JPH01215293A - Separation and recovery of erythritol - Google Patents

Separation and recovery of erythritol

Info

Publication number
JPH01215293A
JPH01215293A JP3755288A JP3755288A JPH01215293A JP H01215293 A JPH01215293 A JP H01215293A JP 3755288 A JP3755288 A JP 3755288A JP 3755288 A JP3755288 A JP 3755288A JP H01215293 A JPH01215293 A JP H01215293A
Authority
JP
Japan
Prior art keywords
erythritol
filtrate
supernatant
ultrafiltration membrane
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3755288A
Other languages
Japanese (ja)
Other versions
JPH0734750B2 (en
Inventor
Toshihiro Maeda
前田 敏弘
Takashi Konbu
昆布 ▲隆▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Nikken Chemicals Co Ltd
Original Assignee
Mitsubishi Kasei Corp
Nikken Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp, Nikken Chemicals Co Ltd filed Critical Mitsubishi Kasei Corp
Priority to JP3755288A priority Critical patent/JPH0734750B2/en
Publication of JPH01215293A publication Critical patent/JPH01215293A/en
Publication of JPH0734750B2 publication Critical patent/JPH0734750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To industrially advantageously provide the title compound useful for sweeteners, etc., by filtering the supernatant of a culture solution prepared by culturing an erythritol-producing bacterium in an aqueous medium under an aerobic condition with an ultrafiltration membrane having a specific fractional mol.wt. and subsequently recovering the product from the filtrate. CONSTITUTION:A culture solution prepared by culturing an erythritol-producing bacterium (e.g., Aureobasidium Sp.SN-G42) in an aqueous medium under an aerobic condition is thermally sterilized and centrifuged to produce a supernatant. The supernatant is filtered with an ultrafiltration membrane having a fractional mol.wt. of 1,000-100,000 and the filtrate is heated to 50 deg.C and treated with charcoal to decolor the filtrate. The decolored filtrate is treated with an ion exchange resin and concentrated to crystallize erythritol contained therein. The resultant erythritol crystals are separated and recovered to provide the objective erythritol.

Description

【発明の詳細な説明】 (a)  発明の目的 (産業上の利用分野) 本発明は、甘味料、医薬や工業薬品等の中間体等として
有用なメンエリスリトール(本明細書では、これを単K
「エリスリトール」と略称する。)を、エリスリトール
生産菌の培養液から分離・回収する方法に関する。
Detailed Description of the Invention (a) Object of the Invention (Field of Industrial Application) The present invention is directed to the production of menerythritol (herein simply referred to as K
It is abbreviated as "erythritol". ) from the culture solution of erythritol-producing bacteria.

(従来の技術) エリスリトール生産菌の培養液から高純度のエリス’J
)−ルを分離・回収するには、通常、その培養褌の上澄
液を前処理として活性炭を用いて脱色処理し、次いでイ
オン交換樹脂を用いて脱塩・脱色処理をしたのち、濃縮
してから冷却して晶析させてい友。しかし、この方法は
、濃縮液の冷却・晶析時に濁シが生じ、かつエリスリト
ール結晶が微細化するために晶析1穆におけるエリスリ
トール結晶の濾過等の分離が困難になる欠点があった。
(Prior technology) Highly purified Eris'J is produced from the culture solution of erythritol-producing bacteria.
) - In order to separate and recover the cultured loincloth, the supernatant liquid of the cultured loincloth is usually decolorized using activated carbon as a pretreatment, then desalted and decolorized using an ion exchange resin, and then concentrated. Then cool it and let it crystallize. However, this method has the drawback that turbidity occurs during cooling and crystallization of the concentrated solution, and the erythritol crystals become fine, making it difficult to separate the erythritol crystals by filtration or the like in the first step of crystallization.

また、強引K濾過、水洗を行なったとしても、得られる
エリスリトール結晶は、水に溶解させると濁りを生ずる
欠点があった。
Furthermore, even if forced K filtration and water washing are performed, the resulting erythritol crystals have the disadvantage of becoming cloudy when dissolved in water.

(発明が解決しようとする問題点) 本発明は、従来法の上記の欠点、すなわち従来法におけ
る晶析工程で濁りを生じ、生成エリスリトールの結晶の
一過が困難であり、かつ生成エリスリトールを水に溶解
させ九ときに濁りが生じる欠点を解決できるエリスリト
ールの分離・回収方法を提供しようとするものである。
(Problems to be Solved by the Invention) The present invention solves the above-mentioned drawbacks of the conventional method, namely, turbidity occurs in the crystallization step in the conventional method, it is difficult to pass through the crystals of the produced erythritol, and the produced erythritol is hydrated. The purpose of the present invention is to provide a method for separating and recovering erythritol that can solve the problem of turbidity that sometimes occurs when dissolved in erythritol.

缶) 発明の構成 本発明者らは、前記の従来法におけるエリスリトールの
晶析時及び生成エリスリトール結晶の水への溶解時に発
生する濁りの原因物質について検討を重ねたところ、そ
の原因物質がぶどう糖を主な構成成分とする多糖類であ
ることが判明した。
The present inventors have repeatedly investigated the causative agent of turbidity that occurs during the crystallization of erythritol in the conventional method described above and when the produced erythritol crystals are dissolved in water, and have found that the causative agent is glucose. It was found that the main constituent is polysaccharide.

また、この多糖類は、分子量が数千〜数万のものであり
、エリスIJ )−ル生産菌の培養液中の生成址が少量
であるが、通常の活性炭による脱色処理や、イオン交換
樹脂による脱塩・脱色処理によっても除去さnず、脱塩
、脱色処理を行なり九液中では完全に溶解しているにも
かかわらず、エリスリトールの晶析工程において析出し
てFIaりを発生させるばかりでなく、析出するエリス
リトールの結晶を徽細化させてその一過を著しく困難な
らしめ、さらに析出するエリスリトールの結晶中に混入
してきて、製品エリスリトール結晶を水に溶解させたと
きに白濁が生じ、製品品質低下の原因となることが判明
した。
In addition, this polysaccharide has a molecular weight of several thousand to tens of thousands, and is produced in a small amount in the culture solution of Eris IJ)-lease producing bacteria. Despite being completely dissolved in the desalting and decolorizing solution, it precipitates during the crystallization process of erythritol and causes FIa. Not only does it make the precipitated erythritol crystals thinner, making it extremely difficult to pass them through, but it also mixes into the precipitated erythritol crystals, causing cloudiness when the product erythritol crystals are dissolved in water. , which was found to cause a decline in product quality.

そこで、本発明者らは、かかる濁りの発生する原因物質
としての多糖類の除去についてさらに研究を重ねた。す
なわち、孔径の大きな精密F:iM膜から孔径の非常に
小さい逆浸透膜に至るまでの各種の分離膜を用いて該多
糖類の除去の研究をした過し九ところ、この膜は液透過
流束が大であるが、濁シの原因物質である前記の多糖類
はすべて液とともに膜を透過してしまって除去できず、
かつ着色成分の除去効果も示さなかった。
Therefore, the present inventors conducted further research on the removal of polysaccharides, which are the causative agent of such turbidity. In other words, we have conducted research on the removal of polysaccharides using various separation membranes ranging from precision F:iM membranes with large pores to reverse osmosis membranes with very small pores. Although the bundle is large, all of the polysaccharides that cause cloudy spots pass through the membrane along with the liquid and cannot be removed.
Moreover, it did not show any effect of removing colored components.

ま友、脱塩率の低い、いわゆるル゛−ズな逆浸透膜につ
いて試験をしたところ、前記の濁りの原因物質を高い除
去率で除くことができ、かつ脱色率及び脱塩率とも高い
結果が得られたが、エリスリトールの一部が膜によって
除去され、しかもその場合の液の透過流束が著しく低い
結果が得られ念。
My friend, when we tested a so-called loose reverse osmosis membrane with a low salt removal rate, we found that it was able to remove the above-mentioned turbidity-causing substances with a high removal rate, and both the color removal rate and salt removal rate were high. However, some of the erythritol was removed by the membrane, and the permeation flux of the liquid in that case was extremely low.

さらに、限外濾過膜について試験をしたところ、分画分
子量が100,000以下の膜は前記の濁シ成分を効率
よく除去でき、しかもその膜の分画分子量が小さくなる
ほど脱色効果が高くなり、活性炭の使用量を低減できる
ことか判明した。しかし、その分画分子量があまり小さ
くなりすぎると、液の透過流束が著しく小さくなるので
、分画分子量が1.000以上の膜が好ましいことが判
明し、本発明に到達したものである。
Furthermore, when testing ultrafiltration membranes, it was found that membranes with a molecular weight cutoff of 100,000 or less can efficiently remove the above-mentioned turbidity components, and the smaller the molecular weight cutoff of the membrane, the higher the decolorizing effect. It has been found that the amount of activated carbon used can be reduced. However, if the molecular weight cut-off becomes too small, the permeation flux of the liquid decreases significantly, so it has been found that a membrane having a molecular weight cut-off of 1.000 or more is preferable, and the present invention has been achieved.

すなわち、本発明のエリスリトールの分離・回収方法は
、エリスIJ )−ル生産菌を水性培地中で好気的条件
下で培養して得らwe培養液の上澄液を、分画分子量が
1.000〜100,000の限外濾過膜によυ濾過し
、得らtL7t濾液からエリスリトールを回収する仁と
を特徴とする方法である。
That is, the method for separating and recovering erythritol of the present invention involves culturing erythritol-producing bacteria in an aqueous medium under aerobic conditions, and then culturing the supernatant of the erythritol culture with a molecular weight cut-off of 1. This method is characterized by filtration through an ultrafiltration membrane of .000 to 100,000 and recovering erythritol from the obtained tL7t filtrate.

本発明で用いる限外濾過膜は、上記のとおり分画分子量
が1.000〜100,000の範囲内のものであるが
、これは、同分画分子量かあtb大きすぎると濁り成分
の除去効率が低下するし、かつ脱色効果もなくなる。ま
念、その分画分子量があまり小さくなると、液の透過流
束が小さくなる、からである。
The ultrafiltration membrane used in the present invention has a molecular weight cut-off in the range of 1.000 to 100,000, as described above, but if the molecular weight cut-off is too large, the removal of turbidity components may be difficult. The efficiency will be reduced and the decolorizing effect will be lost. This is because if the molecular weight cut-off becomes too small, the permeation flux of the liquid will become small.

その限外−過膜の材質には種々のものがあり、たとえば
Iリスルホン、ぼりアクリロニトリル、ポリアミド、−
ν弗化ビニリデン、塩素化プリエチレン、ポリビニルア
ルコール、ポリメチルメタクリレート、−リイミド、セ
ルロースアセテート、セルロース、その他種々の重合体
若しくは共重合体、又はそれらの(共)重合体の混合物
があげられる。また、限外濾過膜の形状は、中空糸状、
平膜状、スノ臂イラル状、管状等の稽々の形状が用いら
nる。
There are various materials for the ultra-diaphragm, such as Irisulfone, polyacrylonitrile, polyamide,
Examples include ν vinylidene fluoride, chlorinated preethylene, polyvinyl alcohol, polymethyl methacrylate, -limide, cellulose acetate, cellulose, and various other polymers or copolymers, or mixtures of these (co)polymers. In addition, the shape of the ultrafiltration membrane is hollow fiber,
Various shapes such as flat membranous, cylindrical, and tubular shapes are used.

本発明の分離・回収方法をさらに詳述すると、まずエリ
スリトール生産菌を水性培地中で好気的条件下で培養し
て得らnた培養液を、遠心分離や一過等の方法を用いて
菌体等の固形物を分離除去して上澄液を得る。エリスリ
トール生産菌の培養自体は既に公知であるのでその説明
を省略する。
To explain the separation and recovery method of the present invention in more detail, first, erythritol-producing bacteria are cultured in an aqueous medium under aerobic conditions, and the resulting culture solution is cultured using a method such as centrifugation or passing. Solid matter such as bacterial cells is separated and removed to obtain a supernatant liquid. Since the cultivation of erythritol-producing bacteria itself is already known, its explanation will be omitted.

次すで、その上澄液を前記の限外−過膜を用hてP遇す
ると、上澄液中に含まnる前記の/1iil#)の原因
物質である多糖類が除去されるので、その濾液中にはも
はや前記の多糖類が含まれていない。
Next, when the supernatant is treated with the above-mentioned ultrafiltration membrane, the polysaccharide contained in the supernatant, which is the causative substance of the above-mentioned /1iil#), is removed. , the filtrate no longer contains the polysaccharide.

限外p過膜でP遇して得らnる戸液は、好ましくは活性
炭処理をして脱色するが、限外濾過膜による濾過の際に
、多糖類の除去と同時に着色成分の一部(着色成分の2
0〜40%程度)も除去されているので、活性炭処理時
の活性炭の使用量は、通常の場合よりも少量で足りる。
The liquid obtained by P treatment with an ultraparticle membrane is preferably treated with activated carbon to decolorize it, but during filtration with the ultrafiltration membrane, some of the colored components are removed at the same time as polysaccharides are removed. (Coloring component 2
(approximately 0 to 40%) is also removed, so the amount of activated carbon used during activated carbon treatment can be smaller than in normal cases.

その活性炭処理後の上澄液は、好ましくはさらに通常の
イオン交換樹脂処理と同様のイオン交換樹脂を用いて脱
塩・脱色処理をしたのち、所望の濃度(たとえばエリス
リトール濃度で40〜80重i%)に濃縮してから、冷
却しながらエリスリトールの結晶を析出させる。結晶の
析出し念スラリー液は遠心分離又は濾過して母液と分離
すれば、高純度のエリスリトール結晶が得られる。この
場合に、限外濾過膜による濾過によりて上澄液中の前記
の多糖類が除去されているから、析出するエリスリトー
ルの結晶が微細化を起こさないので、遠心分離や濾過に
よる分離が著しく容易となる。
The supernatant liquid after the activated carbon treatment is preferably further desalted and decolorized using an ion exchange resin similar to a normal ion exchange resin treatment, and then desalted and decolorized to a desired concentration (for example, an erythritol concentration of 40 to 80 %) and then precipitate erythritol crystals while cooling. High purity erythritol crystals can be obtained by centrifuging or filtering the slurry to separate it from the mother liquor. In this case, since the polysaccharides in the supernatant are removed by filtration using an ultrafiltration membrane, the precipitated erythritol crystals do not become finer, making separation by centrifugation or filtration extremely easy. becomes.

また、得られる製品エリスIJ )−ル結晶は、水に溶
解させても濁りを生じない品質良好なものとなる。
Moreover, the product Eris IJ)-le crystal obtained is of good quality and does not become cloudy even when dissolved in water.

なお、上記の方法I/cおいては、限外濾過膜による濾
液を、活性炭処理し、さらにイオン交換樹脂処理をして
から、濃縮して晶析を行なわせたが、収得しようとする
エリスリトール結晶の所望の純度に応じて、その活性炭
処理やイオン交換樹脂処理の一部又は全部を省略して濃
縮を行な−、晶析させてもよい。
In addition, in the above method I/c, the filtrate from the ultrafiltration membrane was treated with activated carbon and further treated with an ion exchange resin, and then concentrated and crystallized, but the erythritol to be obtained was Depending on the desired purity of the crystals, part or all of the activated carbon treatment and ion exchange resin treatment may be omitted and the crystals may be concentrated and crystallized.

以下余白 (実施例等) 次に、実施例及び比較例をあげてさらに詳述する。Margin below (Examples, etc.) Next, the present invention will be further explained in detail by giving Examples and Comparative Examples.

実施例1 オウレオパシイゾウムSp、の5N−G 42株を、無
水結晶ぶどう糖をぶどう糖として3001/l、酵母エ
キスを6.71/l含む培地に加え、30℃で72時間
振とり培養して種培地を得た。この種培地1.51を、
無水結晶ぶどう糖34011/Il、コーン、ステイブ
、リカー55971を含む培地251 (その初期−が
4.2)に加え、通気量25j/分、撹拌速度600 
rpm、温度35℃、及び圧力0.5 kg 7cm”
 Gの条件下で93時間培養したところ、ぶどう糖が完
全になくなった。直ちに培養を停止し、加熱殺菌したの
ち、遠心分離によ、?il1体を分離した。得られた上
澄液はエリスリトールを1879/l、グリセリンを2
51/l含有してい喪。
Example 1 5N-G 42 strain of Aureopathizoum Sp was added to a medium containing 3001/l of anhydrous crystalline glucose and 6.71/l of yeast extract, and cultured with shaking at 30°C for 72 hours. A seed medium was obtained. This seed medium 1.51
In addition to medium 251 (initial value: 4.2) containing anhydrous crystalline glucose 34011/Il, corn, stave, liquor 55971, aeration rate 25j/min, stirring speed 600.
rpm, temperature 35°C, and pressure 0.5 kg 7 cm”
When cultured for 93 hours under the conditions of G, glucose completely disappeared. Immediately stop the culture, heat sterilize it, and then centrifuge it. The il1 body was isolated. The obtained supernatant contained 1879/l of erythritol and 2/l of glycerin.
Contains 51/l.

得られた各上澄液(IOl)(着色度の指標として1個
セルで測定した420mμでの吸光度、すなわちA42
0が5.8であった。)を、第1表に示す性能を有する
種々の中空糸状の限外p過膜(膜l。
Each of the obtained supernatants (IOl) (absorbance at 420 mμ measured in one cell as an indicator of the degree of coloration, that is, A42
0 was 5.8. ), various hollow fiber ultrapolar membranes (membrane 1) having the performance shown in Table 1.

膜2、膜3)をそれぞれ収容した膜そジュール装置を用
いて、下記の濾過操作条件でF遇したとζろ、第2表に
示す結果が得られた。
Using a membrane module containing membranes 2 and 3) under the following filtration operating conditions, the results shown in Table 2 were obtained.

濾過操作条件 膜入口圧  1.5檀/32G 膜出口圧   1.0に97cm” G液温     
25℃ p過液量  107 また、以上の膜1を用いた濾過を繰返して得たテ液(約
91>を50℃に昇温して、活性炭248Iを加えて0
.5時間撹拌処理して脱色したのち、−過して活性炭を
除去した。
Filtration operation conditions Membrane inlet pressure 1.5mm/32G Membrane outlet pressure 1.0 to 97cm G liquid temperature
25℃ filtrate amount 107 In addition, the solution (approx.
.. After decolorizing the mixture by stirring for 5 hours, the activated carbon was removed by filtration.

その濾液(A420が0.3であった。)約8.81を
、陽イオン交換樹脂塔(三菱化成工業株式会社商品名ダ
イヤイオン5KIB充填)、陰イオン交換樹脂塔(三菱
化成工業株式会社商品名ダイヤイオンWA 30充填)
、及び混床塔(三菱化成工業株式会社商品名ダイヤイオ
ン5KIB及びPA408を充填)に順次通液して脱塩
処理を行なった。脱塩処理後のイオン交換塔押出し及び
水洗水をも含めたそのイオン交換処理液的121を、1
00 mmHHの減圧下で80℃に加熱して蒸発、濃縮
させた。得られたエリスIJ )−ル濃度62重量%の
濃縮液を15℃まで徐々に冷却しながらエリスリトール
の結晶を析出させた。得られた結晶を水に溶解して10
重量5の水溶液としたが、Kとりは全く認められなかっ
た。
Approximately 8.81 of the filtrate (A420 was 0.3) was transferred to a cation exchange resin tower (filled with Diaion 5KIB, a product of Mitsubishi Chemical Industries, Ltd.) and an anion exchange resin tower (a product of Mitsubishi Chemical Industries, Ltd.). Famous Diamond Aeon WA 30 filling)
, and a mixed bed tower (filled with Diaion 5KIB (trade name, manufactured by Mitsubishi Chemical Industries, Ltd.) and PA408) to carry out desalination treatment. The ion exchange treatment liquid 121 including the ion exchange tower extrusion and washing water after desalination treatment is 1
The mixture was evaporated and concentrated by heating to 80° C. under a reduced pressure of 0.00 mmHH. The obtained concentrate having an erythritol concentration of 62% by weight was gradually cooled to 15° C. to precipitate erythritol crystals. Dissolve the obtained crystals in water for 10
Although it was made into an aqueous solution with a weight of 5, no K removal was observed at all.

比較例1 第1表に示した精密濾過膜を使用し、そのほかは実施例
1と同様の培養液の上澄液を同様にして濾過した。その
結果は第2表に示すとおりであり、多糖類を全く除去で
きなかった。
Comparative Example 1 Using the precision filtration membrane shown in Table 1, the supernatant of the culture solution was otherwise filtered in the same manner as in Example 1. The results are shown in Table 2, and no polysaccharides could be removed.

比較例2 第1表に示した脱塩性能の低い、いわゆるルーズな逆浸
透膜を用いた平膜テ過装置を使用して、実施例1におけ
ると同様の培養液の上置液を、下記のテ過操作条件で濾
過したところ、第2表に示す結果が得られた。
Comparative Example 2 Using a flat membrane filtration device using a so-called loose reverse osmosis membrane with low desalting performance shown in Table 1, the supernatant liquid of the same culture solution as in Example 1 was treated as follows. When filtration was carried out under the following filtration operating conditions, the results shown in Table 2 were obtained.

濾過操作条件 操作圧 10kll/cm” G 撹拌  500rpm 液温   25℃ 濾過液量  250d 比較例2の場合には、多糖類を除去できたが、同時にエ
リスリトールも除去され、かつ透過液量が著しく少なく
て、実用に供し得ないものであった。
Filtration operating conditions Operating pressure: 10 kll/cm" G Stirring: 500 rpm Liquid temperature: 25°C Filtrate volume: 250 d In the case of Comparative Example 2, polysaccharides were removed, but erythritol was also removed at the same time, and the permeate volume was extremely small. , it could not be put to practical use.

比較例3 実施例1と同様の培養液を加熱殺菌したのち、遠心分離
により菌体を分離した。得られた上澄液はエリスリトー
ルを18711/l、グリセリンを251/l含有して
いた。得られたこの上澄液(約101)を、50℃に昇
温し、活性炭so。
Comparative Example 3 After heat sterilizing the same culture solution as in Example 1, the bacterial cells were separated by centrifugation. The obtained supernatant contained 18,711/l of erythritol and 251/l of glycerin. The resulting supernatant liquid (approximately 10%) was heated to 50°C and treated with activated carbon.

Iを加え、0.5時間処理して脱色したのち、濾過して
活性炭を除去した。この場合に、実施例1に比べて82
%過剰量の活性炭を必要とし、脱色処理液のA4□。は
0.3であった。
After adding I and decolorizing the mixture by treating it for 0.5 hours, the activated carbon was removed by filtration. In this case, compared to Example 1, 82
A4□ of the decolorizing solution requires % excess amount of activated carbon. was 0.3.

次いで、その脱色処理液を実施例1と同様のイオン交換
樹脂処理を行なった。その処理液的121を100 m
mHgの減圧下で80℃に加熱して蒸発。
Next, the decolorizing solution was subjected to the same ion exchange resin treatment as in Example 1. The treatment liquid level 121 is 100 m
Evaporate by heating to 80°C under reduced pressure of mHg.

濃縮させて得られたエリスリトール濃度が62重量%の
濃縮液を15℃まで徐々に冷却しながらエリスリトール
の結晶を析出させた。その結晶の析出液をF別分離して
エリ、スリトールの結晶を母液と分離しようとし九が、
濁りが発生し、濾過が困難であったが、強引に水洗濾過
してエリスリ) −ルの結晶を得た。その結晶を水に溶
解して10重量%水溶液としたところ、濁りの発生が認
められた。
The concentrated liquid having an erythritol concentration of 62% by weight was gradually cooled to 15° C. to precipitate erythritol crystals. I tried to separate the precipitated liquid of the crystals by F and separate the crystals of Eri and Thritol from the mother liquor.
Although turbidity occurred and filtration was difficult, erythrol crystals were obtained by forcibly washing and filtering with water. When the crystals were dissolved in water to form a 10% by weight aqueous solution, turbidity was observed.

(eJ  発明の効果 本発明のエリスリトールの分離・回収方法によると、限
外濾過膜による濾過時に、濁シ原因物質の多糖類が容易
に完全に除去されるので、エリスリトールの晶析工程に
おいて濁〕が発生せず、エリスリトールの結晶の分離が
容易となり、かっ水に溶解したときに濁シを生じない品
質の優れたエリスリトール結晶が得られる。また、その
限外濾過膜による濾過時に着色成分の20〜40%程度
も除去されるので、脱色用の活性炭の使用量を大巾に減
少させることができる。
(EJ Effects of the Invention According to the erythritol separation and recovery method of the present invention, polysaccharides that cause turbidity are easily and completely removed during filtration using an ultrafiltration membrane, so turbidity does not occur in the erythritol crystallization process) Erythritol crystals are easily separated, and high-quality erythritol crystals that do not form turbidity when dissolved in water are obtained.In addition, when filtered through the ultrafiltration membrane, 20% of the coloring components are removed. Since about 40% is removed, the amount of activated carbon used for decolorization can be significantly reduced.

特許出願人  三菱化成工業株式会社 日研化学株式会社Patent applicant: Mitsubishi Chemical Industries, Ltd. Nikken Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】 1)エリスリトール生産菌を水性培地中で好気的条件下
で培養して得られた培養液の上澄液を、分画分子量が1
,000〜100,000の限外濾過膜により濾過し、
得られた濾液からエリスリトールを回収することを特徴
とするエリスリトールの分離・回収方法。 2)限外濾過膜による濾液を活性炭処理してからエリス
リトールを回収する第1請求項記載の方法。 3)限外濾過膜による濾液を活性炭処理し、次いでイオ
ン交換樹脂処理してから濃縮して晶析を行なわせてエリ
スリトール結晶を得る第1請求項記載の方法。
[Scope of Claims] 1) The supernatant of the culture obtained by culturing erythritol-producing bacteria in an aqueous medium under aerobic conditions has a molecular weight cut-off of 1.
,000 to 100,000 ultrafiltration membrane,
A method for separating and recovering erythritol, which comprises recovering erythritol from the obtained filtrate. 2) The method according to claim 1, wherein erythritol is recovered after treating the filtrate through the ultrafiltration membrane with activated carbon. 3) The method according to claim 1, wherein the filtrate from the ultrafiltration membrane is treated with activated carbon, then treated with an ion exchange resin, and then concentrated and crystallized to obtain erythritol crystals.
JP3755288A 1988-02-22 1988-02-22 Erythritol separation and recovery method Expired - Lifetime JPH0734750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3755288A JPH0734750B2 (en) 1988-02-22 1988-02-22 Erythritol separation and recovery method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3755288A JPH0734750B2 (en) 1988-02-22 1988-02-22 Erythritol separation and recovery method

Publications (2)

Publication Number Publication Date
JPH01215293A true JPH01215293A (en) 1989-08-29
JPH0734750B2 JPH0734750B2 (en) 1995-04-19

Family

ID=12500686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3755288A Expired - Lifetime JPH0734750B2 (en) 1988-02-22 1988-02-22 Erythritol separation and recovery method

Country Status (1)

Country Link
JP (1) JPH0734750B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657529A3 (en) * 1993-12-11 1998-05-13 MERCK PATENT GmbH Decolorizing fermentatin solutions
KR19980066546A (en) * 1997-01-25 1998-10-15 백운화 Method for preparing erythritol
EP0908523A3 (en) * 1997-10-07 1999-05-19 Mitsubishi Chemical Corporation Process for producing high-purity erythritol crystal
EP1776174A4 (en) * 2004-06-21 2007-08-15 Biogen Idec Inc Use of depth filtration in series with continuous centrifugation to clarify mammalian cell cultures
WO2014065364A1 (en) * 2012-10-25 2014-05-01 東レ株式会社 Method for manufacturing organic acid or salt thereof
WO2016208707A1 (en) * 2015-06-24 2016-12-29 三井化学株式会社 Method for manufacturing pentaerythritol mercapto carboxylic acid ester, polymerizable composition, resin, optical material, and lens

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0657529A3 (en) * 1993-12-11 1998-05-13 MERCK PATENT GmbH Decolorizing fermentatin solutions
KR19980066546A (en) * 1997-01-25 1998-10-15 백운화 Method for preparing erythritol
EP0908523A3 (en) * 1997-10-07 1999-05-19 Mitsubishi Chemical Corporation Process for producing high-purity erythritol crystal
US7759117B2 (en) 2003-06-20 2010-07-20 Biogen Idec Inc. Use of depth filtration in series with continuous centrifugation to clarify mammalian cell cultures
EP1776174A4 (en) * 2004-06-21 2007-08-15 Biogen Idec Inc Use of depth filtration in series with continuous centrifugation to clarify mammalian cell cultures
WO2014065364A1 (en) * 2012-10-25 2014-05-01 東レ株式会社 Method for manufacturing organic acid or salt thereof
WO2016208707A1 (en) * 2015-06-24 2016-12-29 三井化学株式会社 Method for manufacturing pentaerythritol mercapto carboxylic acid ester, polymerizable composition, resin, optical material, and lens
JPWO2016208707A1 (en) * 2015-06-24 2017-11-09 三井化学株式会社 Method for producing pentaerythritol mercaptocarboxylic acid ester, polymerizable composition, resin, optical material and lens
US10696627B2 (en) 2015-06-24 2020-06-30 Mitsui Chemicals, Inc. Process for producing pentaerythritol mercaptocarboxylic acid ester, polymerizable composition, resin, optical material, and lens

Also Published As

Publication number Publication date
JPH0734750B2 (en) 1995-04-19

Similar Documents

Publication Publication Date Title
DE3827159C2 (en) Process for the production of L-amino acids from fermentation liquids
KR100244910B1 (en) Process for preparing high alpha-glycosyl-l-ascorbic acid, and separation system for the process
HUP0003016A2 (en) Method for producing sugar syrup from sugar-containing raw materials
US6096136A (en) Method for producing white sugar
JP2024507212A (en) Xylitol/caramel color co-production system and method using xylose mother liquor
KR100828706B1 (en) A method for purifying 5'-Inosinic acid fermentation broth via crystallization process
JPH01215293A (en) Separation and recovery of erythritol
CN101100437B (en) Method for preparing high-purity beta-alanine
JPS62126193A (en) Production of l-rhamnose
US4374981A (en) Ultrafiltration of fermentation broth containing nucleosides to separate inosine and guanosine from the broth
KR20220053609A (en) Method and composition thereof for recovering mevalonic acid or salt or lactone thereof from aqueous solution using water solvent crystallization
US3544455A (en) Itaconic acid purification process using reverse osmosis
US4997754A (en) Process for recovering L-amino acids from fermentation liquors containing them
JPH06145186A (en) Production of alpha,alpha-trehalose
BG63086B1 (en) Method for isolation of clavulanic acid from fermentation nutrient by means of ultrafiltration
JPS58895A (en) Preparation of l-tryptophan
CN106883286B (en) Extraction and purification method of tyrosine derivative
JP2516006B2 (en) How to decolorize molasses
JP2007259821A (en) Method for producing sugar alcohol
JP3819542B2 (en) Purification method of erythritol
JPS60137489A (en) Treatment of waste liquid
US4588818A (en) Method for recovery of optically active tryptophane
JPH11215980A (en) Treatment of liquid containing microbial cell
CN109694928B (en) Method for decoloring sugar solution
JPS6135791A (en) Crystallization of sodium glutamate

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term