JPH073466B2 - Thermal environment measuring method and thermal environment index measuring instrument - Google Patents

Thermal environment measuring method and thermal environment index measuring instrument

Info

Publication number
JPH073466B2
JPH073466B2 JP704587A JP704587A JPH073466B2 JP H073466 B2 JPH073466 B2 JP H073466B2 JP 704587 A JP704587 A JP 704587A JP 704587 A JP704587 A JP 704587A JP H073466 B2 JPH073466 B2 JP H073466B2
Authority
JP
Japan
Prior art keywords
thermal environment
sphere
temperature
thermocouple
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP704587A
Other languages
Japanese (ja)
Other versions
JPS63173989A (en
Inventor
晁 梅干野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EKO Instruments Co Ltd
Original Assignee
EKO Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EKO Instruments Co Ltd filed Critical EKO Instruments Co Ltd
Priority to JP704587A priority Critical patent/JPH073466B2/en
Publication of JPS63173989A publication Critical patent/JPS63173989A/en
Publication of JPH073466B2 publication Critical patent/JPH073466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)
  • Radiation Pyrometers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 建物の内外を問わず、熱環境を支配する要素は温度(気
温)、気流速度(風速)、日射、長波放射(周囲平均放
射温度)と湿度の5つの要素であり、最終的にこれらの
データを組合せて熱環境指数を算出している。
[Detailed Description of the Invention] Industrial Application Fields that control the thermal environment, whether inside or outside a building, are temperature (temperature), air velocity (wind speed), solar radiation, long-wave radiation (ambient average radiation temperature) and humidity. There are five elements, and these data are finally combined to calculate the thermal environment index.

本来熱環境指数は、空調や建物の設計等に生かされるべ
きものである。
Originally, the thermal environment index should be used for air conditioning and building design.

熱環境指数として有名なものは不快指数でこの場合は上
記のうち気温と湿度のみの2つの要素で表現し、 不快指数=0.72(ta+tw)+40.6 で示される。この場合taは気温、twは湿球温度である。
もう一つの例をあげると、 で示されるものである。ここでvは気流の速さ(風
速)、trは周囲平均放射温度である。従って、この場合
は温度ta、湿度tw、気流速vと周囲平均放射温度trの4
つの要素の組合せである。以上の如く熱環境指数として
は適用範囲に基づき各種のものが提案されている。この
適用範囲とは熱環境指数を使う目的により採用する要素
の組合せがことなることを意味する。例えば人間が屋外
で運動しているときの快適性と動物例えば牛等が最もよ
く乳をだす熱環境指数の種類はことなったものとなる。
しかし基本となる要素は前記の5つでありこの要素を全
部或いは若干を組合せて熱環境指数は導出される。
The well-known thermal environment index is the discomfort index, which in this case is expressed by the two elements of temperature and humidity only, and is represented by the discomfort index = 0.72 (ta + tw) + 40.6. In this case ta is temperature and tw is wet bulb temperature.
Another example is It is shown by. Here, v is the velocity of the air flow (wind velocity), and tr is the ambient mean radiation temperature. Therefore, in this case, the temperature ta, the humidity tw, the air flow velocity v, and the ambient average radiation temperature tr are 4
It is a combination of two elements. As described above, various thermal environment indexes have been proposed based on the applicable range. This applicable range means that the combination of the elements adopted differs depending on the purpose of using the thermal environment index. For example, the comfort level of humans exercising outdoors and the type of thermal environment index at which animals, such as cows, milk most often are different.
However, the basic elements are the above five elements, and the thermal environment index is derived by combining all or some of these elements.

従来例及びその問題点 従来上記5つの要素の一般的な計測は、各々別々の原理
に基づき開発された計器で個別に行われていた。この場
合、各計器の精度が異なること、データの取込み方法、
例えばサンプリングレートが異なる等の不便があった。
従って最終的にこれらのデータを利用して熱環境指数を
算出する場合、データの処理等に専門家の手による場合
が多く、折角のデータが充分生かされなかった。即ち本
来熱環境指数は、空調や建物の設計等に生かされべきも
のであるにも拘らず測定が手がるに出来ないこと、デー
タ処理が不便であること等により十分には普及していな
い。
Conventional example and its problems Conventionally, general measurements of the above five elements have been individually performed by instruments developed on the basis of different principles. In this case, the accuracy of each instrument is different, the data acquisition method,
For example, there are inconveniences such as different sampling rates.
Therefore, when the thermal environment index is finally calculated by using these data, it is often the case that an expert processes the data, etc., and the data on the corners are not sufficiently utilized. In other words, the thermal environment index is not widely used due to the fact that it should be used for air conditioning, building design, etc., but it cannot be measured and data processing is inconvenient. .

本発明は上記5つの要素の中で特に測定がむつかしいと
云われる気流(速度)、周囲環境温度(長波放射量)、
日射の計測を非常に簡単に出来る方法を確立し、上記適
用範囲が定まつた場合その適用範囲に応じた演算を行っ
て如何なる種類の熱環境指数も得られる様にした。
The present invention is concerned with the airflow (velocity), ambient temperature (long-wave radiation amount), which is said to be particularly difficult to measure among the above five elements,
We have established a method that can measure solar radiation very easily, and when the above application range is defined, we can calculate any kind of thermal environment index by performing calculation according to that application range.

本発明の構成 本発明による熱環境指数の測定方法は、直径が同じで、
各々日射吸収率、長波吸収率が異なり熱導伝率がよい金
属中空球を3個以上設け、前記中空球の各々の中心に熱
容量の小さい温度センサーを配置し、該センサーの各々
の温度出力と該センサーとは別に設けた該センサーと同
じ熱容量の気温センサーの温度出力と各球の日射吸収率
と長波吸収率を既知量として示すことのできる各球の熱
収支式よりなる多元方程式をたて、これを解くことによ
り未知係数である熱環境を構成する対流熱伝達係数、日
射、平均放射温度(長波放射)を決定することを特徴と
する。本発明のこの方法において、多元方程式を解くこ
とにより得られる対流熱伝達計数をもとに、既知の実験
式から風速を計算することができる。
Configuration of the Invention The method for measuring the thermal environment index according to the present invention has the same diameter,
Three or more metal hollow spheres having different solar absorptivity and long-wave absorptivity and good heat conductivity are provided, and a temperature sensor having a small heat capacity is arranged at the center of each of the hollow spheres. Create a multi-dimensional equation consisting of the heat balance equation of each sphere that can show the temperature output of an air temperature sensor with the same heat capacity as the sensor provided separately from this sensor, and the solar radiation absorption rate and long wave absorption rate of each sphere as known quantities. , It is characterized by determining the convection heat transfer coefficient, the solar radiation, and the average radiation temperature (long-wave radiation) that constitute the thermal environment, which are unknown coefficients. In this method of the present invention, the wind speed can be calculated from a known empirical formula based on the convection heat transfer coefficient obtained by solving the multidimensional equation.

また、本発明による熱環境指数の測定装置は、同じ構成
で表面が白色化、黒色化、及びクロームメッキされた少
なくとも3個の銅製中空球と、各球の中心に配置された
同じ熱容量の熱電対とを備え、これら中空球が測定すべ
き熱環境空間に互いに熱的影響がないように間隔をもっ
て配置してあり、上記空間には、上記熱電対と同じ熱容
量の熱電対よりなる気温センサーが別個に設けてあり、
前記熱電対と前記気温センサーの出力と各球の日射吸収
率と長波吸収率を既知量とし熱環境を構成する対流熱伝
達係数、日射、平均放射温度(長波放射)を未知係数と
する各球についてのの熱収支式よりなる多元方程式に基
づいて上記未知係数を算出する計算手段を備えることを
特徴とする。
Further, the apparatus for measuring a thermal environment index according to the present invention has at least three copper hollow spheres having the same configuration, the surfaces of which are whitened, blackened, and chrome-plated, and thermoelectric elements having the same heat capacity arranged at the center of each sphere. The pair of hollow spheres are arranged at intervals so that these hollow spheres do not have a thermal influence on each other in the thermal environment space to be measured, and in the space, an air temperature sensor composed of a thermocouple having the same heat capacity as the thermocouple is provided. Provided separately,
Each sphere having the thermocouple and the output of the temperature sensor, the solar radiation absorptivity and the long-wave absorptance of each sphere as known quantities, and the convective heat transfer coefficient that constitutes the thermal environment, the solar radiation, and the average radiation temperature (long-wave radiation) as an unknown coefficient. It is characterized by comprising a calculating means for calculating the unknown coefficient based on a multi-dimensional equation consisting of the heat balance equation of.

実施例 本発明方法を実施する装置即ち熱環境計につきその作用
と共に説明する。
EXAMPLE An apparatus for carrying out the method of the present invention, that is, a thermal environment meter will be described together with its operation.

先に述べたごとく気温、湿度の測定は測ろうとする現象
変化がおそくかつそのセンサー自体も安価であるためこ
れら要素の測定については従来型を利用することで足り
るが本実施例では、従来測定が不便でかつ高価な日射、
放射、風速を温度センサーから求める方法について説明
する。その概要を第1図に示す。直径が同じで表面の短
波長と長波長の吸収率が異なる3つの球を考えると各々
の球について定常状態において下記の熱収支式が成立す
る。
As described above, the measurement of temperature and humidity is slow to change the phenomenon to be measured and the sensor itself is inexpensive, so it is sufficient to use the conventional type for the measurement of these elements, but in the present embodiment, the conventional measurement is used. Inconvenient and expensive solar radiation,
A method of obtaining radiation and wind speed from a temperature sensor will be described. The outline is shown in FIG. Considering three spheres having the same diameter and different surface absorptances for short wavelengths and long wavelengths, the following heat balance equation is established for each sphere in a steady state.

aiI+α(Ta−gi)+ εiσ(Tm4−Ti4)=0……(1) ここで、 I:日射量 ai:各球の日射吸収率 α:球の対流熱伝達係数 Ta:気温 Tgi:球の温度 εi:各球の長波放射吸収率 σ:ステファンボルツマンの常数 Tm:周囲の平均放射温度(MRT) である。また添字iのついた記号は、各々の球により異
なる定数である。左辺第一項は球が吸収する日射量を、
第二項は対流により伝達する熱量を、第三項は球と周囲
表面との間における再放射交換量を示す。ここで、日射
吸収率ai、長波吸収率εiを既知として与えられるの
で、気温Taと中空球の中心の空気温度Tgiを計測するこ
とにより、日射量I、対流熱伝達係数α、周囲の平均放
射温度Tmを三元連立方程式の解として求めることが出来
る。この場合、三元連立方程式は3つの球に対し異なっ
た日射吸収率ai、長波吸収率εiを与えることにより常
数の異なった3つの式が成立する。
aiI + α (Ta−gi) + εiσ (Tm 4 −Ti 4 ) = 0 (1) where I: amount of solar radiation ai: solar absorption rate of each sphere α: convection heat transfer coefficient of the ball Ta: temperature Tgi: Sphere temperature εi: Long-wave radiative absorptivity of each sphere σ: Stefan Boltzmann's constant Tm: Average ambient radiation temperature (MRT). The symbol with the subscript i is a constant that differs depending on each sphere. The first term on the left side is the amount of solar radiation absorbed by the sphere,
The second term is the amount of heat transferred by convection, and the third term is the amount of reradiative exchange between the sphere and the surrounding surface. Here, since the solar radiation absorptivity ai and the long wave absorptivity εi are given as known, by measuring the temperature Ta and the air temperature Tgi at the center of the hollow sphere, the solar radiation amount I, the convection heat transfer coefficient α, and the surrounding average radiation The temperature Tm can be obtained as a solution of the simultaneous equations of three elements. In this case, in the simultaneous equations of three elements, three equations with different constants are established by giving different insolation absorption rates ai and long-wave absorption rates εi to the three spheres.

具体的には、吸収率は一例として下表に示す様な組み合
せにより構成される。
Specifically, the absorptance is constituted by a combination as shown in the table below as an example.

この表は一例であり、種々の処理方法をとれば種々の吸
収率の組合せを作ることができる。なお各々の吸収率は
あらかじめ十分な精度で実測により決めておく。またさ
らに精度を上げるために、表に与える吸収率の組み合せ
の他に各々の吸収率の異なったもう一つの第4球を用意
し、4元連立方程式とすることも出来る。この4元連立
方程式においても、先の三元連立方程式と同じく未知数
は3個である。この意味は3個の未知数を決定する場合
より高精度に求められることを意味する。また三元の場
合四元の場合共測定される各球のTgiは測定誤差を含ん
だものである。すなわち上記3つの未知数は一義的に、
解析的に解が得られるものでなく多くの測定値を利用し
た最少2乗法により求められる。次に中空球の温度は、
球の中心に接点が来る様にした銅コンスタンタン熱電対
等、熱容量の少ない温度センサーにより計測する。この
場合中空球の材料として薄い銅板等を使用し、表面温度
と中心温度が出来るだけ早く同じ温度になる構造をと
る。例えば真空にし中空球内面を黒化し、反応の早い放
射伝達の要素を多くする。
This table is an example, and various absorptivity combinations can be made by using various treatment methods. Note that each absorption rate is determined in advance with sufficient accuracy by actual measurement. Further, in order to further improve the accuracy, in addition to the combination of the absorptances given in the table, another fourth sphere having a different absorptivity can be prepared to form a simultaneous equation with four elements. In this quaternary simultaneous equation as well, the number of unknowns is 3 as in the above ternary simultaneous equation. This means that it is required with higher accuracy than when determining three unknowns. In addition, Tgi of each sphere that is co-measured in the case of ternary and quaternary includes measurement error. That is, the above three unknowns are uniquely
The solution is not analytically obtained, and it is obtained by the least square method using many measured values. Next, the temperature of the hollow sphere is
The temperature is measured by a temperature sensor with a small heat capacity, such as a copper constantan thermocouple with a contact point at the center of the sphere. In this case, a thin copper plate or the like is used as the material of the hollow sphere, and the surface temperature and the central temperature are set to the same temperature as soon as possible. For example, a vacuum is applied to blacken the inner surface of the hollow sphere to increase the number of radiative transfer elements with fast reaction.

以上を整理すると、吸収率の異なる3つの球の温度Tgi3
点と気温Taの測定より日射量I、対流熱伝達係数α、平
均周囲表面温度Tmを求めることが出来る。次に対流熱伝
達係数αより実験式を用いて風速を求めることが出来
る。さらに定義により平均放射温度は、周囲より球に入
射する長波放射量を規定するものである。
To summarize the above, the temperature of three spheres with different absorption rates, Tgi3
The solar radiation amount I, the convection heat transfer coefficient α, and the average ambient surface temperature Tm can be obtained from the measurement of the point and the temperature Ta. Next, the wind speed can be obtained from the convection heat transfer coefficient α using an empirical formula. Furthermore, by definition, the average radiation temperature defines the amount of long-wave radiation that is incident on the sphere from the surroundings.

効 果 以上は本発明による熱環境計の測定原理であるが、本発
明の効果は、熱環境を構成する各要素を従来の複雑なセ
ンサーを使わないで簡単な3つ乃至4つの温度測定によ
り決め得ることである。またこの4つのデータを組合せ
て種類の異なる熱環境指数の計算もCPUで行うことが出
来る。
The above is the measurement principle of the thermal environment meter according to the present invention, but the effect of the present invention is that each element constituting the thermal environment can be measured easily by three or four temperature sensors without using the conventional complicated sensors. It is a decision. The CPU can also calculate the thermal environment index of different types by combining these four data.

本方法を実施する熱環境指数計測器 第1図は上記した3つの球の1つを示す。3つの球はそ
の外面の処理が白ペイント塗装、黒ペイント塗装、及び
クロームメッキと夫々異なり其の他は全く同じ仕様とす
る。夫々の球は、外形75mm、厚さ0.5mmの銅製の球の中
心に直径50μの銅コンスタンタンの熱電対の接点が来る
様にしてある。
Thermal Environment Index Instrument for Implementing the Method FIG. 1 shows one of the three spheres described above. The outer surface of the three balls is different from white paint, black paint, and chrome plating, and the other specifications are the same. Each sphere has a 75 mm outer diameter and a 0.5 mm thick copper sphere with the contact point of a copper constantan thermocouple having a diameter of 50 μ in the center.

第1図に於いて、 1は熱電対、2はCu製球、3は熱電対素線引出部、4は
熱電対引出線、5は断熱ブッシュ、6は球の支持棒を示
す。
In FIG. 1, 1 is a thermocouple, 2 is a Cu ball, 3 is a thermocouple wire lead-out portion, 4 is a thermocouple lead wire, 5 is a heat insulating bush, and 6 is a ball support rod.

尚、第2図に示す様に3つの球は放射状に等角度に配備
し、各々の間での熱的交互作用がない様にお互いの影響
を考慮し最低長の間隔に配置する。
As shown in FIG. 2, the three spheres are radially arranged at equal angles, and are arranged at a minimum length interval in consideration of mutual influence so that there is no thermal interaction between them.

第2図は、熱環境計を更正する3つの球W、B、Gと1
つの気温センサーTの配置とデータ処理の構成図であ
り、1は熱電対、A/DはA/D変換器、Lはリニヤライザ
ー、Tは気温センサー、Cは演算器、W、B、Crは夫々
白、黒、クロムメッキを各々表面処理した球を示す。
FIG. 2 shows three spheres W, B, G and 1 for calibrating the thermal environment meter.
It is a configuration diagram of the arrangement and data processing of two temperature sensors T, 1 is a thermocouple, A / D is an A / D converter, L is a linearizer, T is an air temperature sensor, C is a calculator, W, B, Cr. Indicates spheres whose surfaces are respectively treated with white, black and chrome plating.

第2図に示す様に具現された熱環境指数計においては引
出線7より得られる気温と3つの球よりの温度信号をA/
D変換ののち、組込みCPUにより式(1)及び風速を求め
る実験式を計算することにより必要とする気温、日射、
周囲平均放射温度、風速の4つの要素が得られる。
In the thermal environment index meter embodied as shown in Fig. 2, the temperature obtained from the lead wire 7 and the temperature signals from the three balls are
After D conversion, the built-in CPU calculates the formula (1) and the empirical formula for obtaining the wind speed, and the required temperature, solar radiation,
Four factors are obtained: ambient mean radiation temperature and wind speed.

【図面の簡単な説明】[Brief description of drawings]

第1図は、熱環境計を構成する中空球1つの構造と球表
面における熱収支を示す図、 第2図は、熱環境計を更正する3つの球と1つの気温セ
ンサーの配置とデータ処理の構成図である。 1:熱電対、2:Cu製球、 3:熱電対素線引出部、4:熱電対引出線、 5:断熱ブッシュ、6:球の支持棒、 1:熱電対、 A/D:アナログ・デジタル変換器、 L:リニヤライザー、T:気温センサー、 C:演算器、 W,B,Cr:白、黒、クロムメッキを各々表面処理した球。
FIG. 1 is a diagram showing the structure of one hollow sphere that constitutes the thermal environment meter and the heat balance on the surface of the sphere. FIG. 2 is the arrangement and data processing of three spheres and one temperature sensor that calibrate the thermal environment meter. It is a block diagram of. 1: Thermocouple, 2: Cu ball, 3: Thermocouple wire lead-out part, 4: Thermocouple lead wire, 5: Insulation bush, 6: Ball support rod, 1: Thermocouple, A / D: Analog Digital converter, L: linearizer, T: temperature sensor, C: calculator, W, B, Cr: white, black, chrome-plated spheres.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】直径が同じで、各々日射吸収率、長波吸収
率が異なり熱伝導率がよい金属中空球を3個以上設け、
前記中空球の各々の中心に熱容量の小さい温度センサー
を配置し、該センサーの各々の温度出力と該センサーと
は別に設けた該センサーと同じ熱容量の気温センサーの
温度出力と各球の日射吸収率と長波吸収率を既知量とし
て示すことのできる各球の熱収支式よりなる多元方程式
をたて、これを解くことにより未知係数である熱環境を
構成する対流熱伝達係数、日射、平均放射温度(長波放
射)を決定することを特徴とする熱環境指数の測定方
法。
1. Providing three or more metal hollow spheres having the same diameter, different solar absorptivity and long wave absorptivity and good thermal conductivity,
A temperature sensor having a small heat capacity is arranged at the center of each of the hollow spheres, and the temperature output of each of the sensors and the temperature output of an air temperature sensor having the same heat capacity as the sensor separately provided and the solar radiation absorption rate of each sphere. And a long wave absorptivity as a known quantity, a multi-dimensional equation consisting of heat balance equations of each sphere is created, and by solving this, the convective heat transfer coefficient, the solar radiation, and the average radiation temperature that constitute the unknown thermal environment A method for measuring a thermal environment index, which comprises determining (long-wave radiation).
【請求項2】特許請求の範囲第1項に記載の方法におい
て、上記多元方程式を解くことにより得られる対流熱伝
達係数をもとに、既知の実験式から風速を計算すること
を特徴とする熱環境指数の測定方法。
2. The method according to claim 1, characterized in that the wind velocity is calculated from a known empirical formula based on the convection heat transfer coefficient obtained by solving the multi-dimensional equation. How to measure the thermal environment index.
【請求項3】同じ構成で表面が白色化、黒色化、及びク
ロームメッキされた少なくとも3個の銅製中空球と、各
球の中心に配置された同じ熱容量の熱電対とを備え、こ
れら中空球が測定すべき熱環境空間に互いに熱的環境が
ないように間隔をもって配置してあり、上記空間には、
上記熱電対と同じ熱容量の熱電対よりなる気温センサー
が別個に設けてあり、前記熱電対と前記気温センサーの
出力と各球の日射吸収率と長波吸収率を既知量とし熱環
境を構成する対流熱伝達係数、日射平均放射温度(長波
放射)を未知係数とする各球についての熱収支式よりな
る多元方程式に基づいて上記未知係数を算出する計算手
段を備えることを特徴とする熱環境指数の測定装置。
3. A hollow sphere comprising at least three copper hollow spheres of the same construction, the surface of which is white, blackened, and chrome plated, and a thermocouple having the same heat capacity, which is arranged at the center of each sphere. Are arranged at intervals so that there is no thermal environment in the thermal environment space to be measured, and in the above space,
An air temperature sensor consisting of a thermocouple having the same heat capacity as the thermocouple is provided separately, and the convection currents that constitute the thermal environment with the thermocouple and the output of the air temperature sensor, the solar radiation absorptivity and the long wave absorptivity of each sphere as known amounts. The heat environment coefficient is characterized by including a calculating means for calculating the unknown coefficient based on a multidimensional equation consisting of a heat balance equation for each sphere having a heat transfer coefficient and an average solar radiation temperature (long-wave radiation) as unknown coefficients. measuring device.
JP704587A 1987-01-14 1987-01-14 Thermal environment measuring method and thermal environment index measuring instrument Expired - Fee Related JPH073466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP704587A JPH073466B2 (en) 1987-01-14 1987-01-14 Thermal environment measuring method and thermal environment index measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP704587A JPH073466B2 (en) 1987-01-14 1987-01-14 Thermal environment measuring method and thermal environment index measuring instrument

Publications (2)

Publication Number Publication Date
JPS63173989A JPS63173989A (en) 1988-07-18
JPH073466B2 true JPH073466B2 (en) 1995-01-18

Family

ID=11655081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP704587A Expired - Fee Related JPH073466B2 (en) 1987-01-14 1987-01-14 Thermal environment measuring method and thermal environment index measuring instrument

Country Status (1)

Country Link
JP (1) JPH073466B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020143900A (en) 2019-03-04 2020-09-10 日本電信電話株式会社 Insolation heat sensor and insolation heat measuring method
JP7322332B2 (en) * 2019-12-13 2023-08-08 学校法人東京理科大学 measuring equipment
CN115839769B (en) * 2023-02-24 2023-05-12 烟台大学 Method for measuring outdoor radiation, matched hardware device, equipment and storage medium

Also Published As

Publication number Publication date
JPS63173989A (en) 1988-07-18

Similar Documents

Publication Publication Date Title
US11686626B2 (en) Apparatus, systems, and methods for non-invasive thermal interrogation
US6056435A (en) Ambient and perfusion normalized temperature detector
CN1159151A (en) Process and device for sensing heat transfer between living body and sensor and concentration relation of glucose
CN115452180B (en) High-enthalpy airflow recovery temperature measurement method and measurement device
CN110179444B (en) Infant body temperature detection foot ring system and detection method thereof
CN110398610B (en) Flow velocity detection method and probe of optical fiber hot wire flow velocity sensor
US3855863A (en) Method and apparatus for determining wet bulb globe temperature
JPH073466B2 (en) Thermal environment measuring method and thermal environment index measuring instrument
JP7322332B2 (en) measuring equipment
US3531991A (en) Mean radiation temperature meter
FI100135B (en) Procedure and temperature sensor design for eliminating radiation errors
JPS5852528A (en) Sensitizing method of thermopile
EP0495117A1 (en) Method of computing equivalent temperature and instrument for environment measurement
CN114964562A (en) Online calibration method for thin film thermal resistor and coaxial thermocouple
Blonquist Jr et al. Air temperature
Mthunzi et al. An ultra-low-cost thermal comfort monitoring station
CN116298379B (en) Method, device, equipment and storage medium for measuring outdoor wind speed and radiation
CN111473888B (en) Thermometer and method for calculating core body temperature based on wrist body temperature
WO2023189748A1 (en) Deep body temperature-measurement probe and deep body thermometer
JPH0713573B2 (en) Predicted average temperature sensation calculation method and apparatus
Lindner-Cendrowska et al. The impact of wind speed measurement method on MRT and PET values in limited air flow conditions on warm, sunny days
CN213903386U (en) Thermal physical property testing device
JPH0827216B2 (en) High-speed response globe thermometer
SU373606A1 (en) METHOD FOR DETERMINING THE INTEGRAL EMISSIVE ABILITY OF MATERIALS
Diller Practical Heat Flux Measurement

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees