JPH0734806A - Turbine control device and cooling system control system in separating nuclear reactor - Google Patents

Turbine control device and cooling system control system in separating nuclear reactor

Info

Publication number
JPH0734806A
JPH0734806A JP5179679A JP17967993A JPH0734806A JP H0734806 A JPH0734806 A JP H0734806A JP 5179679 A JP5179679 A JP 5179679A JP 17967993 A JP17967993 A JP 17967993A JP H0734806 A JPH0734806 A JP H0734806A
Authority
JP
Japan
Prior art keywords
turbine
flow rate
value
pump
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5179679A
Other languages
Japanese (ja)
Other versions
JP3302788B2 (en
Inventor
Shinichi Tajima
伸一 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP17967993A priority Critical patent/JP3302788B2/en
Publication of JPH0734806A publication Critical patent/JPH0734806A/en
Application granted granted Critical
Publication of JP3302788B2 publication Critical patent/JP3302788B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Flow Control (AREA)
  • Control Of Turbines (AREA)

Abstract

PURPOSE:To provide a turbine control device to safely execute the quickly starting while keeping the increasing ratio of the number of rotation to be constant. CONSTITUTION:A turbine 5 which is started in an emergency of a reactor 1 is quickly started by making the steam from the reactor 1 flow through an inlet valve 7, and water of the required flow rate is poured into the reactor 1 by driving a pump 4. A turbine control device consists of a flow rate regulator 10 and a turbine number of rotation regulator 13, and the former outputs the required turbine number of rotation according to the deviation between the discharged flow rate from the pump 4 and the required flow rate. The latter selects the deviation between the required value of the turbine number of rotation and the actual number of rotation of a detector 8, and the output of an overspeed setting means 15 to determine the increasing ratio of the turbine number of rotation by a lower value preferential circuit 16, and controls the opening of the inlet valve 7. The preset overspeed is selected until reaching the required flow rate, and the turbine number of rotation is increased by keeping the constant increasing rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はタービン制御装置に係わ
り、特に原子炉隔離時冷却系(以下、RCICと呼ぶ)
のタービン等におけるように、急速起動を必要とするタ
ービン制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine control device, and particularly to a reactor isolation cooling system (hereinafter referred to as RCIC).
Turbine control devices that require rapid start-up, such as in turbines and the like.

【0002】[0002]

【従来の技術】原子力発電所のRCICタービンや、非
常時における発電所内バックアップ電源供給用のタービ
ンは、タービン制御のための油圧を自ら油ポンプを運転
して確保しているので、油圧が確立するまでにはある程
度の時間がかかる。
2. Description of the Related Art An RCIC turbine of a nuclear power plant and a turbine for supplying backup power in a power plant in an emergency have their own oil pressures for controlling the turbines, so that the oil pressures are established. It will take some time to get there.

【0003】RCICタービンを例に説明すると、大き
な起動トルクを得れるように蒸気加減弁開度が全開の状
態で起動されるため、制御油圧が確立される前にタービ
ン回転数が急上昇して、異常な初期ピーク回転数に達
し、非常調速機が動作して緊急停止する恐れがあった。
Taking the RCIC turbine as an example, since the steam control valve opening is started so that a large starting torque can be obtained, the turbine speed rapidly increases before the control hydraulic pressure is established. The abnormal initial peak speed was reached, and the emergency governor might operate and cause an emergency stop.

【0004】このような初期ピーク回転数を抑制するた
めに、特公平5−9605号公報には、タービン起動に
際し、ランプ信号および流量要求信号の低値信号によっ
て蒸気加減弁(全開状態から)の開度制御を行う場合
に、タービン回転数がランプ信号を超えるまで負の速度
要求である弁閉信号を、上記低値信号の優先回路に与え
る方式が提案されている。これによって、タービン起動
直後から蒸気加減弁を閉方向に制御して起動時の回転数
の異常上昇を回避しようとするものである。
In order to suppress such an initial peak rotational speed, Japanese Patent Publication No. 5-9605 discloses that when a turbine is started, a low value signal of a ramp signal and a flow rate request signal is used to control a steam control valve (from a fully open state). In the case of performing the opening degree control, a method has been proposed in which a valve closing signal, which is a negative speed request until the turbine speed exceeds the ramp signal, is given to the priority circuit for the low value signal. Thus, the steam control valve is controlled in the closing direction immediately after the turbine is started to avoid an abnormal increase in the rotation speed at the time of startup.

【0005】[0005]

【発明が解決しようとする課題】上記の提案によれば、
タービン回転数がランプ信号に達する以前の油圧系の遅
れによる初期ピーク回転数は回避できる。しかし、その
後に発生する可能性がある過回転とそれによるトリップ
は回避できない。
According to the above proposal,
The initial peak rotation speed due to the delay of the hydraulic system before the turbine rotation speed reaches the ramp signal can be avoided. However, the excessive rotation and the trip that may occur after that cannot be avoided.

【0006】図3に、従来技術におけるRCICタービ
ンの起動特性図を示す。同図で、時刻t1におけるター
ビン回転数のピークn1が、上記の初期ピークに相当す
る。時刻t2で、タービンに直結されている緊急冷却系
のポンプ吐出流量は流量要求値に到達し、流量調節器に
よる絞り込みが開始される。しかし、タービン回転数の
上昇率に対してこの絞り込みが少ないと、時刻t3でタ
ービン回転数がオーバーシュートによって第2のピーク
2に到達し、再びトリップしてしまう恐れがある。
FIG. 3 shows a starting characteristic diagram of the RCIC turbine in the prior art. In the figure, the peak n 1 of the turbine speed at time t 1 corresponds to the above initial peak. At time t 2 , the pump discharge flow rate of the emergency cooling system directly connected to the turbine reaches the flow rate request value, and the narrowing by the flow rate controller is started. However, if this narrowing down is small with respect to the rate of increase of the turbine speed, the turbine speed may reach the second peak n 2 due to overshoot at time t 3 and trip again.

【0007】また、時刻t2〜t4間には、流量要求値を
超えるオーバーフローが発生し、RCICの場合はとも
かく、シビアな一定流量制御が求められるシステムにお
いては問題がある。
Further, during the time t 2 to t 4 , an overflow exceeding the required flow rate occurs, which causes a problem in a system requiring severe constant flow rate control, not in the case of RCIC.

【0008】本発明の第1の目的は、上記の問題点を克
服し、回転数の上昇率を一定に保って急速起動を安全に
実行するタービン制御装置を提供することにある。
A first object of the present invention is to provide a turbine control device which overcomes the above problems and safely carries out a rapid start by keeping the rate of increase of the rotation speed constant.

【0009】本発明の第2の目的は、急速に起動しても
回転数も流量もオーバーシュートすることなく、急速起
動を安全に実行するタービン制御装置またはポンプ制御
装置を提供することにある。
A second object of the present invention is to provide a turbine control device or a pump control device for safely performing a rapid start without causing an overshoot in the number of revolutions and a flow rate even if the start is performed rapidly.

【0010】本発明の第3の目的は、緊急時に高信頼に
作動する原子炉隔離時冷却系制御システムを提供するこ
とにある。
A third object of the present invention is to provide a reactor isolation cooling system control system which operates with high reliability in an emergency.

【0011】[0011]

【課題を解決するための手段】本発明の目的は、所定の
回転数で駆動されて所定の要求流量を吐出するポンプの
駆動用タービンを、流入する蒸気の入口弁開度を調節し
て前記所定の回転数に制御するタービン制御装置におい
て、ポンプからの吐出流量と前記要求流量の偏差に応じ
てタービン回転数の要求値を出力する第一の調節器と、
前記タービン回転数の要求値とその実回転数の偏差およ
び起動時におけるタービン回転数の上昇率を定める設定
過速度とのいずれか低値に応じて前記入口弁開度を制御
する第二の調節器を設けることにより達成される。
SUMMARY OF THE INVENTION An object of the present invention is to provide a drive turbine of a pump which is driven at a predetermined rotation speed and discharges a predetermined required flow rate, by adjusting an inlet valve opening degree of inflowing steam. In a turbine control device for controlling to a predetermined rotation speed, a first controller that outputs a required value of turbine rotation speed according to a deviation between a discharge flow rate from a pump and the required flow rate,
A second regulator for controlling the opening degree of the inlet valve in accordance with the lower value of the required value of the turbine speed, the deviation of the actual speed of the turbine and a set overspeed that determines the rate of increase of the turbine speed at startup. It is achieved by providing.

【0012】さらに、本発明の目的は、前記第二の調節
器に、前記吐出流量が前記要求流量に到達したときに開
始される前記タービン回転数の要求値のしぼり込みを検
出したとき前記低値を0とし、前記所定の回転数を維持
するように前記入口弁開度を制御する手段を備えること
により達成される。
[0012] Further, an object of the present invention is to provide the second regulator with the low level when detecting a squeezing of a required value of the turbine rotational speed which is started when the discharge flow rate reaches the required flow rate. It is achieved by setting the value to 0 and providing means for controlling the inlet valve opening so as to maintain the predetermined rotation speed.

【0013】[0013]

【作用】上記の構成によれば、タービンの急速起動時に
もその上昇率は常に一定に保持されるので、回転数の異
常上昇による運転停止などを発生させる心配がない。し
たがって、従来のように、油圧の確立遅れによる入口弁
の制御遅れや、入り口止め弁の開検出器の誤動作などに
よる回転数の異常上昇を発生する恐れがなくなり、RC
ICのタービン・ポンプシステムなどに好適である。
According to the above construction, since the rate of increase is always kept constant even when the turbine is rapidly started, there is no fear of causing an operation stop due to an abnormal increase in the rotational speed. Therefore, unlike the conventional case, there is no fear that the control delay of the inlet valve due to the establishment delay of the hydraulic pressure and the abnormal increase of the rotation speed due to the malfunction of the open detector of the inlet stop valve will occur.
It is suitable for IC turbine pump systems.

【0014】さらに、要求流量に到達後は定回転数制御
に移行するので、しぼり込みの遅れによる回転数のオー
バーシュートとそれによるトリップが回避でき、さらに
信頼性を向上できる。また、要求流量に対するオーバー
シュートも生じないので、オーバーフローを生じること
のない急速起動のポンプ制御が可能になる。
Further, since the constant rotation speed control is performed after the required flow rate is reached, it is possible to avoid the overshoot of the rotation speed due to the delay of the narrowing and the trip due to it, and further improve the reliability. In addition, since the overshoot with respect to the required flow rate does not occur, the quick start pump control without overflow can be performed.

【0015】[0015]

【実施例】本発明の実施例を図面を参照して詳細に説明
する。図1は、本発明のタービン制御装置を適用した原
子炉隔離時冷却系の構成を示したものである。
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows the configuration of a reactor isolation cooling system to which the turbine control device of the present invention is applied.

【0016】原子炉隔離時冷却系においては、原子炉1
の緊急冷却時に、貯水プール2に溜めた水をポンプ4で
吸い上げ、原子炉1内へ注水する。ポンプ4は回転軸を
機械的に直結したタービン5によって駆動される。ター
ビン5は原子炉1で発生した蒸気を、ON/OFF弁で
ある入口止め弁6、開度制御される入口弁7(蒸気弁)
を経由して取り込み、これを動力源として回転する。
In the reactor isolation cooling system, the reactor 1
At the time of emergency cooling, the water stored in the water storage pool 2 is sucked up by the pump 4 and injected into the reactor 1. The pump 4 is driven by a turbine 5 whose rotary shaft is mechanically directly connected. The turbine 5 uses the steam generated in the reactor 1 for an inlet stop valve 6 which is an ON / OFF valve and an inlet valve 7 (steam valve) whose opening is controlled.
It is taken in via and is rotated by using this as a power source.

【0017】原子炉1が正常運転されているときは、入
口弁7は全開状態とされているが入口止め弁6が全閉さ
れているので、タービン5は停止し、ポンプ4の吐出流
量Qは0である。
When the reactor 1 is operating normally, the inlet valve 7 is fully open, but the inlet stop valve 6 is fully closed, so the turbine 5 is stopped and the discharge flow rate Q of the pump 4 is Q. Is 0.

【0018】原子炉隔離時に、入口止め弁6が図示しな
い装置から起動要求を受信して開弁を開始すると、流入
する蒸気でタービン5が回転をはじめ、その回転数に応
じてポンプ4の吐出流量Qが増加する。この流量Qは流
量検出器3によって検出される。
At the time of reactor isolation, when the inlet stop valve 6 receives a start request from a device (not shown) and starts opening, the turbine 5 starts to rotate due to the inflowing steam, and the discharge of the pump 4 according to the number of rotations. The flow rate Q increases. This flow rate Q is detected by the flow rate detector 3.

【0019】流量調整器10は、流量検出器3の出力信
号Qと吐出流量要求値Qdの偏差を比例積分するPI調
節器12を有し、この調節器12の出力であるタービン
回転数要求値Ndをタービン回転数調整器13に与え
る。
The flow rate controller 10 has a PI controller 12 that proportionally integrates the deviation between the output signal Q of the flow rate detector 3 and the discharge flow rate request value Qd. The turbine speed request value that is the output of this controller 12 is provided. Nd is supplied to the turbine speed regulator 13.

【0020】タービン回転数調整器13は、タービン回
転数要求値Ndとタービン回転数検出器8による実回転
数Nとの偏差△nをとる加算器14と、加速度設定器1
5からの設定過速度dN0および偏差△nの低値信号優
先回路16と、タービン回転数Nから実加速度dNを求
める微分器17と、低値優先回路16の出力と微分器1
7からの実加速度dNとの偏差により入口弁7の弁開度
を制御する弁開度制御信号出力回路18を備えている。
なお、上記演算に用いられるタービン回転数Nの値はそ
の要求値Ndの100%値で、また実加速度dNや設定
過速度dN0の値は所定の最高過速度値で、各々ノーマ
ルライズされている。
The turbine speed adjuster 13 includes an adder 14 for taking a deviation Δn between the turbine speed request value Nd and the actual speed N obtained by the turbine speed detector 8, and an acceleration setter 1.
5, the low value signal priority circuit 16 of the set overspeed dN 0 and the deviation Δn, the differentiator 17 for obtaining the actual acceleration dN from the turbine speed N, the output of the low value priority circuit 16 and the differentiator 1
A valve opening control signal output circuit 18 for controlling the valve opening of the inlet valve 7 according to the deviation from the actual acceleration dN from 7.
The value of the turbine speed N used in the above calculation is 100% of the required value Nd, and the value of the actual acceleration dN or the set overspeed dN 0 is a predetermined maximum overspeed value. There is.

【0021】本実施例はこのように構成されているの
で、ポンプ吐出流量Qが要求値Qdに到達するまでは、
正の偏差によるPI調節器12の動作により、流量調節
器10からは回転数要求値Ndの100%値(飽和値)
が出力されるので、低値信号優先回路16は設定過速度
dN0を出力し続ける。したがって、弁開度制御信号出
力回路18は、設定過速度dN0と実過速度dNの偏差
を0にするようにしながら入口弁7を開方向に制御する
する弁開度制御信号を出力する。
Since this embodiment is constructed in this way, until the pump discharge flow rate Q reaches the required value Qd,
Due to the operation of the PI controller 12 due to the positive deviation, the flow rate controller 10 outputs 100% of the required rotation speed value Nd (saturation value).
Is output, the low-value signal priority circuit 16 continues to output the set overspeed dN 0 . Therefore, the valve opening control signal output circuit 18 outputs a valve opening control signal for controlling the inlet valve 7 in the opening direction while making the deviation between the set overspeed dN 0 and the actual overspeed dN zero .

【0022】これにより、タービン5の回転数Nは、設
定過速度にしたがいながら一定の上昇率で増加するの
で、初期ピークなど回転数の異常上昇率によるトリップ
は回避できる。
As a result, the rotational speed N of the turbine 5 increases at a constant increase rate according to the set overspeed, so that a trip due to an abnormal increase rate of the rotational speed such as an initial peak can be avoided.

【0023】なお、従来のタービン回転数調整器では、
入口止め弁6の開度検出器による弁開(全閉以外)信号
を開始点として一定割合で増加するランプ信号を出力
し、回転数要求値Ndとともに低値優先回路の入力とし
ていた。しかし、この開度検出器が誤動作すると、入口
止め弁6が閉状態の正常時に、本来ゼロとなるべきラン
プ出力が100%回転数要求値Ndと同じ値になってし
まう。このため、実際の緊急冷却時には、起動と同時に
100%要求値による異常上昇が発生し、トリップに至
る。
In the conventional turbine speed regulator,
A ramp signal that increases at a constant rate is output starting from a valve open (other than fully closed) signal from the opening detector of the inlet stop valve 6 and is used as an input to the low value priority circuit together with the rotation speed request value Nd. However, if this opening detector malfunctions, when the inlet stop valve 6 is normally closed, the lamp output, which should be essentially zero, becomes the same value as the 100% rotation speed required value Nd. For this reason, during the actual emergency cooling, an abnormal rise due to the 100% required value occurs at the same time as the startup, leading to a trip.

【0024】この開度検出器を含むタービン回転数調整
器は、発電所の運転員より遠く離れたタービン近傍に設
置されるので、このような誤動作の発生する恐れは十分
ある。しかし、本実施例のタービン制御装置は、このよ
うな誤動作の恐れのある開度検出器やランプ出力回路を
用いないので、この点においても信頼性が高い。
Since the turbine rotation speed regulator including the opening degree detector is installed near the turbine farther from the operator of the power plant, there is a sufficient risk of such malfunction. However, since the turbine control device of the present embodiment does not use the opening detector or the lamp output circuit that may cause such malfunction, it is also highly reliable in this respect.

【0025】ところで、タービン回転数Nが上昇して所
定値N0になると、ポンプ吐出流量Qが流量要求値Qd
に到達する。この結果、PI調節器12の出力Ndは1
00%値から減少に転じ、いわゆる絞り込みが始まる。
しかし、100%値からの絞り込みのため、加算器14
の出力△nは依然として設定過速度dNより大きく、弁
開度制御信号出力回路18は入力弁7を開方向に制御し
続ける。このため、図3のt2〜t3のようにタービン回
転数Nと流量Qは上昇を続け、所定値N0と要求値Qd
をオーバーシュートする。t3でタービン回転数Nが所
定回転数N0からの予め定められた値を超えると、ター
ビン5は非常調速機により緊急停止する。
By the way, when the turbine speed N increases and reaches a predetermined value N 0 , the pump discharge flow rate Q becomes the required flow rate value Qd.
To reach. As a result, the output Nd of the PI controller 12 is 1
The reduction starts from the 00% value, and so-called narrowing down starts.
However, since the value is narrowed down from 100%, the adder 14
Output Δn is still larger than the set overspeed dN, and the valve opening control signal output circuit 18 continues to control the input valve 7 in the opening direction. Therefore, the turbine rotational speed N and the flow rate Q as t 2 ~t 3 of Figure 3 continues to rise, the predetermined value N 0 and the required value Qd
Overshoot. When the turbine rotation speed N exceeds a predetermined value from the predetermined rotation speed N 0 at t 3 , the turbine 5 is emergency stopped by the emergency speed governor.

【0026】上記の問題を解決するため、以下に本発明
の第二の実施例を説明する。図2はそのタービン回転数
調整器の構成を示し、そのほかは図1と同じ構成にな
る。タービン回転数調整器13には、図1の構成に加え
新たに、絞り込み検出器19と、加算器14と低値優先
回路16の間に切替回路20を設けている。
In order to solve the above problems, a second embodiment of the present invention will be described below. FIG. 2 shows the structure of the turbine speed regulator, and other parts have the same structure as FIG. In addition to the configuration of FIG. 1, the turbine speed adjuster 13 is newly provided with a narrowing-down detector 19, and a switching circuit 20 between the adder 14 and the low value priority circuit 16.

【0027】絞り込み検出器19は、流量制御装置10
のから回転数要求値Ndを入力し、100%値からの絞
り込みを検出すると、切替信号を切替回路20に出力す
る。切替回路20は、切替信号によって低値優先回路1
6の入力端を加算器14の出力端aから切離し、接地入
力端bに切替え、入力0とする。
The narrowing detector 19 is used in the flow control device 10.
Then, the rotation speed request value Nd is input, and when the narrowing down from the 100% value is detected, the switching signal is output to the switching circuit 20. The switching circuit 20 changes the low value priority circuit 1 according to the switching signal.
The input end of 6 is separated from the output end a of the adder 14 and is switched to the ground input end b to make the input 0.

【0028】これにより、低値優先回路16からは、そ
れまでの設定過速度dNに代わり出力0となるので、弁
開度制御信号出力回路18は、過速度0、すなわち、タ
ービン回転数Nが所定回転数N0になるように入力弁7
を制御し、この結果、回転数Nと流量Qは各々、N0
Qdに整定される。
As a result, the output from the low value priority circuit 16 becomes 0 instead of the set overspeed dN so far, so that the valve opening control signal output circuit 18 outputs the overspeed 0, that is, the turbine speed N. The input valve 7 is adjusted so that the predetermined rotation speed N 0 is achieved.
As a result, the rotation speed N and the flow rate Q are settled to N 0 and Qd, respectively.

【0029】回転数要求値NdがN0まで絞りこまれた
後は、Ndの減少は停止するので、絞り込み検出器19
の切替信号がなくなり、切替回路20は再びa側に切り
替わる。これにより低値優先回路16は、検出流量Qま
たは実回転数Nのずれを、偏差△nとして弁開度制御信
号出力回路18に出力し、上記のN0とQdの一定制御
を維持する。
After the rotation speed request value Nd is narrowed down to N 0 , the reduction of Nd stops, so the narrowing-down detector 19
, And the switching circuit 20 switches to the a side again. As a result, the low value priority circuit 16 outputs the deviation of the detected flow rate Q or the actual rotation speed N to the valve opening control signal output circuit 18 as the deviation Δn, and maintains the constant control of N 0 and Qd.

【0030】本実施例によれば、図4の特性図に示すよ
うに、流量Qが要求値Qdに達したt2以降は、タービ
ン回転数Nは一定量N0に制御されるので、従来のよう
に過回転によるトリップを生じることがない。
According to the present embodiment, as shown in the characteristic diagram of FIG. 4, the turbine speed N is controlled to a constant amount N 0 after t 2 when the flow rate Q reaches the required value Qd. There is no occurrence of trip due to over-rotation as in.

【0031】また、本実施例によれば、流量要求値から
のオーバーシュートも防止できるので、急速起動が求め
られる一方、流量オーバが許されないタービン・ポンプ
システムに好適である。
Further, according to this embodiment, it is possible to prevent the overshoot from the required flow rate value, so that it is suitable for the turbine pump system in which the quick start is required but the overflow rate is not allowed.

【0032】[0032]

【発明の効果】本発明のタービン制御装置によれば、回
転数の上昇率を一定に保つので、急速起動をトリップな
く確実に実行できる効果がある。
According to the turbine control device of the present invention, since the rate of increase in the number of revolutions is kept constant, there is an effect that rapid start can be surely executed without tripping.

【0033】本発明のタービン制御装置またはポンプ制
御装置によれば、回転数や流量のオーバーシュートを回
避できるので、急速起動を安全に実行できる効果があ
る。
According to the turbine control device or the pump control device of the present invention, it is possible to avoid the overshoot of the rotation speed and the flow rate, so that there is an effect that the quick start can be safely executed.

【0034】本発明の原子炉隔離時冷却系制御システム
によれば、原子炉の緊急冷却を急速に起動でき、かつ、
異常回転によるトリップを確実に回避できるので、シス
テムの信頼性を大きく向上できる効果がある。
According to the reactor isolation cooling system control system of the present invention, emergency cooling of the reactor can be rapidly started, and
Since tripping due to abnormal rotation can be reliably avoided, there is an effect that system reliability can be greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一の実施例で、原子炉隔離時冷却系
制御システムにおけるタービン制御装置を示す構成図で
ある。
FIG. 1 is a configuration diagram showing a turbine control device in a reactor isolation cooling system control system according to a first embodiment of the present invention.

【図2】本発明の第二の実施例で、タービン制御装置を
示す構成図である。
FIG. 2 is a configuration diagram showing a turbine control device according to a second embodiment of the present invention.

【図3】従来のタービン・ポンプシステムの動作を説明
する特性図である。
FIG. 3 is a characteristic diagram illustrating the operation of a conventional turbine pump system.

【図4】本発明を適用したタービン・ポンプシステムの
動作を説明する特性図である。
FIG. 4 is a characteristic diagram illustrating the operation of the turbine pump system to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1…原子炉、3…流量検出器、4…ポンプ、5…タービ
ン、6…入口止め弁、7…入口弁(蒸気弁)、8…回転
数検出器、10…流量調節器、11…流量要求値設定手
段、12…回転数要求値出力手段、13…タービン回転
数調節器、14…加算器、15…過速度設定手段、16
…低値優先手段、17…微分器、18…弁開度制御信号
出力手段、19…しぼり込み検出手段、20…切替手
段。
DESCRIPTION OF SYMBOLS 1 ... Reactor, 3 ... Flow rate detector, 4 ... Pump, 5 ... Turbine, 6 ... Inlet stop valve, 7 ... Inlet valve (steam valve), 8 ... Rotation speed detector, 10 ... Flow rate controller, 11 ... Flow rate Request value setting means, 12 ... Rotation speed request value output means, 13 ... Turbine rotation speed adjuster, 14 ... Adder, 15 ... Overspeed setting means, 16
... low value priority means, 17 ... differentiator, 18 ... valve opening control signal output means, 19 ... squeezing detection means, 20 ... switching means.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G21D 3/04 H 9117−2G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G21D 3/04 H 9117-2G

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】所定の回転数で駆動されて所定の要求流量
を吐出するポンプの駆動用タービンを、流入する蒸気の
入口弁開度を調節して前記所定の回転数に制御するター
ビン制御装置において、 ポンプからの吐出流量と前記要求流量の偏差に応じてタ
ービン回転数の要求値を出力する第一の調節器と、前記
タービン回転数の要求値とその実回転数の偏差および起
動時におけるタービン回転数の上昇率を定める設定過速
度とのいずれか低値に応じて前記入口弁開度を制御する
第二の調節器を備えることを特徴とするタービン制御装
置。
1. A turbine control device for controlling a driving turbine of a pump, which is driven at a predetermined rotation speed and discharges a predetermined required flow rate, to the predetermined rotation speed by adjusting an inlet valve opening degree of inflowing steam. A first controller that outputs a required value of the turbine rotational speed according to a deviation between the discharge flow rate from the pump and the required flow rate, a deviation between the required value of the turbine rotational speed and its actual rotational speed, and a turbine at the time of starting. A turbine control device comprising a second controller that controls the opening degree of the inlet valve in accordance with a lower value of either a set overspeed that determines a rate of increase in the number of revolutions.
【請求項2】請求項1において、前記第二の調節器は、 前記吐出流量が前記要求流量に到達したときに開始され
る前記タービン回転数の要求値のしぼり込みを検出して
前記低値を0とする手段を備えることを特徴とするター
ビン制御装置。
2. The low regulator according to claim 1, wherein the second regulator detects a squeezing of a required value of the turbine speed that is started when the discharge flow rate reaches the required flow rate. A turbine control device comprising means for setting to 0.
【請求項3】請求項2において、前記低値を0とする手
段は、 前記タービン回転数の要求値が前記要求流量を維持する
回転数に等しくなり、前記しぼり込みを検出しなくなっ
たとき、その機能を中断して前記低値の選択を旧復する
ことを特徴とするタービン制御装置。
3. The means for reducing the low value to 0 according to claim 2, wherein the required value of the turbine rotational speed is equal to the rotational speed for maintaining the required flow rate, and the narrowing is no longer detected. A turbine control device, wherein the function is interrupted to restore the selection of the low value.
【請求項4】流入する蒸気の入口弁開度を調節しその回
転数が制御されるタービンによって駆動されるポンプ
を、前記回転数にしたがって定まるポンプの吐出流量が
予め定められた所定の要求流量となるように制御するポ
ンプ制御装置において、 ポンプからの吐出流量と前記要求流量の偏差に応じてタ
ービン回転数の要求値を出力する第一の調節器と、前記
タービン回転数の要求値とその実回転数の偏差および起
動時におけるタービン回転数の上昇率を定める設定過速
度とのいずれか低値に応じて前記入口弁開度を制御し、
かつ、前記吐出流量が前記要求流量に到達したときに開
始される前記タービン回転数の要求値のしぼり込みを検
出し前記低値を0として前記入口弁開度を制御する第二
の調節器を備えることを特徴とするポンプ制御装置。
4. A pump driven by a turbine whose inlet valve opening degree of inflowing steam is regulated and whose rotational speed is controlled, wherein a discharge flow rate of the pump determined according to said rotational speed is a predetermined required flow rate. In the pump control device that controls so that the first controller outputs a required value of the turbine speed according to the deviation between the discharge flow rate from the pump and the required flow rate, the required value of the turbine speed and its actual value. The inlet valve opening is controlled in accordance with either the deviation of the number of revolutions or the set overspeed that determines the rate of increase of the number of revolutions of the turbine at the time of startup, whichever is lower,
And a second controller for detecting the narrowing down of the required value of the turbine rotational speed started when the discharge flow rate reaches the required flow rate and controlling the inlet valve opening degree by setting the low value to 0. A pump control device comprising.
【請求項5】貯水プールと、このプールから水を汲み上
げて原子炉に注水するポンプと、入口弁を介して原子炉
の蒸気を流入して起動し前記ポンプを駆動するタービン
と、原子炉隔離時を示す信号によって前記タービンの起
動を開始しその運転を制御するタービン制御装置を具備
する原子炉隔離時冷却系制御システムにおいて、 前記タービン制御装置は、冷却前記ポンプの吐出流量と
その要求流量の偏差に応じてタービン回転数の要求値を
出力する第一の調節器と、前記タービン回転数の要求値
とその実回転数の偏差および起動時におけるタービン回
転数の上昇率を定める設定過速度とのいずれか低値に応
じて前記入口弁開度を制御する第二の調節器を備えるこ
とを特徴とする原子炉隔離時冷却系制御システム。
5. A water storage pool, a pump for pumping water from the pool and injecting water into the reactor, a turbine for injecting and activating the steam of the reactor through an inlet valve to drive the pump, and a reactor isolation. In a nuclear reactor isolation cooling system control system comprising a turbine control device that starts the turbine by a signal indicating time and controls its operation, the turbine control device controls the discharge flow rate of the cooling pump and its required flow rate. A first controller that outputs a required value of the turbine speed according to the deviation, and a set overspeed that determines the deviation of the required value of the turbine speed and its actual speed and the rate of increase of the turbine speed at startup. A reactor isolation cooling system control system comprising a second controller for controlling the inlet valve opening according to any one of the low values.
【請求項6】請求項5において、前記第二の調節器は、 前記吐出流量が前記要求流量に到達したときに開始され
る前記タービン回転数の要求値のしぼり込みを検出して
前記低値を0とする手段を備えることを特徴とする原子
炉隔離時冷却系制御システム。
6. The low level controller according to claim 5, wherein the second regulator detects a squeezing of a required value of the turbine speed started when the discharge flow rate reaches the required flow rate. A cooling system control system for the time of reactor isolation, which is provided with a means for setting 0 to 0.
JP17967993A 1993-07-21 1993-07-21 Turbine control unit and reactor isolation cooling system control system Expired - Lifetime JP3302788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17967993A JP3302788B2 (en) 1993-07-21 1993-07-21 Turbine control unit and reactor isolation cooling system control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17967993A JP3302788B2 (en) 1993-07-21 1993-07-21 Turbine control unit and reactor isolation cooling system control system

Publications (2)

Publication Number Publication Date
JPH0734806A true JPH0734806A (en) 1995-02-03
JP3302788B2 JP3302788B2 (en) 2002-07-15

Family

ID=16069981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17967993A Expired - Lifetime JP3302788B2 (en) 1993-07-21 1993-07-21 Turbine control unit and reactor isolation cooling system control system

Country Status (1)

Country Link
JP (1) JP3302788B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072694A (en) * 2010-09-28 2012-04-12 Hitachi Ltd Turbine control device, pump control device, and reactor core isolation cooling system control system
JP2013096282A (en) * 2011-10-31 2013-05-20 Hitachi Ltd Steam turbine control device, and steam turbine facility using the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9692272B2 (en) 2013-03-13 2017-06-27 Regal Beloit America, Inc. Electric machine and associated method
US8840312B1 (en) 2013-03-13 2014-09-23 Regal Beloit America, Inc. Electric machine and associated method
US9281725B2 (en) 2013-03-13 2016-03-08 Regal Beloit America, Inc. Electric machine and method of manufacturing the same
US10072662B2 (en) 2013-03-14 2018-09-11 Regal Beloit America, Inc. Dynamic speed control for pump motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072694A (en) * 2010-09-28 2012-04-12 Hitachi Ltd Turbine control device, pump control device, and reactor core isolation cooling system control system
JP2013096282A (en) * 2011-10-31 2013-05-20 Hitachi Ltd Steam turbine control device, and steam turbine facility using the same

Also Published As

Publication number Publication date
JP3302788B2 (en) 2002-07-15

Similar Documents

Publication Publication Date Title
JPS6124601B2 (en)
JP3302788B2 (en) Turbine control unit and reactor isolation cooling system control system
JPS6253797B2 (en)
JP5586020B2 (en) Turbine controller, pump controller, and reactor isolation cooling system control system
JP2811254B2 (en) Water supply control device
JP2539514B2 (en) Boiler water supply control device
JPH0610404B2 (en) Steam turbine controller
JP3120351B2 (en) Core flow control system
JPH03267512A (en) Steam turbine controller
JPS62279240A (en) Controller for construction machine
JP3604566B2 (en) Water supply control device for boiling water nuclear power plant
JPH01110814A (en) Turbine controller for water feed pump
JPS59229004A (en) Steam turbine-driven pump controller
JPS6011605A (en) Steam turbine control
JPH09145894A (en) Reactor feed water control device for boiling water nuclear power plant
JPH0326804A (en) Steam turbine controller
JPS63186904A (en) Turbine rotating speed control device
JPH06337103A (en) Controller for water supply flow rate in water supply pump
JPH08166106A (en) Water supply controller
JPH0733889B2 (en) Water supply pump outlet valve control device
JPS6355309A (en) Device for controlling steam turbine
JPH07180506A (en) Steam turbine controller
JPH0914178A (en) Operation control method for drainage pump
JPS63154888A (en) Forcible operating method of sub pump in water supply device
JPS63162903A (en) Steam turbine controller

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080426

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090426

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100426

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110426

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120426

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130426

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140426

Year of fee payment: 12

EXPY Cancellation because of completion of term