流出する、食塩結晶分を含む反応液
が導入されて製品たる高濃度次亜液c4と副生食塩結晶分
c5とに固液分離される。
Reference numeral 5 denotes a solid-liquid separator, which is a product containing a highly concentrated hypothalite c4 and a by-product salt crystal, into which a reaction liquid containing a salt crystal component, which continuously flows out from the reaction liquid outlet pipe 23 below the cyclone 2, is introduced. Minute
Solid-liquid separation into c5 and.

なお、dは装置の配管系の要所要所に設けた液流量調整
バルブを示す。
In addition, d represents a liquid flow rate adjusting valve provided at a required place in the piping system of the apparatus.

かくして経時的な品質変動・不均一が実質的にない高濃
度次亜液が連続的に製造される。装置系の主動力源は反
応液c2を循環するポンプ装置3であり、反応槽1内の必
要な原料液攪拌は前述作用の項のに記載したように循
環反応液噴流c2で効果的になされ、サイクロン2内での
必要な反応液旋回はに記載したように反応槽1内の水
頭圧でサイクロン内へ流れ込む反応液噴流で効果的に行
われるから、上記ポンプ装置3は小型・低出力のもので
足り、製造装置全体が小型化・省エネルギ化される。
Thus, a highly concentrated hypothalite substantially free from quality fluctuations and nonuniformity over time is continuously produced. The main power source of the device system is the pump device 3 that circulates the reaction liquid c2, and the necessary stirring of the raw material liquid in the reaction tank 1 is effectively performed by the circulating reaction liquid jet c2 as described in the section of the above action. Since the necessary swirling of the reaction liquid in the cyclone 2 is effectively performed by the jet of the reaction liquid flowing into the cyclone by the head pressure in the reaction tank 1 as described in, the pump device 3 has a small size and a low output. One is enough, and the whole manufacturing equipment is downsized and energy saving.

ハ、発明の効果 以上のように本発明に依れば連続式の特徴を十分に具備
した小型・省エネルギタイプの耐久性のよい、高濃度次
亜塩素酸ソーダ水溶液の連続製造装置が構成されるもの
で、所期の目的がよく達成される。
C. Effect of the Invention As described above, according to the present invention, a small-sized, energy-saving type, highly durable, continuous production apparatus of a high-concentration sodium hypochlorite aqueous solution, which is sufficiently equipped with the features of the continuous method, is configured. The intended purpose is often achieved.

【図面の簡単な説明】[Brief description of drawings]

図面は本発明に従う一実施例装置を示すもので、第1図
は装置全体の系統図、第2図は反応槽の一部切欠き平面
図、第3図はサイクロンの一部切欠き平面図。 1は反応槽、2はサイクロン、3はポンプ装置、4は冷
却装置、5は固液分離装置。
The drawings show an apparatus according to an embodiment of the present invention. FIG. 1 is a systematic diagram of the entire apparatus, FIG. 2 is a partially cutaway plan view of a reaction tank, and FIG. 3 is a partially cutaway plan view of a cyclone. . 1 is a reaction tank, 2 is a cyclone, 3 is a pump device, 4 is a cooling device, and 5 is a solid-liquid separation device.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】槽の上部側に高濃度カセイソーダ水溶液
(a)の入口管(11)と、循環反応液(c2)の噴流入口
管(12)とを備え、槽の下部において槽内の略中心部に
開口する塩素ガス(b)の吹込みノズル(13)を備える
とともに、槽の下部側に反応液(c1)の取出し管(14)
を備え、前記循環反応液噴流入口管(12)は管軸線を槽
の内壁面に対して略接線方向にして配設してなる縦型反
応槽(1)と、 前記縦型反応槽(1)の反応液取出管(14)と略同じ或
は低い高さ位置関係にあり、槽の内壁面に対して管軸線
を略接線方向にして配設し、前記反応液取出し管(14)
と連絡させた反応液噴流入口管(21)と、槽内の遠心分
離作用で食塩結晶分が実質的に分離された槽内反応液
(c2)の一部を分取する反応液分取管(22)とを具備さ
せてなるサイクロン(2)と、 前記サイクロン(2)の反応液分取管(22)から分取さ
れる食塩結晶分を実質的に含まない反応液(c2)を前記
縦型反応槽(1)の循環反応液噴流入口管(12)へ圧接
するポンプ装置(3)と、 前記サイクロン(2)の反応液分取管(22)から前記縦
型反応槽(1)の循環反応液噴流入口管(12)へ至る、
前記ポンプ装置(3)を含む反応液送路(31)中に介在
させた反応液冷却器(4)と、 前記サイクロン(2)の下部出口管(23)から連続的に
流出する食塩結晶分を含む反応液(c3)を高濃度次亜塩
素酸ソーダ水溶液分(c4)と食塩結晶分(c5)とに分離
する固液分離器(5)と からなることを特徴とする高濃度次亜塩素酸ソーダ水溶
液の連続製造装置。
1. A tank is provided with an inlet pipe (11) for a high-concentration caustic soda aqueous solution (a) and a jet inlet pipe (12) for a circulating reaction liquid (c2) at the upper side of the tank, and the inside of the tank A chlorine gas (b) injection nozzle (13) opening in the center is provided, and a reaction liquid (c1) take-out pipe (14) is provided on the lower side of the tank.
And a vertical reaction tank (1) in which the circulating reaction solution jet inlet pipe (12) is arranged with its tube axis substantially tangential to the inner wall surface of the tank, and the vertical reaction tank (1). ) Has a height position relationship substantially the same as or lower than that of the reaction liquid take-out pipe (14), and the reaction liquid take-out pipe (14) is arranged so that the pipe axis is substantially tangential to the inner wall surface of the tank.
The reaction solution jet inlet pipe (21) in communication with the reaction solution collection pipe for collecting a part of the reaction solution (c2) in the tank in which the salt crystals are substantially separated by the centrifugal action in the tank A cyclone (2) comprising: (22); and a reaction liquid (c2) substantially free of a salt crystal fraction separated from the reaction liquid collecting pipe (22) of the cyclone (2). A pump device (3) press-contacting the circulating reaction liquid jet inlet pipe (12) of the vertical reaction tank (1), and the vertical reaction tank (1) from the reaction liquid collecting pipe (22) of the cyclone (2). To the circulating reaction liquid jet inlet pipe (12) of
A reaction solution cooler (4) interposed in a reaction solution feed passage (31) including the pump device (3) and a salt crystal component continuously flowing out from the lower outlet pipe (23) of the cyclone (2). A high-concentration hypochlorous acid characterized by comprising a solid-liquid separator (5) for separating a reaction solution (c3) containing water into a high-concentration aqueous sodium hypochlorite solution (c4) and a salt crystal component (c5). Continuous production equipment for aqueous sodium chlorate solution.
JP10967886A 1986-05-15 1986-05-15 Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution Expired - Lifetime JPH0735245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10967886A JPH0735245B2 (en) 1986-05-15 1986-05-15 Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10967886A JPH0735245B2 (en) 1986-05-15 1986-05-15 Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution

Publications (2)

Publication Number Publication Date
JPS62270406A JPS62270406A (en) 1987-11-24
JPH0735245B2 true JPH0735245B2 (en) 1995-04-19

Family

ID=14516407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10967886A Expired - Lifetime JPH0735245B2 (en) 1986-05-15 1986-05-15 Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution

Country Status (1)

Country Link
JP (1) JPH0735245B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101671225B1 (en) * 2016-02-29 2016-11-01 플로우테크 주식회사 Water piping system having function of removing impurities inside pressure tank
US9527058B2 (en) 2012-08-28 2016-12-27 Tsukishima Kikai Co., Ltd. Continuous processing device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8623318B2 (en) 2004-07-12 2014-01-07 Powell Technologies Llc Manufacture of high-strength, low-salt aqueous sodium hypochlorite bleach and substantially dry crystalline salt
US7175824B2 (en) * 2004-07-12 2007-02-13 Powell Technologies Llc A Michigan Limited Liability Company Manufacture of high-strength, low-salt sodium hypochlorite bleach
ES2605019T3 (en) * 2006-12-29 2017-03-10 Powell Technologies Llc (A Michigan Limited Liability Company) Manufacture of low salt sodium hypochlorite bleach, high concentration
JP5466732B2 (en) * 2012-06-21 2014-04-09 月島機械株式会社 Method for producing reactive aggregated particles, method for producing positive electrode active material for lithium ion battery, method for producing lithium ion battery, and apparatus for producing reactive aggregated particles
JP6190718B2 (en) * 2013-12-26 2017-08-30 昭和電工株式会社 Method for producing sodium hypochlorite aqueous solution
JP6227399B2 (en) * 2013-12-26 2017-11-08 昭和電工株式会社 Method for producing sodium hypochlorite aqueous solution
JP6691654B2 (en) 2016-01-27 2020-05-13 月島機械株式会社 Particle manufacturing apparatus and particle manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527058B2 (en) 2012-08-28 2016-12-27 Tsukishima Kikai Co., Ltd. Continuous processing device
KR101671225B1 (en) * 2016-02-29 2016-11-01 플로우테크 주식회사 Water piping system having function of removing impurities inside pressure tank
WO2017150819A1 (en) * 2016-02-29 2017-09-08 플로우테크 주식회사 Water pipe system having function of removing foreign material inside pressure tank

Also Published As

Publication number Publication date
JPS62270406A (en) 1987-11-24

Similar Documents

Publication Publication Date Title
US4676953A (en) Continous production of sodium silicate solutions
JPH0735245B2 (en) Continuous production equipment for highly concentrated sodium hypochlorite aqueous solution
NO143271B (en) PROCEDURE FOR CONTINUOUS PREPARATION OF SODIUM BICARBONATE
EP2114822B1 (en) Manufacture of high-strength, low-salt sodium hypochlorite bleach
KR101265697B1 (en) Manufacture of high-strength, low-salt hypochlorite bleach
US8491864B2 (en) Manufacture of high-strength, low-salt sodium hypochlorite bleach
GB2034294A (en) Process for Producing Sodium Bicarbonate
US6126702A (en) Apparatus and method for treating sesquisulfate waste streams
JPS5820703A (en) Production of aqueous sodium hypochlorite solution
JPS59102806A (en) Production of aqueous solution of sodium hypochlorite having high concentration
CN101668699B (en) Manufacture of high-strength, low-salt sodium hypochlorite bleach
JPH0139692Y2 (en)
US20100084605A1 (en) Process to prepare concentrated alkali metal hypo-chlorite
JPS6148428A (en) Process and apparatus for preparing aqueous solution of sodium carbonate
AU720656B2 (en) Salt purification facility
JPS62103050A (en) Method of recovering edta from waste liquor of edta
US3574564A (en) Apparatus for the continuous preparation of crystalline substances
CZ300896B6 (en) Chlorination process of ore-bearing material charge and reactor for making the same
CN113387858A (en) Equipment and method for continuously producing accelerant TMTD
JPS6081003A (en) Manufacture of aqueous solution of sodium hypochlorite
JPS591201B2 (en) Method for producing high concentration sodium hypochlorite aqueous solution
JPS5910932B2 (en) Manufacturing method of carbonated soda water salt
JPS608961B2 (en) Manufacturing method of high concentration sodium hypochlorite aqueous solution