JPS5910932B2 - Manufacturing method of carbonated soda water salt - Google Patents

Manufacturing method of carbonated soda water salt

Info

Publication number
JPS5910932B2
JPS5910932B2 JP7382677A JP7382677A JPS5910932B2 JP S5910932 B2 JPS5910932 B2 JP S5910932B2 JP 7382677 A JP7382677 A JP 7382677A JP 7382677 A JP7382677 A JP 7382677A JP S5910932 B2 JPS5910932 B2 JP S5910932B2
Authority
JP
Japan
Prior art keywords
soda
electrolyte
ash
mother liquor
caustic soda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7382677A
Other languages
Japanese (ja)
Other versions
JPS549196A (en
Inventor
一成 井川
理治 大貝
光雄 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP7382677A priority Critical patent/JPS5910932B2/en
Publication of JPS549196A publication Critical patent/JPS549196A/en
Publication of JPS5910932B2 publication Critical patent/JPS5910932B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は隔膜法食塩電解槽から得られる電解液(以後単
に隔膜法電解液という)から炭酸ソーダー水塩を得る方
法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for obtaining sodium carbonate hydrate from an electrolytic solution obtained from a diaphragm method salt electrolytic cell (hereinafter simply referred to as diaphragm method electrolyte).

従来、炭酸ソーダの製造方法は重炭酸ソーダを経由する
方法として(1)精製かん水にアンモニアを吸収させこ
れに炭酸ガスを反応させて重炭酸ソーダと塩安とし、晶
出した重炭酸ソーダは口別し、次いで(1)式に示した
反応に焼成分解 してソーダ灰(ライト灰)として得、重炭酸ソーダを口
別した塩安を含む母液は石灰乳と反応させアンモニアと
塩化カルシウム溶液に分解し、アンモニアは回収し再使
用するいわゆるアンモニアソーダ法(以後単にア法とい
う)、あるいは(2)重炭酸ソーダ分離後の塩安を含む
母液に精製固型塩を加えて塩安を晶出分離し、口液は再
びアンモニア吸収工程に送るいわゆる塩安ソーダ併産法
とがある。
Conventionally, the method for producing soda carbonate has been to use sodium bicarbonate as a method (1) absorb ammonia into purified brine, react it with carbon dioxide gas to form sodium bicarbonate and ammonium chloride, separate the crystallized sodium bicarbonate, and then (1) ) The mother liquor containing ammonium chloride obtained by separating out the bicarbonate of soda is reacted with milk of lime and decomposed into ammonia and calcium chloride solution, and the ammonia is recovered and recycled. The so-called ammonia soda method used (hereinafter simply referred to as method A), or (2) refined solid salt is added to the ammonium chloride-containing mother liquor after separation of sodium bicarbonate to crystallize and separate the ammonium chloride, and the oral fluid is again subjected to the ammonia absorption process. There is a so-called ammonium salt and soda co-production method.

(1) , (2)いずれの方法も重炭酸ソーダが得ら
れるのでソーダ灰とするには(1)式によって焼成分解
しなければならない。
Both methods (1) and (2) yield bicarbonate of soda, so in order to produce soda ash, it must be calcined and decomposed using equation (1).

ヌ焼成分解して得たソーダ灰はライト灰といわれる嵩密
度の低いソーダ灰であり、嵩密度の高いデンス灰とする
為には(2)式に示すように一且水和させ一水塩とし更
に (3)式に示すように焼成脱水しなければならない(以
後(2) + (3)式に示した工程をデンス灰化工程
という)。
The soda ash obtained by decomposing the sintered ash is called light ash and has a low bulk density.In order to make dense ash with a high bulk density, it is monohydrated as shown in equation (2) and then converted to monohydrate. Then, it must be calcined and dehydrated as shown in equation (3) (hereinafter, the process shown in equation (2) + (3) will be referred to as the dense ashing step).

これら上述の方法の欠点は、ア法では重炭酸ソーダを経
由するので焼成分解工程及びデンス灰化工程で多量のエ
ネルギーを必袈とすること、ヌアンモニア回収工程が必
要であり多量の石灰乳、スチームを必要とする上、共存
する塩素イオンがすべて廃棄されるなど、省資源の見知
からも好ましい方法ではない。
The disadvantages of these above-mentioned methods are that the method A requires a large amount of energy in the calcining decomposition step and the dense ashing step because it uses bicarbonate of soda, and it requires a nuammonia recovery step, which requires a large amount of milk of lime and steam. Not only is this method necessary, but also all the coexisting chlorine ions are discarded, which is not a preferable method from the viewpoint of resource conservation.

又、塩安ソーダ併産法は副生ずる塩安の需要のいかんに
よってその生産量を左右されるという大きな欠点を有し
ている。
Furthermore, the ammonium chloride/soda co-production method has a major drawback in that the amount of production depends on the demand for ammonium chloride produced as a by-product.

重炭酸ソーダを経由しない方法としてはカ性ソーダ液と
炭酸ガスを反応させ炭酸ソーダー水塩を得る方法がある
As a method that does not involve sodium bicarbonate, there is a method of reacting caustic soda liquid with carbon dioxide gas to obtain sodium carbonate aqueous salt.

この方法は一水塩が直接得られるのでこれを焼成脱水す
ればデンス灰として得られる。
In this method, monohydrate is directly obtained, and if it is calcined and dehydrated, it can be obtained as dense ash.

しかしこの力法は氷バランス上濃厚なカ性ソーダ液が必
要であり、カ性ソーダ濃度が比較的希薄な隔膜法電解液
をソーダ灰製造の原料として用いる場合、電解液の濃縮
工程が必撰である。
However, this force method requires a concentrated caustic soda solution in terms of ice balance, and when a diaphragm method electrolyte with a relatively dilute caustic soda concentration is used as a raw material for soda ash production, a step of concentrating the electrolyte is necessary. It is.

したがってこの方法もヌ、多量のエネルギーを必要とす
るなど、必ずしも好ましい力法ではない。
Therefore, this method also requires a large amount of energy, and is not necessarily a preferable force method.

ヌ、40係濃度以上の苛性ソーダ溶液に、炭酸ソーダを
生成すべく重炭酸ソーダを加え更にその際に生成する水
及び苛性ソーダ溶液から同伴される水をすべて結晶水と
して固定化できる量の無水炭酸ソーダを加えてパドルミ
キサー等で反応させそのまま焼成脱水してデンス灰とす
る方法(BP979378)が提案されている。
To a caustic soda solution with a concentration of 40 parts or more, add bicarbonate of soda to produce carbonate of soda, and then add anhydrous carbonate of soda in an amount that can fix all the water produced at that time and the water entrained from the caustic soda solution as water of crystallization. A method has been proposed (BP979378) in which the ash is reacted using a paddle mixer or the like, and then directly calcined and dehydrated to produce dense ash.

しかしこの方法も、やはり濃厚なカ性ソーダ溶液が必要
であり、カ性ソーダ溶液中に含まれる不純物はすべてデ
ンス灰へ同伴されるので高純度のソーダ灰を得るには必
然的に純度の高いカ性ソーダ溶液でなければ使用しえな
い。
However, this method still requires a concentrated caustic soda solution, and all impurities contained in the caustic soda solution are entrained in the dense ash. It cannot be used unless it is a caustic soda solution.

ヌ、一水塩結晶の成長も不充分である。Also, the growth of monohydrate crystals is insufficient.

従って、隔膜法電解液をそのままの状態で、例えばこの
方法に用いたとしても、 隔膜法電解液中に含まれている多量の食塩及びその他不
純物は全量デンス灰に同伴され高品位の製品として得ら
れない事が考えられる。
Therefore, even if the diaphragm electrolyte is used as it is in this method, a large amount of salt and other impurities contained in the diaphragm electrolyte will be completely entrained in the dense ash and a high-quality product will not be obtained. I can think of things that I can't do.

このように、隔膜法電解液は濃縮精製することなくその
ままの伏態で炭酸゛ノーダの原料として使用することは
極めて固難であった。
As described above, it is extremely difficult to use the diaphragm method electrolyte as a raw material for a carbonate noder in its natural state without concentrating and purifying it.

隔膜法電解液を濃縮せずに炭酸化する方法としては、隔
膜法電解液に炭酸ガスを反応させ重炭酸ソーダとして分
離後、母液は、これに原料塩を溶解し、更に精製して隔
膜法電解で使用するという方法が開示されている(特公
昭51−30879)この方法では、重炭酸ソーダが得
られるので、焼成分解工程が必要であること、更にデン
ス灰とする為にはデンス灰化工程が必要である。
To carbonate the diaphragm electrolyte without concentrating it, the diaphragm electrolyte is reacted with carbon dioxide gas and separated as sodium bicarbonate.The mother liquor is then dissolved in the raw material salt, further purified, and then subjected to diaphragm electrolysis. A method is disclosed (Japanese Patent Publication No. 51-30879) in which bicarbonate of soda is obtained, so a calcining decomposition process is necessary, and a dense ashing process is also required to produce dense ash. be.

ヌ、隔膜法電解液をア法あるいは塩安ソーダ併産法の工
程液に混合供給し間接的に重炭酸ソーダとする方法が開
示されている(特公昭46−26104、特公昭4−7
−41236、特開昭49−511.99)。
A method is disclosed in which the electrolyte of the diaphragm method is mixed and supplied with the process solution of the A method or the ammonium chloride soda co-production method to indirectly produce bicarbonate of soda.
-41236, JP-A-49-511.99).

しかしこれらの方法はいずれも重炭酸ソーダを製造する
事を目的としており、後述する様に本発明と(ま技術思
想を異にするものである。
However, all of these methods are aimed at producing sodium bicarbonate, and as will be described later, are different in technical concept from the present invention.

本発明者らは隔膜法電解液をそのままの状態で原料とし
、エネルギー消費を極力抑制した工程で炭酸ソーダを製
造する方法について種々研究し本発明に到達した。
The present inventors conducted various studies on a method for producing soda carbonate using a diaphragm electrolyte as a raw material in a process that minimizes energy consumption, and arrived at the present invention.

本発明の技術思想は、(1)隔膜法電解液を濃縮せずに
用いること。
The technical idea of the present invention is (1) to use the diaphragm method electrolyte without concentrating it.

(2)ソーダの炭酸化工程中にも濃縮の為に蒸気を使わ
ないこと。
(2) Do not use steam for concentration during the soda carbonation process.

(3)焼成分解工程、デンス灰化工程を必要とする重炭
酸ソーダを製造する方法ではなくデンス灰用の炭酸ソー
ダー水塩を直接製造する方法であること。
(3) The method is not a method for producing sodium bicarbonate that requires a calcining decomposition step and a dense ashing step, but a method for directly producing sodium carbonate hydrate for dense ash.

(4)アルカリ収率が充分高いこと。(4) The alkali yield is sufficiently high.

(5)即ちエネルギーの消費を極力抑制した製造方法で
あること。
(5) That is, the manufacturing method must minimize energy consumption.

など(こある。etc. (There is this.

しかし、上記技術思想を完全に満足させるには、(1)
隔膜法電解液に炭酸ガスを吹込んでも炭酸ソーダー水塩
は析出してこないか析出してもごくわずかである。
However, in order to completely satisfy the above technical idea, (1)
Even when carbon dioxide gas is blown into the diaphragm electrolyte, sodium carbonate hydrate does not precipitate, or even if it precipitates, it is very small.

(2)炭酸ソーダー水塩を分離した母液にはなお多量の
炭酸ソーダが溶解しているのでそのままパージすること
はアルカリ損失が大きくなる。
(2) Since a large amount of sodium carbonate is still dissolved in the mother liquor from which the sodium carbonate aqueous salt is separated, purging it as it is will result in a large alkali loss.

つまりアルカリ収率がきわめて低い。In other words, the alkali yield is extremely low.

(3)炭酸塩スラリー濃度が低く結晶の滞留時間を長く
とりにくいので成長した結晶が得られない。
(3) Growing crystals cannot be obtained because the carbonate slurry concentration is low and it is difficult to maintain a long residence time for the crystals.

などの問題点があり、効果的な炭酸ソーダ製造法の確立
の為には、これら問題点の解決が必袈であることが明ら
かになった。
There are problems such as these, and it has become clear that it is necessary to solve these problems in order to establish an effective method for producing soda carbonate.

本発明者らは更に研究を重ねた結果、本発明に到達した
ものである。
The present inventors have arrived at the present invention as a result of further research.

即ち本発明は 隔膜法電解液とライI・灰及び後述の第三工程で得られ
る重炭酸ソーダとを反応させ炭酸ソーダー水塩を得るに
際し、ライ1・灰を60℃以上で供給しかつ結晶槽温度
を60゜C以上100゜C以下に維持しかつ反応液中に
、カ性ソーダ過剰の場合はカ性ソーダ濃度を1 w t
%未満とし、カ性ソーダ不足の場合は重炭酸ソーダ濃
度を2 w t %未満とすることを特徴とする第一工
程、第一工程で得られるスラリーを結晶と母液とに分離
し必戟に応じて洗浄する第二工程、第二工程で得られる
母液に炭酸ガスを反応させ重炭酸ソーダを晶出せしめ該
結晶を第一工程ζこ供給する第三工程とから成る炭酸ソ
ーダー水塩の製法を要旨とするものである。
That is, in the present invention, when reacting the diaphragm method electrolyte, Lie I ash, and sodium bicarbonate obtained in the third step described below to obtain sodium carbonate hydrate, Lie 1 ash is supplied at a temperature of 60°C or higher, and the crystallization tank temperature is If there is an excess of caustic soda in the reaction solution, reduce the concentration of caustic soda to 1 wt.
%, and in the case of a shortage of caustic soda, the bicarbonate soda concentration is reduced to less than 2 wt %.The slurry obtained in the first step is separated into crystals and mother liquor, and as necessary. The gist is a method for producing sodium carbonate hydrate, which comprises a second step of washing, a third step of reacting the mother liquor obtained in the second step with carbon dioxide gas to crystallize sodium bicarbonate, and supplying the crystals to the first step. It is something.

本発明を更に詳細に説明する。The present invention will be explained in more detail.

隔膜法電解液は通常力性ソーダ濃度が5〜15wt%で
、10〜20wt%の食塩を含む。
The diaphragm electrolyte usually has a sodium hydroxide concentration of 5 to 15 wt% and contains 10 to 20 wt% of common salt.

カ性ソーダ濃度が高ければ高い程、ヌ食塩濃度が高けれ
ば高い程これを炭酸化処理した場合炭酸ソーダー水塩の
晶出量は多くなる。
The higher the concentration of caustic soda and the higher the concentration of common salt, the greater the amount of sodium carbonate aqueous salt crystallized when carbonated.

ヌア法又は隔膜法塩化電解で重炭酸ソーダ分離母液を使
う必按上食塩濃度は高い方が望ましい。
It is desirable to use a sodium bicarbonate separated mother liquor in the Nua method or the diaphragm method for chlorination electrolysis.The higher the salt concentration is, the better.

上記した電解液組成であっても本発明では有効に用いる
ことができる。
Even the electrolyte composition described above can be effectively used in the present invention.

本発明に用いるライト灰はア法及び/ヌは塩安ソーダ併
産法で製造される重炭酸ソーダを焼成分解したものでよ
くライ]・灰を反応系に供給する温度は60゜C以上で
あることが必要である。
The light ash used in the present invention may be obtained by calcining and decomposing sodium bicarbonate produced by the ammonium chloride soda co-production method in method A and/or method].The temperature at which the ash is supplied to the reaction system must be 60°C or higher. is necessary.

前記温度が60℃より下ではライト灰が晶出槽Oこ投入
されるとその結晶表面付近の過飽和度が急激に上昇し核
の発生が多くなりしたがって成長した大きな結晶を得る
事が困難さなったり、ライト灰の粒子形囚をそのまま残
した炭酸ソーダー水塩が生成し良好なデンス灰が得られ
ない。
When the temperature is below 60°C, when light ash is introduced into the crystallization tank, the degree of supersaturation near the crystal surface increases rapidly and more nuclei are generated, making it difficult to obtain large grown crystals. Otherwise, a sodium carbonate aqueous salt with the light ash particles left intact is generated, making it impossible to obtain good dense ash.

反応系へのライ1〜灰の最適な供給量は隔膜法電解液の
カ性ソーダ、食塩濃度で異なるが凋膜法電解液中のカ性
ソーダの70〜9 5 % (一水塩収率)が炭酸ソー
ダー水塩として析出し得る量のライト灰を加えるのが望
ましい。
The optimal amount of lye 1 to ash to be supplied to the reaction system varies depending on the concentration of caustic soda and salt in the diaphragm electrolyte, but it should be 70 to 95% of the caustic soda in the diaphragm electrolyte (monohydrate yield). ) is preferably added in an amount that can precipitate the sodium carbonate aqueous salt.

更に望ましくは前記一水塩収率が85〜95%となる量
である。
More preferably, the amount is such that the monohydrate yield is 85 to 95%.

ライト灰がAiTi流率が70係より−Fとなる量であ
ると、後述の第三工程で多量の重炭酸ソーダの余剰が生
じ、95φより上となる量であると第−・工程で必要と
する重炭酸ソーダを第三工程から供給できなくなる。
If the light ash is in an amount where the AiTi flow rate is -F from 70, a large amount of sodium bicarbonate will be surplus in the third step described below, and if the amount is above 95φ, it will be needed in the second step. Soda bicarbonate cannot be supplied from the third process.

本発明者らは種々検討した結果、隔膜法電解液のカ性ソ
ーダ濃度をxwt係とした時に該電解液i− tに対し
て100kg以上(1360−80x)kg以下の範囲
内でライ1・灰の供給量を決めれば望ましい一水塩収率
で炭酸ソーダー水塩が得られ、同時に第一工程で必要と
する重炭酸ソーダが不足することがないという事実を見
出した。
As a result of various studies, the present inventors found that when the caustic soda concentration of the diaphragm method electrolyte is taken as a function of xwt, Lie 1. It has been found that by determining the amount of ash supplied, sodium carbonate hydrate can be obtained with a desired monohydrate yield, and at the same time, there is no shortage of sodium bicarbonate required in the first step.

又、ライト灰供給量力哨甫己した1.00kgより下の
量では晶出した炭酸ソーダー水塩の結晶形が若干小さく
なる。
Further, when the amount of light ash supplied is less than 1.00 kg, the crystal form of the crystallized sodium carbonate hydrate becomes slightly smaller.

後述する第三工程から供給する重炭酸ソーダの量は供給
される隔膜法電解液中のカ性ソーダの量に対して当量(
1モル対1モル)前後が望ましいが、炭酸ソーダ晶出槽
内の反応液組成はカ性ソーダ過剰の場合はカ性ソーダ濃
度で1 w t %未満とし、カ性ソーダ不足の場合は
重炭酸ソーダ濃度2 w t係未満となるようにしなけ
ればならない。
The amount of bicarbonate of soda supplied from the third step described below is equivalent to the amount of caustic soda in the diaphragm electrolyte to be supplied (
1 mole to 1 mole), but the reaction solution composition in the sodium carbonate crystallization tank should be less than 1 wt % in terms of caustic soda concentration if there is an excess of caustic soda, and the sodium bicarbonate concentration should be less than 1 wt % if there is a shortage of caustic soda. It must be less than 2wt.

カ性ソーダ濃度が1wt%以上になると晶出する炭酸ソ
ーダー水塩の結晶形が悪くなり、デンス灰とした時の物
性が悪くなる。
When the concentration of caustic soda exceeds 1 wt%, the crystalline form of the crystallized sodium carbonate hydrate deteriorates, and the physical properties when formed into dense ash deteriorate.

その理由は明らかではないが、食塩濃度が13〜2 0
w t %と高い結晶槽内での固体の重炭酸ソーダと
カ性ソーダ溶液の晶出を伴う反応である為の特異な晶出
機構である為と考えられる。
The reason is not clear, but the salt concentration is between 13 and 20.
This is thought to be due to the unique crystallization mechanism as the reaction involves crystallization of solid sodium bicarbonate and caustic soda solution in a crystallization tank with a high wt%.

ヌ、重炭酸ソーダが2wt%以上の濃度になると、一水
塩の他にセスキ炭酸ソーダが析出してくるので好ましく
ない。
If the concentration of sodium bicarbonate exceeds 2 wt%, sodium sesquicarbonate will precipitate in addition to monohydrate, which is not preferable.

結晶槽の温度は60℃〜l. 0 0゜Cの範囲内が好
ましい。
The temperature of the crystallization tank is 60°C to l. It is preferably within the range of 0 0°C.

60℃より下になると良好な結晶が得られず、又100
゜Cより上になると無水炭酸ソーダが晶出してくる。
If the temperature is lower than 60℃, good crystals cannot be obtained, and if the temperature is lower than 100℃.
When the temperature rises above °C, anhydrous carbonate soda begins to crystallize.

結晶槽でのスラリー濃度は20〜40wt%が望ましい
が、供給するライト灰の量によってはこの範囲を越す場
合も有り得るので、その場合は炭酸ソーダー水塩の分離
母液を一部晶出槽に戻してスラリー濃度を低下させたり
、あるいは分級、静定などによってスラリー濃度を増加
させることも時には有効である。
The slurry concentration in the crystallization tank is preferably 20 to 40 wt%, but it may exceed this range depending on the amount of light ash supplied. It is sometimes effective to reduce the slurry concentration by using a method such as classification, static settling, etc. to increase the slurry concentration.

第二工程で炭酸ソーダー水塩の母液からの分離に際して
は、結晶に食塩濃度の高い母液が付着するので、必要に
応じて水あるいは炭酸ソーダ水溶液で洗浄することが好
ましい。
When separating the sodium carbonate aqueous salt from the mother liquor in the second step, since the mother liquor with a high salt concentration adheres to the crystals, it is preferable to wash the crystals with water or an aqueous sodium carbonate solution as necessary.

この際の洗浄液使用量は結晶に対して10〜1.5wt
%で充分である。
The amount of cleaning solution used at this time is 10 to 1.5 wt per crystal.
% is sufficient.

炭酸ソーダー水塩分離母液に炭酸ガスを反応させ重炭酸
ソーダを得の第三工程は、通常の方法で良いがアルカリ
損失を低くするという点から、温度を最終的には20〜
40℃まで下げてから重炭酸ソーダを分離するのが望ま
しい。
The third step of reacting carbon dioxide gas with the separated mother liquor of sodium carbonate and salt to obtain sodium bicarbonate can be carried out using the usual method, but from the point of view of reducing alkali loss, the temperature should ultimately be set at 20 to 20°C.
It is preferable to separate the bicarbonate of soda after the temperature is lowered to 40°C.

用いる炭酸ガスは特に制限なく、重炭酸ソーダを生成す
るに充分な量用いる。
The carbon dioxide gas used is not particularly limited, and is used in an amount sufficient to produce bicarbonate of soda.

重炭酸ソーダは洗浄、乾燥等の必夾はなく付着母液を有
する犬態で用いる事ができる。
Sodium bicarbonate does not require washing or drying, and can be used in the form of a dog with attached mother liquor.

分離Cこ際しては遠心口過、加圧口過、真空口過などの
通常の分離で良いが静定槽や液体サイクロンなどでスラ
リー濃縮した重炭酸ソーダスラリーを第一工程にサイク
ルすることも可能である。
Separation C In this case, normal separation such as centrifugal filtration, pressure filtration, or vacuum filtration may be used, but it is also possible to cycle bicarbonate soda slurry concentrated in a static tank or liquid cyclone to the first step. It is.

第三工程で得た母液には重炭酸ソーダ1〜5w t %
を含んでいるが食塩濃度が14〜2 4 w t係高い
のでア法や隔膜法電解の塩水として使用することもでき
る。
The mother liquor obtained in the third step contains 1 to 5 wt% of bicarbonate of soda.
However, since the salt concentration is 14 to 24 wt higher, it can also be used as a salt water for electrolysis using the A method or the diaphragm method.

次に本発明の特徴を列記すると、 (1)重炭酸ソーダを循環することによって濃縮するこ
となく一水塩を晶出させることができ、その一水塩収率
も炭酸ガス吹込み法に比べ極めて高い。
Next, the features of the present invention are listed as follows: (1) By circulating sodium bicarbonate, monohydrate can be crystallized without concentration, and the yield of monohydrate is also extremely high compared to the carbon dioxide gas blowing method. .

(2)ライト灰を使うことによって水分が消費され炭酸
ソーダー水塩の晶出率が更に増す。
(2) By using light ash, water is consumed and the crystallization rate of sodium carbonate water salt further increases.

(3)即ち隔膜法電解液中のカ性ソーダ80%(一水塩
収率)以上を炭酸ソーダー水塩として回収することがで
きる。
(3) That is, more than 80% (monohydrate yield) of caustic soda in the diaphragm electrolyte can be recovered as sodium carbonate hydrate.

炭酸ガスを吹込んだだけでは、隔膜法電解液の組成にも
よるが、前記収率はO〜10係である。
If only carbon dioxide gas is blown in, the yield is between 0 and 10, although it depends on the composition of the diaphragm electrolyte.

(4)ア法あるいは塩安ソーダ併産法のライト灰を使う
ことによってそのデンス灰化工程が不要となる。
(4) By using light ash from the A method or the ammonium chloride soda co-production method, the dense ashing process is no longer necessary.

(5)重炭酸ソーダを循環すること及びライト灰を使う
ことによって晶出槽のスラリー濃度が増し結晶の滞在時
間を充分長くとれるので結晶成長が犬となる。
(5) By circulating sodium bicarbonate and using light ash, the slurry concentration in the crystallization tank is increased and the residence time of the crystals is sufficiently long, so that crystal growth is slowed down.

(6)晶出槽は完全混合のタンク型の簡単なもので充分
である。
(6) A simple tank-type crystallization tank for complete mixing is sufficient.

(7)デンス灰用の一水塩としては、ソーダ灰にした時
に微粉化しないような硬度の充分ある一水塩が望まれる
が、本発明による一水塩からのデンス灰は従来法の重炭
酸ソーダをライト灰にし更にデンス灰化工程を経たデン
ス灰や濃厚力性ソーダ液を炭酸化して得たデンス灰より
も実施例に示す様に硬度試験結果は良好であった。
(7) As the monohydrate for dense ash, it is desired that the monohydrate has sufficient hardness so that it will not become pulverized when it is made into soda ash. As shown in the examples, the hardness test results were better than those of dense ash obtained by converting light ash into light ash and then passing through a dense ashing process, or dense ash obtained by carbonating concentrated strength soda liquid.

(8)第三工程の重炭酸ソーダ分離母液をパージするこ
とになるのでアルカリ損失が少ない。
(8) Since the sodium bicarbonate separated mother liquor in the third step is purged, alkali loss is small.

(9)第三工程での重炭酸ソーダ分離母液は食塩濃度が
高いのでア法や隔膜法塩水電解で使用することができる
(9) Since the sodium bicarbonate separated mother liquor in the third step has a high salt concentration, it can be used in method A or diaphragm method brine electrolysis.

(10)第一工程で使用する重炭酸ソーダの量は隔膜法
電解液中のカ性ソーダと当量(1モル対1モル)前後で
あるが、第三工程で生成する重炭酸ソーダの量との差即
ち過不足はないことが望ましい。
(10) The amount of sodium bicarbonate used in the first step is approximately equivalent to the amount of caustic soda in the diaphragm electrolyte (1 mole to 1 mole), but there is a difference between the amount of sodium bicarbonate produced in the third step, or the excess amount. It is desirable that there is no shortage.

過剰であれば重炭酸ソーダのパージが必袈であり、又不
足すれば系外から供給する事が必袈である。
If it is in excess, it is necessary to purge with bicarbonate of soda, and if it is insufficient, it is necessary to supply it from outside the system.

しかし本発明では隔膜法電解液の組成によってライト灰
の供給量を加減すればその過不足をコントロールするこ
とが可能であるので極めて操作が簡便である。
However, in the present invention, by adjusting the amount of light ash supplied depending on the composition of the diaphragm electrolyte, it is possible to control excess or deficiency, so the operation is extremely simple.

上記詳述した様に本発明はエネルギーコスl・の低減な
どの経済的な利点があるだけではなく、デンス灰とした
時に物性良好なソーダ灰となる理想的な結晶形状の炭酸
ソーダー水塩を得ることができる。
As detailed above, the present invention not only has economical advantages such as reduction of energy cost l. Obtainable.

これは、原料として隔膜法電解液を使用すること、結晶
槽条件を前述の様に限定したこと、アンモニウム塩を若
干含むライト灰を使用すること、結晶槽内の食塩濃度が
13〜20wt%と高く偉持されること、更に工程内の
重炭酸ソーダをサイクルして使うことなどが複雑に影響
しあう為と思われる。
This is because the diaphragm method electrolyte is used as the raw material, the crystallization tank conditions are limited as mentioned above, the light ash containing some ammonium salt is used, and the salt concentration in the crystallization tank is 13 to 20 wt%. This seems to be due to the complex interaction of factors such as being highly respected and cycling the bicarbonate of soda in the process.

以下実施例をもって説明する。This will be explained below using examples.

実施例 1 第一工程は次の様にして行なった。Example 1 The first step was carried out as follows.

カ性ソーダ濃度9. 6 w t係、食塩濃度16.8
w t %の隔膜法電解液を20509/H,食塩0.
4w t %を含むライト灰を8239/H、後述の第
三工程からの食塩3.Owt%、水12.0wt%を含
む重炭酸ソーダケークを486F/Hの供給速度で2l
のガラス製容器(有効容積]..4l)に供給し、攪拌
しながら反応させ炭酸ンーダー水塩を晶出させた。
Caustic soda concentration 9. 6 wt section, salt concentration 16.8
wt% diaphragm electrolyte 20509/H, salt 0.
8239/H of light ash containing 4 wt %, and 3. salt from the third step described below. 2 liters of bicarbonate soda cake containing 12.0 wt% water at a feed rate of 486 F/H.
The mixture was supplied to a glass container (effective volume: .4 liters) and reacted with stirring to crystallize carbonate under hydrate.

供給した隔膜法電解液の温度、重炭酸ソーダケークの温
度は25℃、ライト灰の温度は80℃であり、晶出槽は
加熱して95℃(こ保持した。
The temperature of the supplied diaphragm electrolyte, the temperature of the bicarbonate soda cake was 25°C, the temperature of the light ash was 80°C, and the crystallization tank was heated to 95°C (maintained at this temperature).

第二工程として生成したスラリーを3359g\Hで抜
き出し遠心口過した。
The slurry produced in the second step was extracted at 3359 g\H and passed through a centrifugal port.

遠心口過の条件は750Gで付着母液3 w t %の
一水塩結晶ケーク1243g/Hを得た。
The conditions for centrifugal filtration were 750 G, and 1243 g/h of monohydrate crystal cake with an attached mother liquor of 3 wt % was obtained.

更に一水塩結晶ケークに対して15wt%の水をかけ洗
浄し乾燥した炭酸ソーダー水塩は0. 1 w t%の
食塩を含み、硬度試験の結果は破砕率6.0係と非常に
良好であった。
Furthermore, the monohydrate crystal cake was washed with 15 wt% of water, and the carbonate soda water salt was dried. It contained 1 wt% of salt, and the results of the hardness test were very good with a crush rate of 6.0.

ア法によって得たソーダー水塩の破砕率は10〜12係
、隔膜法力性ソーダ液(48wt%)を常法により炭酸
化して得た一水塩のそれは1.3.0%であった。
The crushing rate of the soda water salt obtained by the method A was 10 to 12, and that of the monohydrate obtained by carbonating the diaphragm method soda water solution (48 wt%) by the conventional method was 1.3.0%.

尚第三工程は次の様(こして行なった。The third step was carried out as follows.

炭酸ソーダー水塩を分離した母液は、炭酸ソーダ14.
4wt係、良塩1.6.8wt係を含んでいた。
The mother liquor from which the sodium carbonate aqueous salt was separated is 14.
It included 4wt and 1.6.8wt of good salt.

この母液を有効容積54のガラス製容器に連続的に供給
し炭酸ガスを吹込んだ。
This mother liquor was continuously supplied to a glass container having an effective volume of 54, and carbon dioxide gas was blown into the container.

容器内の温度は600Cとした。The temperature inside the container was 600C.

得たスラリーを回分的に5lのガラス製容器に入れ35
℃に冷却しながら更に炭酸ガスを1時間吹込んだ。
Pour the obtained slurry in batches into 5 liter glass containers.35
While cooling to ℃, carbon dioxide gas was further blown in for 1 hour.

このスラリーをガラス製フィルターを使って真空口過を
し、負塩3.Owt係、水1 2.Owt係、重炭酸ソ
ーダ8 5.Ow t %のケークを5 3 3 9/
Hで得た。
This slurry was vacuum filtered using a glass filter, and 3. Owt staff, water 1 2. Owt staff, bicarbonate of soda 8 5. Ow t% cake 5 3 3 9/
Obtained from H.

なお、一水塩収率は84係であった。実施例 2 第一工程の一水塩晶出槽温度を80゜C、60゜Cと変
え、他の条件は実施例1と同じように行なった。
In addition, the monohydrate yield was 84%. Example 2 The temperature of the monohydrate crystallization bath in the first step was changed to 80°C and 60°C, and the other conditions were the same as in Example 1.

破砕率は表1に示すごとくそれぞれ7.5係と11.0
係と良好であった。
The crushing rate is 7.5 and 11.0, respectively, as shown in Table 1.
I was on good terms with the person in charge.

比較例 1 第一工程の晶出槽温度を50゜Cと変えて、他の条件は
実施例1と同じように行なった。
Comparative Example 1 The crystallization tank temperature in the first step was changed to 50°C, and the other conditions were the same as in Example 1.

炭酸ソーダー水塩の結晶形は不良で、破砕率も140係
と不良であった。
The crystal form of the sodium carbonate water salt was poor, and the crushing rate was also poor at 140.

比較例 2 第一工程の晶出槽温度を80゜Cとし、供給するライト
灰の温度を50°Cと変えて他の条件は実施例1,.L
−同{つように行なった8 炭酸ソーダー水塩の結晶形はやや不良で、破砕率は13
.5%と不良であった。
Comparative Example 2 The temperature of the crystallization tank in the first step was 80°C, the temperature of the light ash supplied was changed to 50°C, and the other conditions were as in Example 1. L
- The same procedure was carried out.8 The crystal shape of the sodium carbonate hydrate was slightly poor, and the crushing rate was 13.
.. It was poor at 5%.

実施例3及び比較例3 第一工程で投入する重炭酸ソーダケークの量を種々変え
て晶出槽のカ性ソーダ濃度あるいは重炭酸ソーダ濃度を
調節して他の条件は実施例1と同様に行なった。
Example 3 and Comparative Example 3 The same conditions as in Example 1 were carried out except that the amount of bicarbonate soda cake introduced in the first step was varied to adjust the caustic soda concentration or bicarbonate soda concentration in the crystallization tank.

第一表に示すようにカ性ソーダ濃度1 w t %以上
、又は重炭酸ソーダ濃度2 w t %以上では好まし
くない結果を得た。
As shown in Table 1, unfavorable results were obtained when the caustic soda concentration was 1 wt % or more or the sodium bicarbonate concentration was 2 wt % or more.

実施例 4 ライト灰の投入量を変えて、その他の条件は実施例1と
同様に行なった。
Example 4 The same conditions as in Example 1 were carried out except that the amount of light ash added was changed.

結果を第一表に示す。いずれも良好であった。The results are shown in Table 1. All were good.

=74− 実施例 5 カ性ソーダ濃度10.7w.t係、食塩濃度15.7w
t %の隔膜法電解液を2000g/H、第三工程か
らの重炭酸ソーダケーク52’l/H、ライト灰の投入
量を9049/H、602g/H、20]..9/Hと
変えて行なった。
=74- Example 5 Caustic soda concentration 10.7w. Section t, salt concentration 15.7w
t % diaphragm electrolyte at 2000 g/H, bicarbonate soda cake from the third step 52'l/H, light ash input amount 9049/H, 602 g/H, 20]. .. I did it instead of 9/H.

晶出槽は実施例1と同じで、供給した隔膜法電解液の温
度は50℃、ライト灰の温度は1. 0 0℃、晶出槽
は90°Cに保持した。
The crystallization tank was the same as in Example 1, the temperature of the supplied diaphragm electrolyte was 50°C, and the temperature of the light ash was 1.5°C. The crystallization tank was maintained at 90°C.

生成したスラリーを実施例1と同様に処理して、炭酸ソ
ーダー水塩結晶、重炭酸ソーダケークを得た。
The resulting slurry was treated in the same manner as in Example 1 to obtain sodium carbonate hydrate crystals and a bicarbonate soda cake.

結果を第一表に示す。いずれの場合も良好であった。The results are shown in Table 1. Good results were obtained in both cases.

実施例 6 第一工程で投入するライト灰の量を1“00.9/Hr
、1105g/Hrと変えて、その他の条件は、実施例
5と同様に行なった。
Example 6 The amount of light ash introduced in the first step was 1"00.9/Hr.
, 1105 g/Hr, and the other conditions were the same as in Example 5.

結果を第一表に示す。ライト灰の投入量が1009/H
rと少ない場合、得られる一水塩の結晶はやや不良で破
砕率13係となり、ヌ、重曹過剰率は17%で、多量の
重炭酸ソーダが余った。
The results are shown in Table 1. Light ash input amount is 1009/H
When the amount is as low as r, the resulting monohydrate crystals are somewhat poor, with a crushing rate of 13, and the excess rate of sodium bicarbonate is 17%, with a large amount of sodium bicarbonate remaining.

一方、ライト灰の投入量が( 1 3 6 0−80x
)より多い]. 1 0 5 .!i’/Hrの場合、
第三工程からの重炭酸ソーダが、多量に不足した。
On the other hand, the input amount of light ash is (1 3 6 0-80x
)is more than]. 1 0 5. ! In the case of i'/Hr,
There was a large shortage of bicarbonate of soda from the third step.

Claims (1)

【特許請求の範囲】 1 隔膜法塩水電解槽からの電解液とライト灰(軽灰)
及び後述の第三工程で得られる重炭酸ソーダを反応させ
炭酸ソーダー水塩を得るに際し、(1)608C以上に
保ったライト灰を供給し、反応液湛度60゜C〜100
゜Cの範囲に維持しかつ母液中にカ性ソーダ過剰の場合
はカ性ソーダ濃度を1.w t %未満とし、カ性ソー
ダ不足の場合は重炭酸ソーダ濃度を2wt%未満とする
ことを特徴とする第一工程、(2)第一工程で得られる
反応液を結晶と母液に分離し、必要(こ応じて結晶を洗
浄する第二工程、(3)第二工程で得られる母液に炭酸
ガスを反応させ重炭酸ソーダを晶出させ該結晶を第一工
程に供給する第三工程とから成る炭酸ソーダー水塩の製
法。 2 特許請求の範囲1項記載の方法において、隔膜法塩
水電解槽からの電解液中のカ性ソーダ濃度をxwt%と
したときに、該電解液1tに対して].OOkg以上(
1 3 6 0−80x )kg以下のライト灰を供
給する方法。
[Claims] 1. Electrolyte and light ash from a diaphragm method salt water electrolyzer
When reacting sodium bicarbonate obtained in the third step described below to obtain sodium carbonate hydrate, (1) supply light ash maintained at 608C or higher, and keep the reaction liquid content at 60°C to 100°C.
If the mother liquor contains excess caustic soda, the caustic soda concentration should be maintained within the range of 1. (2) The reaction solution obtained in the first step is separated into crystals and mother liquor, and the reaction solution obtained in the first step is separated into crystals and mother liquor, (a second step in which the crystals are washed accordingly; and (3) a third step in which the mother liquor obtained in the second step is reacted with carbon dioxide gas to crystallize sodium bicarbonate and the crystals are supplied to the first step. Method for producing aqueous salt. 2 In the method according to claim 1, when the caustic soda concentration in the electrolyte from the diaphragm method salt water electrolytic cell is xwt%, .OOkg for 1 ton of the electrolyte. that's all(
1 3 6 0-80x) A method of supplying light ash of less than 0-80x kg.
JP7382677A 1977-06-23 1977-06-23 Manufacturing method of carbonated soda water salt Expired JPS5910932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7382677A JPS5910932B2 (en) 1977-06-23 1977-06-23 Manufacturing method of carbonated soda water salt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7382677A JPS5910932B2 (en) 1977-06-23 1977-06-23 Manufacturing method of carbonated soda water salt

Publications (2)

Publication Number Publication Date
JPS549196A JPS549196A (en) 1979-01-23
JPS5910932B2 true JPS5910932B2 (en) 1984-03-12

Family

ID=13529332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7382677A Expired JPS5910932B2 (en) 1977-06-23 1977-06-23 Manufacturing method of carbonated soda water salt

Country Status (1)

Country Link
JP (1) JPS5910932B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118628A (en) * 1984-07-06 1986-01-27 Nissan Motor Co Ltd Apparatus for conveying workpiece between presses
JPH01273632A (en) * 1988-04-27 1989-11-01 Toyo Denyou Kk Carrying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6118628A (en) * 1984-07-06 1986-01-27 Nissan Motor Co Ltd Apparatus for conveying workpiece between presses
JPH01273632A (en) * 1988-04-27 1989-11-01 Toyo Denyou Kk Carrying device

Also Published As

Publication number Publication date
JPS549196A (en) 1979-01-23

Similar Documents

Publication Publication Date Title
US1865833A (en) Process of forming sodium bicarbonate
US6143260A (en) Method for removing magnesium from brine to yield lithium carbonate
US4252781A (en) Preparation of sodium carbonate anhydride
US4654204A (en) Production of sodium bicarbonate by reversion of soda-type feed salt
CA2032627C (en) Process for producing sodium carbonate and ammonium sulphate from sodium sulphate
US3780160A (en) Carbonation process for the manufacture of sodium bicarbonate
US3212848A (en) Process for producing sodium carbonate
US4260594A (en) Method for the manufacture of crystals of sodium carbonate monohydrate
US3950499A (en) Process for production of calcium hypochlorite
CA2029689C (en) Purification of chlor-alkali membrane cell brine
US5976485A (en) Sodium metabisulfite process
WO1994018360A1 (en) Process for recovering solid sodium bicarbonate from diaphragm cell
US5753200A (en) Sodium metabisulfite process
US3954948A (en) Process for manufacture of calcium hypochlorite
US3843768A (en) Process for the preparation of sodium carbonate monohydrate from a sodium hydroxide solution produced according to the diaphragm process
US3506432A (en) Method of producing sodium bicarbonate and a fertilizer of ammonium and potassium compounds
EA010679B1 (en) Process for the manufacture of a bleaching agent
JPS5910932B2 (en) Manufacturing method of carbonated soda water salt
JPS599485B2 (en) Manufacturing method of carbonated soda
US4390512A (en) Process for producing calcium hypochlorite
US4844880A (en) Process for the manufacture of sodium metabisulfite
US3321269A (en) Process for the production of crystalline calcium carbonate of vaterite type
US3842157A (en) Process for the preparation of sodium carbonate monohydrate from a sodium hydroxide solution produced according to the diaphragm process
JP2000313606A (en) Combined production of higher bleaching powder and aqueous solution of calcium chloride
CN103991851A (en) New process for green and cyclic production of hydrazine hydrate