JPH0734750B2 - Erythritol separation and recovery method - Google Patents

Erythritol separation and recovery method

Info

Publication number
JPH0734750B2
JPH0734750B2 JP3755288A JP3755288A JPH0734750B2 JP H0734750 B2 JPH0734750 B2 JP H0734750B2 JP 3755288 A JP3755288 A JP 3755288A JP 3755288 A JP3755288 A JP 3755288A JP H0734750 B2 JPH0734750 B2 JP H0734750B2
Authority
JP
Japan
Prior art keywords
erythritol
liquid
membrane
activated carbon
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3755288A
Other languages
Japanese (ja)
Other versions
JPH01215293A (en
Inventor
敏弘 前田
▲隆▼ 昆布
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP3755288A priority Critical patent/JPH0734750B2/en
Publication of JPH01215293A publication Critical patent/JPH01215293A/en
Publication of JPH0734750B2 publication Critical patent/JPH0734750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 (a) 発明の目的 (産業上の利用分野) 本発明は、甘味料、医薬や工業薬品等の中間体等として
有用なメソエリスリトール(本明細書では、これを単に
「エリスリトール」と略称する。)を、エリスリトール
生産菌の培養液から分離・回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Purpose of the Invention (Field of Industrial Application) The present invention relates to mesoerythritol useful as an intermediate or the like for sweeteners, pharmaceuticals, industrial chemicals, etc. "Erythritol" is abbreviated as ".)" From a culture solution of an erythritol-producing bacterium.

(従来の技術) エリスリトール生産菌の培養液から高純度のエリスリト
ールを分離・回収するには、通常、その培養液の上澄液
を前処理とて活性炭を用いて脱色処理、次いでイオン交
換樹脂を用いて脱塩・脱色処理をしたのち、濃縮してか
ら冷却して晶析させていた。しかし、この方法は、濃縮
液の冷却・晶析時に濁りが生じ、かつエリスリトール結
晶が微細化するために晶析工程におけるエリスリトール
結晶の過等の分離が困難になる欠点があった。また、
強引に過、水洗を行なったとしても、得られるエリス
リトール結晶は、水に溶解させると濁りを生ずる欠点が
あった。
(Prior art) In order to separate and recover high-purity erythritol from the culture solution of erythritol-producing bacteria, usually, the supernatant of the culture solution is pretreated and decolorized with activated carbon, and then ion-exchange resin is added. After desalting and decolorizing treatment using the product, it was concentrated and then cooled for crystallization. However, this method has a drawback that turbidity occurs during cooling and crystallization of the concentrated liquid, and the erythritol crystals become finer, which makes it difficult to separate erythritol crystals excessively in the crystallization step. Also,
The erythritol crystals obtained had the drawback of becoming turbid when dissolved in water, even if they were forcibly filtered and washed with water.

(発明が解決しようとする問題点) 本発明は、従来法の上記の欠点、すなわち従来法におけ
る晶析工程で濁りを生じ、生成エリスリトールの結晶の
過が困難であり、かつ生成エリスリトールを水に溶解
させたときに濁りが生じる欠点を解決できるエリスリト
ールの分離・回収方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention has the above-mentioned drawbacks of the conventional method, that is, turbidity is generated in the crystallization step in the conventional method, it is difficult to pass through the crystals of the produced erythritol, and the produced erythritol is dissolved in water. It is intended to provide a method for separating and recovering erythritol which can solve the drawback that turbidity occurs when dissolved.

(b) 発明の構成 本発明者らは、前記の従来法におけるエリスリトールの
晶析時及び生成エリスリトール結晶の水への溶解時に発
生する濁りの原因物質について検討を重ねたところ、そ
の原因物質がぶどう糖を主な構成成分とする多糖類であ
ることが判明した。
(B) Structure of the Invention The inventors of the present invention have made extensive studies on the causative substance of turbidity generated during the crystallization of erythritol and the dissolution of the produced erythritol crystals in water in the above-mentioned conventional method, and the causative substance is glucose. It was found to be a polysaccharide whose main constituent is.

また、この多糖類は、分子量が数千〜数万のものであ
り、エリスリトール生産菌の培養液中の生成量が少量で
あるが、通常の活性炭による脱色処理や、イオン交換樹
脂による脱塩、脱色処理によっても除去されず、脱塩、
脱色処理を行なった液中では完全に溶解しているにもか
かわらず、エリスリトールの晶析工程において析出して
濁りを発生させるばかりでなく、析出するエリスリトー
ルの結晶をを微細化させてその過を著しく困難ならし
め、さらに析出するエリスリトールの結晶中に混入して
きて、製品エリスリトール結晶を水に溶解させたときに
白濁が生じ、製品品質低下の原因となることが判明し
た。
Further, this polysaccharide has a molecular weight of several thousand to several tens of thousands, and although the production amount in the culture solution of the erythritol-producing bacterium is small, it is subjected to decolorization treatment with normal activated carbon, desalting with an ion exchange resin, Desalination is not removed even by decolorization treatment,
Even though it is completely dissolved in the decolorized solution, it not only causes turbidity due to precipitation in the erythritol crystallization step, but also causes the precipitated erythritol crystals to become fine and to prevent the excess. It was found that the erythritol crystals were remarkably difficult to be mixed with the crystals of erythritol to be precipitated, and when the product erythritol crystals were dissolved in water, white turbidity was generated, which was a cause of product quality deterioration.

そこで、本発明者らは、かかる濁りの発生する原因物質
としての多糖類の除去についてさらに研究を重ねた。す
なわち、孔径の大きな精密過膜から孔径の非常に小さ
い逆浸透膜に至るまでの各種の分離膜を用いて該多糖類
の除去の研究をしたところ、下記のような結果が得られ
た。
Therefore, the present inventors have further studied the removal of polysaccharides as a causative substance that causes such turbidity. That is, when the removal of the polysaccharide was studied using various separation membranes ranging from a precision permeation membrane with a large pore size to a reverse osmosis membrane with a very small pore size, the following results were obtained.

まず、公称径が0.2μの精密過膜を用いて過したと
ころ、この膜は液透過流束が大であるが、濁りの原因物
質である前記の多糖類はすべて液とともに膜を透過して
しまって除去できず、かつ着色成分の除去効果も示さな
かった。
First, when passed using a precision permeation membrane with a nominal diameter of 0.2μ, this membrane has a large liquid permeation flux, but all of the above-mentioned polysaccharides, which are the causative agents of turbidity, permeate through the membrane with the liquid. It could not be removed because it had clogged up, and showed no effect of removing the coloring component.

また、脱塩率の低い、いわゆるルーズな逆浸透膜につい
て試験をしたところ、前記の濁りの原因物質を高い除去
率で除くことができ、かつ脱色率及び脱塩率とも高い結
果が得られたが、エリスリトールの一部が膜によって除
去され、しかもその場合の液の透過流束が著しく低い結
果が得られた。
Further, when a test was performed on a so-called loose reverse osmosis membrane having a low desalination rate, the above-mentioned causative substance of turbidity could be removed at a high removal rate, and high results were obtained in both the decolorization rate and the desalination rate. However, some of the erythritol was removed by the membrane, and the result was that the permeation flux of the liquid was extremely low.

さらに、限外過膜について試験をしたところ、分画分
子量が100,000以下の膜は前記の濁り成分を効率よく除
去でき、しかもその膜の分画分子量が小さくなるほど脱
色効果が高くなり、活性炭の使用量を低減できることが
判明した。しかし、その分画分子量があまり小さくなり
すぎると、液の透過流束が著しく小さくなるので、分画
分子量が1,000以上の膜が好ましいことが判明し、本発
明に到達したものである。
Furthermore, when a test was conducted on an ultrapermeable membrane, a membrane with a molecular weight cutoff of 100,000 or less could efficiently remove the turbidity components described above, and the smaller the molecular weight cutoff of the membrane, the higher the decolorization effect, and the use of activated carbon. It turned out that the amount can be reduced. However, when the molecular weight cutoff is too small, the permeation flux of the liquid is significantly reduced, and it was found that a membrane having a molecular weight cutoff of 1,000 or more is preferable, and the present invention has been achieved.

すなわち、本発明のエリスリトールの分離・回収方法
は、エリスリトール生産菌を水性培地中で好気的条件下
で培養して得られた培養液の上澄液を、分画分子量が1,
000〜100,000の限外過膜により過し、得られた液
からエリスリトールを回収することを特徴とする方法で
ある。
That is, the method for separating and recovering erythritol of the present invention is a supernatant of a culture solution obtained by culturing an erythritol-producing bacterium under aerobic conditions in an aqueous medium, having a molecular weight cutoff of 1,
This is a method characterized by recovering erythritol from the obtained liquid after passing through an ultrapermeable membrane of 0000 to 100,000.

本発明で用いる限外過膜は、上記のとおり分画分子量
が1,000〜100,000の範囲内のものであるが、これは、同
分画分子量があまり大きすぎると濁り成分の除去効率が
低下するし、かつ脱色効果もなくなる。また、その分画
分子量があまり小さくなると、液の透過流束が小さくな
る、からである。
The ultrafiltration membrane used in the present invention has a molecular weight cutoff in the range of 1,000 to 100,000 as described above, but this is because if the molecular weight cutoff is too large, the removal efficiency of turbid components will decrease. Moreover, the decolorizing effect is also lost. Also, if the molecular weight cut off is too small, the permeation flux of the liquid will be small.

その限外過膜の材質には種々のものがあり、たとえば
ポリスルホン、ポリアクリロニトリル、ポリアミド、ポ
リ弗化ビニリデン、塩素化ポリエチレン、ポリビニルア
ルコール、ポリメチルメタクリレート、ポリイミド、セ
ルロースアセテート、セルロース、その他種々の重合体
若しくは共重合体、又はそれらの(共)重合体の混合物
があげられる。また、限外過膜の形状は、中空糸状、
平膜状、スパイラル状、管状等の種々の形状が用いられ
る。
There are various materials for the ultrafiltration membrane, such as polysulfone, polyacrylonitrile, polyamide, polyvinylidene fluoride, chlorinated polyethylene, polyvinyl alcohol, polymethylmethacrylate, polyimide, cellulose acetate, cellulose, and various other heavy metals. Examples thereof include a polymer or a copolymer, or a mixture of these (co) polymers. Also, the shape of the ultrapermeable membrane is hollow fiber,
Various shapes such as a flat film shape, a spiral shape, and a tubular shape are used.

本発明の分離・回収方法をさらに詳述すると、まずエリ
スリトール生産菌を水性培地中で好気的条件下で培養し
て得られた培養液を、遠心分離や過等の方法を用いて
菌体等の固形物を分離除去して上澄液を得る。エリスリ
トール生産菌の培養自体は既に公知であるのでその説明
を省略する。
The separation / recovery method of the present invention will be described in more detail. First, a culture solution obtained by culturing an erythritol-producing bacterium under aerobic conditions in an aqueous medium is used to centrifuge cells by a method such as centrifugation or excess. Solid substances such as are separated and removed to obtain a supernatant. The culture itself of the erythritol-producing bacterium is already known, and therefore its explanation is omitted.

次いで、その上澄液を前記の限外過膜を用いて過す
ると、上澄液中に含まれる前記の濁りの原因物質である
多糖類が除去されるので、その液中にはもはや前記の
多糖類が含まれていない。限外過膜で過して得られ
る液は、好ましくは活性炭処理をして脱色するが、限
外過膜による過の際に、多糖類の除去と同時に着色
成分の一部(着色成分の20〜40%程度)も除去されてい
るので、活性炭処理時の活性炭の使用量は、通常の場合
よりも少量で足りる。
Then, when the supernatant liquid is passed through the ultrafiltration membrane, the polysaccharide that is the causative agent of the turbidity contained in the supernatant liquid is removed, so that the liquid is no longer contained in the liquid. Contains no polysaccharides. The liquid obtained by passing through the ultrafiltration membrane is preferably decolorized by treatment with activated carbon, but when passing through the ultrafiltration membrane, a part of the coloring component (20% of the coloring component) is removed simultaneously with the removal of the polysaccharide. (About ~ 40%) is also removed, so the amount of activated carbon used during activated carbon treatment is smaller than usual.

その活性炭処理後の上澄液は、好ましくはさらに通常の
イオン交換樹脂処理と同様のイオン交換樹脂を用いて脱
塩・脱色処理をしたのち、所望の濃度(たとえばエリス
リトール濃度で40〜80重量%)に濃縮してから、冷却し
ながらエリスリトールの結晶を析出させる。結晶の析出
したスラリー液は遠心分離又は過して母液と分離すれ
ば、高純度のエリスリトール結晶が得られる。この場合
に、限外過膜による過によって上澄液中の前記の多
糖類が除去されているから、析出するエリスリトールの
結晶が微細化を起こさないので、遠心分離や過による
分離が著しく容易となる。また、得られる製品エリスリ
トール結晶は、水に溶解させても濁りを生じない品質良
好なものとなる。
The supernatant after the activated carbon treatment is preferably desalted and decolorized by using the same ion exchange resin as the ordinary ion exchange resin treatment, and then the desired concentration (for example, 40 to 80% by weight in erythritol concentration). ), And then precipitate erythritol crystals while cooling. Highly pure erythritol crystals can be obtained by centrifuging or passing the slurry in which crystals have been precipitated to separate it from the mother liquor. In this case, since the above-mentioned polysaccharide in the supernatant liquid has been removed by filtration with the ultrafiltration membrane, the precipitated erythritol crystals do not cause micronization, so that the separation by centrifugation or filtration is significantly facilitated. Become. Further, the obtained product erythritol crystals are of good quality with no turbidity even when dissolved in water.

なお、上記の方法においては、限外過膜による液
を、活性炭処理し、さらにイオン交換樹脂処理をしてか
ら、濃縮して晶析を行なわせたが、収得しようとするエ
リスリトール結晶の所望の純度に応じて、その活性炭処
理やイオン交換樹脂処理の一部又は全部を省略して濃縮
を行ない、晶析させてもよい。
In the above method, the liquid with the ultrafiltration membrane was treated with activated carbon, further treated with an ion exchange resin, and then concentrated for crystallization, but the desired erythritol crystal to be obtained was obtained. Depending on the purity, part or all of the treatment with activated carbon or the treatment with ion-exchange resin may be omitted to carry out concentration for crystallization.

(実施例等) 次に、実施例及び比較例をあげてさらに詳述する。(Examples, etc.) Next, examples and comparative examples will be described in more detail.

実施例1 オウレオバシイジウムSp.のSN−G42株を、無水結晶ぶど
う糖として300g/、酵母エキスを6.7g/含む培地に加
え、30℃で72時間振とう培養して種培地を得た。この種
培地1.5を、無水結晶ぶどう糖340g/、コーン.ステ
イプ・リカー55g/を含む培地25(その初期pHが4.
2)に加え、通気量25/分、攪拌速度600rpm、温度35
℃、及び圧力0.5kg/cm2Gの条件下で93時間培養したとこ
ろ、ぶどう糖が完全になくなった。直ちに培養を停止
し、加熱殺菌したのち、遠心分離により菌体を分離し
た。得られた上澄液はエリスリトールを187g/、グリ
セリンを25g/含有していた。
Example 1 SN-G42 strain of Aureobasidium sp. Was added to a medium containing 300 g / anhydrous crystalline extract and 6.7 g / yeast extract and shake-cultured at 30 ° C for 72 hours to obtain a seed medium. . This seed medium 1.5 was mixed with anhydrous crystalline glucose 340 g / corn. Medium 25 containing 55 g of staple liquor (with an initial pH of 4.
2), aeration rate 25 / min, stirring speed 600 rpm, temperature 35
After culturing for 93 hours under conditions of ℃ and pressure of 0.5 kg / cm 2 G, glucose was completely lost. Immediately after stopping the culture and sterilizing by heating, the cells were separated by centrifugation. The obtained supernatant contained 187 g / erythritol and 25 g / glycerin.

得られた各上澄液(10)(着色度の指標として1cmセ
ルで測定した420mμでの吸光度、すなわちA420が5.8で
あった。)を、第1表に示す性能を有する種々の中空糸
状の限外過膜(膜1、膜2、膜3)をそれぞれ収容し
た膜モジュール装置を用いて、下記の過操作条件で
過したところ、第2表に示す結果がが得られた。
Each of the resulting supernatants (10) (absorbance at 420 mμ measured with a 1 cm cell as an index of coloring degree, that is, A 420 was 5.8) was used as various hollow fiber-like materials having the performance shown in Table 1. Using the membrane module devices containing the respective ultra-supermembranes (membrane 1, membrane 2 and membrane 3) under the following over-operation conditions, the results shown in Table 2 were obtained.

過操作条件 膜入口圧 1.5kg/cm2G 膜出口圧 1.0kg/cm2G 液温 25℃ 過液量 10 また、以上の膜1を用いた過を繰返して得た液(約
9)を50℃に昇温して、活性炭248gを加えて0.5時間
攪拌処理して脱色したのち、過して活性炭を除去し
た。
Over-operation conditions Membrane inlet pressure 1.5 kg / cm 2 G Membrane outlet pressure 1.0 kg / cm 2 G Liquid temperature 25 ° C Superfluid volume 10 In addition, the liquid obtained by repeating the above membrane 1 (about 9) The temperature was raised to 50 ° C., 248 g of activated carbon was added, the mixture was stirred for 0.5 hour to decolorize, and then the activated carbon was removed by filtration.

その液(A420が0.3であった。)約8.8を、陽イオン
交換樹脂塔(三菱化成工業株式会社商品名ダイヤイオン
SK1B充填)、陰イオン交換樹脂塔(三菱化成工業株式会
社商品名ダイヤイオンWA30充填)、及び混床塔(三菱化
成工業株式会社商品名ダイヤイオンSK1B及びPA408を充
填)に順次通液して脱塩処理を行なった。脱塩処理後の
イオン交換塔押出し及び水洗水をも含めたそのイオン交
換処理液約12を、100mmHgの減圧下で80℃に加熱して
蒸発、濃縮させた。得られたエリスリトール濃度62重量
%の濃縮液を15℃まで徐々に冷却しながらエリスリトー
ルの結晶を析出させた。得られた結晶を水に溶液して10
重量%の水溶液としたが、にごりは全く認められなかっ
た。
About 8.8 of the liquid (A 420 was 0.3.) Was used as a cation exchange resin tower (trade name DIAION
SK1B packed), anion exchange resin tower (Mitsubishi Kasei Kogyo Co., Ltd., trade name Diaion WA30 packed), and mixed bed tower (Mitsubishi Kasei Kogyo Co., Ltd., trade name Diaion SK1B and PA408 packed) are sequentially passed through and dewatered. Salt treatment was performed. About 12 of the ion-exchange treated liquid including the ion-exchange tower extruded after the desalting treatment and washing water was heated to 80 ° C. under reduced pressure of 100 mmHg to be evaporated and concentrated. Crystals of erythritol were precipitated while gradually cooling the obtained concentrated solution having an erythritol concentration of 62% by weight to 15 ° C. The crystals obtained are dissolved in water to give 10
The solution was a wt% aqueous solution, but no turbidity was observed.

比較例1 第1表に示した精密過膜を使用し、そのほかは実施例
1と同様の培養液の上澄液を同様にして過した。その
結果は第2表に示すとおりであり、多糖類を全く除去で
きなかった。
Comparative Example 1 The precision permeation membrane shown in Table 1 was used, and otherwise the same culture supernatant as in Example 1 was passed. The results are shown in Table 2, and the polysaccharide could not be removed at all.

比較例2 第1表に示した脱塩性能の低い、いわゆるルーズな逆浸
透膜を用いた平膜過装置を使用して、実施例1におけ
ると同様の培養液の上澄液を、下記の過操作条件で
過したところ、第2表に示す結果が得られた。
Comparative Example 2 Using the flat membrane filtration device using a so-called loose reverse osmosis membrane having low desalting performance shown in Table 1, the same supernatant of the culture solution as in Example 1 was used as follows. When passed under the over-operation condition, the results shown in Table 2 were obtained.

過操作条件 操作圧 10kg/cm2G 攪 拌 500rpm 液 温 25℃ 過液量 250ml 比較例2の場合には、多糖類を除去できたが、同時にエ
リスリトールも除去され、かつ透過液量が著しく少なく
て、実用に供し得ないものであった。
Overoperation conditions Operating pressure 10kg / cm 2 G Stirring 500rpm Liquid temperature 25 ℃ Liquid excess 250ml In the case of Comparative Example 2, polysaccharide could be removed, but at the same time erythritol was also removed and the amount of permeate was remarkably small. Therefore, it could not be put to practical use.

比較例3 実施例1と同様の培養液を熱殺菌したのち、遠心分離に
より菌体を分離した。得られた上澄液はエリスリトール
を187g/、グリセリンを25g/含有していた。得られ
たこの上澄液(約10)を、50℃に昇温し、活性炭500g
を加え、0.5時間処理して脱色したのち、過して活性
炭を除去した。この場合に、実施例1に比べて82%過剰
量の活性炭を必要とし、脱色処理液のA420は0.3であっ
た。
Comparative Example 3 The same culture solution as in Example 1 was heat-sterilized, and then the cells were separated by centrifugation. The obtained supernatant contained 187 g / erythritol and 25 g / glycerin. The resulting supernatant (about 10) was heated to 50 ° C and activated carbon 500g
Was added and treated for 0.5 hour for decolorization, and then the activated carbon was removed by filtration. In this case, 82% excess amount of activated carbon was required as compared with Example 1, and the A 420 of the decolorization treatment solution was 0.3.

次いで、その脱色処理液を実施例1と同様のイオン交換
樹脂処理を行なった。その処理液約12を100mmHgの減
圧下で80℃に加熱して蒸発,濃縮させて得られたエリス
リトール濃度が62重量%の濃縮液を15℃まで徐々に冷却
しながらエリスリトールの結晶を析出させた。その結晶
の析出液を別分離してエリスリトールの結晶を母液と
分離しようとしたが、濁りが発生し、過が困難であっ
たが、強引に水洗過してエリスリトールの結晶を得
た。その結晶を水に溶解して10重量%水溶液としたとこ
ろ、濁りの発生が認められた。
Then, the decolorization treatment liquid was subjected to the same ion exchange resin treatment as in Example 1. Erythritol crystals were precipitated while gradually cooling the concentrated solution of erythritol concentration of 62 wt% obtained by evaporating and concentrating the treated solution of about 12 at 80 ° C under reduced pressure of 100 mmHg to 15 ° C. . An attempt was made to separate the erythritol crystals from the mother liquor by separately separating the crystal precipitation liquid, but it was difficult to pass due to turbidity, but erythritol crystals were forcibly washed with water to obtain erythritol crystals. When the crystals were dissolved in water to prepare a 10 wt% aqueous solution, turbidity was observed.

(e) 発明の効果 本発明のエリスリトールの分離・回収方法によると、限
外過膜による過時に、濁り原因物質の多糖類が容易
に完全に除去されるので、エリスリトールの晶析工程に
おいて濁りが発生せず、エリスリトールの結晶の分離が
容易となり、かつ水に溶解したときに濁りを生じない品
質の優れたエリスリトール結晶が得られる。また、その
限外過膜による過時に着色成分の20〜40%程度も除
去されるので、脱色用の活性炭の使用量を大巾に減少さ
せることができる。
(E) Effect of the Invention According to the method for separating and recovering erythritol of the present invention, the polysaccharide as the turbidity-causing substance is easily and completely removed at the time of passing through the ultrafiltration membrane. Erythritol crystals which do not occur, facilitate the separation of erythritol crystals, and do not cause turbidity when dissolved in water, and which are excellent in quality are obtained. Further, since about 20 to 40% of the coloring component is removed by the ultrafiltration membrane, the amount of the activated carbon for decolorization used can be greatly reduced.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】エリスリトール生産菌を水性培地中で好気
的条件下で培養して得られた培養液の上澄液を、分画分
子量が1,000〜100,000の限外過膜により過し、得ら
れた液からエリスリトールを回収することを特徴とす
るエリスリトールの分離・回収方法。
1. A supernatant of a culture solution obtained by culturing an erythritol-producing bacterium in an aqueous medium under aerobic conditions, which is obtained by passing it through an ultrafiltration membrane having a molecular weight cutoff of 1,000 to 100,000. A method for separating and recovering erythritol, which comprises recovering erythritol from the obtained liquid.
【請求項2】限外過膜による液を活性炭処理してか
らエリスリトールを回収する第1請求項記載の方法。
2. The method according to claim 1, wherein erythritol is recovered after treating the liquid with the ultrafiltration membrane with activated carbon.
【請求項3】限外過膜による液を活性炭処理し、次
いでイオン交換樹脂処理してから濃縮して晶析を行なわ
せてエリスリトール結晶を得る第1請求項記載の方法。
3. The method according to claim 1, wherein the erythritol crystal is obtained by subjecting the liquid obtained by the ultrafiltration membrane to activated carbon treatment, then ion exchange resin treatment, and then concentration to cause crystallization.
JP3755288A 1988-02-22 1988-02-22 Erythritol separation and recovery method Expired - Lifetime JPH0734750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3755288A JPH0734750B2 (en) 1988-02-22 1988-02-22 Erythritol separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3755288A JPH0734750B2 (en) 1988-02-22 1988-02-22 Erythritol separation and recovery method

Publications (2)

Publication Number Publication Date
JPH01215293A JPH01215293A (en) 1989-08-29
JPH0734750B2 true JPH0734750B2 (en) 1995-04-19

Family

ID=12500686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3755288A Expired - Lifetime JPH0734750B2 (en) 1988-02-22 1988-02-22 Erythritol separation and recovery method

Country Status (1)

Country Link
JP (1) JPH0734750B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4342345C2 (en) * 1993-12-11 1998-10-22 Merck Patent Gmbh Decolorization of fermentation solutions
KR19980066546A (en) * 1997-01-25 1998-10-15 백운화 Method for preparing erythritol
JP4151089B2 (en) * 1997-10-07 2008-09-17 三菱化学株式会社 Method for producing high purity erythritol crystals
US7157276B2 (en) 2003-06-20 2007-01-02 Biogen Idec Inc. Use of depth filtration in series with continuous centrifugation to clarify mammalian cell cultures
WO2014065364A1 (en) * 2012-10-25 2014-05-01 東レ株式会社 Method for manufacturing organic acid or salt thereof
CN107614487B (en) * 2015-06-24 2019-12-20 三井化学株式会社 Method for producing pentaerythritol mercaptocarboxylic acid ester, polymerizable composition, resin, optical material, and lens

Also Published As

Publication number Publication date
JPH01215293A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
RU2556662C2 (en) Extraction of soluble dissolved substance for reverse osmosis water treatment
AU2010202280B2 (en) Process for the purification of organic acids
EP0342156A2 (en) Purification of polydextrose by reverse osmosis
SE441932B (en) PROCEDURE FOR PURIFICATION OF SUGAR SOFT PREPARED BY EXTRACTION OF SUGAR BEETS
DE3827159A1 (en) METHOD FOR OBTAINING L-AMINOSAURES FROM FERMENTATION FLUIDS
TW201031603A (en) Process for the recovery of betaines from electrodialysis waste streams
EP4311823A1 (en) System and method for co-producing xylitol and caramel color by using xylose mother liquor
JPH0459878B2 (en)
JP3013995B2 (en) Method for separating 2-keto-L-gulonic acid from fermentation medium
JPH0734750B2 (en) Erythritol separation and recovery method
JP3617091B2 (en) Purification method of basic amino acids
CN113842779A (en) Continuous membrane filtration system and filtration method for erythritol fermentation liquor
CN105801717A (en) Method for producing fructo-oligosaccharide through membrane separation method
JP4315358B2 (en) Raw sugar production method from sweet potato
CN110451529A (en) A kind of method of purification of sodium chloride for injection
BG63086B1 (en) Method for isolation of clavulanic acid from fermentation nutrient by means of ultrafiltration
CN107937630A (en) A kind of glucose production process and device
CN109836346B (en) Purification process of isoleucine fermentation liquor
JPH0655160B2 (en) Method for decolorizing and desalting molasses
JPH11215980A (en) Treatment of liquid containing microbial cell
JP3819542B2 (en) Purification method of erythritol
JPS60137489A (en) Treatment of waste liquid
JPH06287199A (en) Method for purifying beet saponin
CN208151398U (en) A kind of glucose production device
CN116813726A (en) Method for extracting high-purity nisin from food-grade nisin product

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term