JPH0734470B2 - Field effect semiconductor device - Google Patents

Field effect semiconductor device

Info

Publication number
JPH0734470B2
JPH0734470B2 JP62241839A JP24183987A JPH0734470B2 JP H0734470 B2 JPH0734470 B2 JP H0734470B2 JP 62241839 A JP62241839 A JP 62241839A JP 24183987 A JP24183987 A JP 24183987A JP H0734470 B2 JPH0734470 B2 JP H0734470B2
Authority
JP
Japan
Prior art keywords
region
type
epitaxial layer
layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62241839A
Other languages
Japanese (ja)
Other versions
JPS6482565A (en
Inventor
浩靖 萩野
博史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62241839A priority Critical patent/JPH0734470B2/en
Priority to DE3851815T priority patent/DE3851815T2/en
Priority to EP88111722A priority patent/EP0308612B1/en
Publication of JPS6482565A publication Critical patent/JPS6482565A/en
Publication of JPH0734470B2 publication Critical patent/JPH0734470B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電界効果型半導体装置,こゝではパワーMO
S電界効果トランジスタ(以下,パワーMOS FETと呼ぶ)
に関し、さらに詳しくは、オン抵抗の低い高耐圧のパワ
ーMOS FETの改良に係るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention relates to a field-effect semiconductor device, here, a power MO.
S field effect transistor (hereinafter referred to as power MOS FET)
More specifically, the present invention relates to improvement of a high-breakdown-voltage power MOS FET with low on-resistance.

〔従来の技術〕[Conventional technology]

近年,電力用のスイッチング素子として、この種のパワ
ーMOS FETが注目されている。
In recent years, this kind of power MOS FET has been attracting attention as a switching element for electric power.

第2図には、従来例による一般的な縦型D-MOS構造をも
つパワーMOS FETの模式的に示した断面構造の概要を示
してある。
FIG. 2 shows an outline of a sectional structure schematically showing a power MOS FET having a general vertical D-MOS structure according to a conventional example.

すなわち,この第2図に示した従来例構成において、n+
形基板21としては、この場合,一般的に約1019atom/cm3
で拡散速度の遅いSbなどが用いられており、このn+形基
板21上にエピタキシャル成長されたn-形エピタキシャル
層22は、素子構造に要求される阻止電圧VBによつて、そ
の比抵抗および厚さが設定され、例えば、500Vの素子構
成においては、比抵抗が、約25Ω‐cm程度,厚さが、約
45μm程度に決められる。
That is, in the conventional configuration shown in FIG. 2, n +
In this case, the shaped substrate 21 is generally about 10 19 atom / cm 3
In such a slow diffusion speed Sb is used and the n n + is epitaxially grown on the shape the substrate 21 - -type epitaxial layer 22, Yotsute the blocking voltage V B that is required in the device structure, its resistivity and The thickness is set, for example, in the device configuration of 500 V, the specific resistance is about 25 Ω-cm and the thickness is about
It is set to about 45 μm.

また、前記n-形エピタキシャル層22での主表面(第2主
表面)部に選択的に形成されたp形ベース層23は、チャ
ネル領域25を形成する比較的浅く拡散された第2領域部
分23bと、このp形ベース層23での表面部に形成されるn
+形ソース層24,同p形ベース層23,およびn-形エピタキ
シャル層22によつて構成される寄生トランジスタのラッ
チアップ防止のために比較的深く拡散形成された第1領
域部分23aとからなつている。
The p-type base layer 23 selectively formed on the main surface (second main surface) of the n -type epitaxial layer 22 is a relatively shallow diffused second region portion forming the channel region 25. 23b and n formed on the surface of the p-type base layer 23
And a first region portion 23a formed relatively deeply to prevent latch-up of a parasitic transistor constituted by the + type source layer 24, the p type base layer 23, and the n − type epitaxial layer 22. ing.

そし、前記n+形ソース層24とn-形エピタキシャル層22と
の間に形成されるチャネル領域25上には、n-形エピタキ
シャル層22を覆いかつゲート絶縁膜26を介してゲート電
極27が、前記p形ベース層23の第1領域部分23aからn+
形ソース層24に跨つてソース電極28が、前記n+形基板21
の裏面にドレイン電極29がそれぞれに形成されている。
Then, on the channel region 25 formed between the n + -type source layer 24 and the n -type epitaxial layer 22, a gate electrode 27 is formed to cover the n -type epitaxial layer 22 and via the gate insulating film 26. , The first region portion 23a of the p-type base layer 23 to n +
The source electrode 28 straddles the n-type substrate 21 and the n + -type substrate 21.
A drain electrode 29 is formed on the back surface of each.

しかして、以上のように構成される従来例でのパワーMO
S FETにおいては、ソース電極28を接地し、ゲート電極2
7およびドレイン電極29に正の電圧を印加させると、p
形ベース層23内のチャネル領域25がn+形に反転され、図
中に破線eで示したように、n+形ソース層24からこの反
転されたチャネル領域25,およびn-形エピタキシャル層2
2を通り、ドレイン電極29に電子が流れてオン状態とな
る。
Then, the power MO in the conventional example configured as described above
In the S FET, the source electrode 28 is grounded and the gate electrode 2
When a positive voltage is applied to 7 and the drain electrode 29, p
Channel region 25 in the form the base layer 23 is inverted to n + type, as indicated by a broken line e in the drawing, the inverted channel region 25 of n + -type source layer 24, and the n - -type epitaxial layer 2
Electrons flow through the drain electrode 29 through 2 to be in the ON state.

このとき,素子のもつオン抵抗Ronは、近似的に次式で
表わすことができる。すなわち, Ron=Rch+Rac+Rj+REpi 但し,Rch:チャネル領域25の抵抗, Rac:n-形エピタキシャル層22の表面のアキャム レーション抵抗, Rj:p形ベース層23で挟まれたJFET効果を示すn 形エピタキシャル層22の抵抗, REpi:n-形エピタキシャル層22の抵抗. である。
At this time, the on-resistance R on of the element can be approximately represented by the following equation. That, R on = R ch + R ac + R j + R Epi However, R ch: the resistance of the channel region 25, R ac: n - Akyamu Configuration resistance of the surface of the -type epitaxial layer 22, R j: p-type base layer resistance of the n-type epitaxial layer 22 indicating the JFET effect sandwiched by 23, R Epi: n - resistance -type epitaxial layer 22. Is.

こゝで、前記各抵抗Rch,Racは、MOS FETのユニットセル
を微細化し、チャネル長を長くすることによつて共に小
さくでき、また、前記抵抗Rjについては、各p形ベース
層23間での間隔を適切に広げることで小さくできるので
あるが、前記抵抗REpiは、阻止電圧VBとの関係で決まる
ために、高耐圧素子においては、オン抵抗Ronの大半を
占めることになり、この場合,例えば、500V,1000Vの素
子構成においては、それぞれのREpi/Ronが、約0.8,0.9
程度になるもので、この抵抗REpiをいかに小さくするか
が、この種の高耐圧MOS FETでの特性改善のための大き
なポイントになる。
Here, the resistors R ch and R ac can be reduced together by miniaturizing the unit cell of the MOS FET and increasing the channel length, and the resistors R j can be reduced in the p-type base layer. Although it can be reduced by appropriately widening the interval between 23, the resistance R Epi is determined by the relationship with the blocking voltage V B , so in a high breakdown voltage element, it occupies most of the on resistance R on. In this case, for example, in the device configuration of 500V and 1000V, the respective R Epi / R on are about 0.8 and 0.9.
However, how to reduce the resistance R Epi is a major point for improving the characteristics of this type of high voltage MOS FET.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

このように、従来の構成によるパワーMOS FETでは、素
子の耐圧が高くなると、阻止電圧VBを規定するn-形エピ
タキシャル層でのオン抵抗が大きくなり、そのオン損失
が増加すると云う問題点があつた。
As described above, in the power MOS FET having the conventional configuration, when the breakdown voltage of the element increases, the on-resistance in the n − type epitaxial layer that defines the blocking voltage V B increases, and the on-loss increases. Atsuta

従って、この発明の目的とするところは、従来のパワー
MOS FETにおけるこのような問題点に鑑み、n-形エピタ
キシャル層での抵抗REpiを低減させることによつて、素
子構成での特性改善を図つた,オン抵抗の低い高耐圧に
よるこの種の電界効果型半導体装置,こゝでは、オン抵
抗の低い高耐圧のパワーMOS FETを提供することであ
る。
Therefore, the purpose of this invention is
In view of these problems in MOS FETs, the resistance R Epi in the n − type epitaxial layer is reduced to improve the characteristics of the device structure. This is to provide a high-voltage power MOS FET with low on-resistance, which is an effective semiconductor device.

〔問題点を解決するための手段〕[Means for solving problems]

前記目的を達成させるために、この発明に係る電界効果
型半導体装置は、Pがドープされたn+形の基板と、この
基板との接合面を介して配設されたn−形のエピタキシ
ャル層と、このエピタキシャル層の接合面内に形成さ
れ、基板とエピタキシャル層との間に緩やかな不純物濃
度分布を与えるための浮き上がり領域と、エピタキシャ
ル層の主表面に選択的に対向して形成され、その中央部
である第1領域部分とこの第1領域部分の周縁に設けら
れ底部までの深さが第1領域部分よりも浅い第2領域部
分とからなるp形のベース領域と、この各ベース領域の
表面に選択的に形成されたn形のソース領域と、この各
ソース領域とエピタキシャル層とに挟まれる第2領域部
分の表面上にゲート絶縁膜を介して形成されたゲート電
極と、各ベース領域の第1領域部分から前記ソース領域
に跨って形成されたソース電極と、基板に形成されたド
レイン電極とを備えたものである。
To achieve the above object, a field-effect semiconductor device according to the present invention comprises an n + -type substrate doped with P, and an n -type epitaxial layer provided via a bonding surface between the substrate and the n − -type substrate. And a raised region for forming a gradual impurity concentration distribution between the substrate and the epitaxial layer, which is formed in the junction surface of the epitaxial layer, and selectively formed on the main surface of the epitaxial layer. A p-type base region including a first region portion that is a central portion and a second region portion that is provided on the periphery of the first region portion and has a depth to the bottom that is shallower than the first region portion, and each of these base regions. An n-type source region selectively formed on the surface of the substrate, a gate electrode formed on the surface of a second region portion sandwiched between each source region and the epitaxial layer via a gate insulating film, and each base. region A source electrode formed over the source region from the first region portion, in which a drain electrode formed on the substrate.

また、各ベース領域の互いに対向する第2領域部分間で
あってエピタキシャル層の表面内にn形の半導体層をさ
らに形成すると共にゲート電極がソース領域と半導体層
とに挟まれる第2領域部分の表面上にゲート絶縁膜を介
して形成されたものである。
In addition, an n-type semiconductor layer is further formed in the surface of the epitaxial layer between the second region portions facing each other of each base region, and the second region portion in which the gate electrode is sandwiched between the source region and the semiconductor layer is formed. It is formed on the surface via a gate insulating film.

〔作用〕[Action]

従つて、この発明においては、素子構成でのオン抵抗R
onに最も大きく影響するn-形エピタキシャル層の層厚を
十分に薄くさせているために、このオン抵抗Ronを従来
例に比較して低減させることができる。
Therefore, in the present invention, the on-resistance R in the element configuration is
Since the layer thickness of the n -type epitaxial layer that most affects on is made sufficiently thin, this on-resistance R on can be reduced as compared with the conventional example.

また、各p形ベース層間に挟まれるn形半導体層の領域
部分での抵抗Rjについては、このp形ベース層間の間隔
Lpを短くすると、そのJFET効果によつて大きくなるため
に、同間隔Lpを広くとる必要があつたが、同領域部分が
比較的低抵抗のn形半導体層からなつているので、この
間隔Lpを短くし得てこの抵抗Rjを低減できると共に、併
せてこゝでは、MOSユニットセル自体の密度を高めるこ
とができるために、チャネル領域の抵抗Rchをも低減さ
せ得る。
Further, regarding the resistance R j in the region portion of the n-type semiconductor layer sandwiched between the p-type base layers, the interval between the p-type base layers is
When L p is shortened, it becomes large due to the JFET effect, so that the same interval L p needs to be wide, but since the same region portion is made of an n-type semiconductor layer having a relatively low resistance, The resistance L j can be reduced by shortening the interval L p, and at the same time, since the density of the MOS unit cells themselves can be increased, the resistance R ch of the channel region can also be reduced.

さらに、一方,この素子構成での耐圧については、高電
圧を印加させたときに延びる空乏層の電界が、n+,n-
合での不純物濃度分布の緩るやかな傾斜によつて緩和さ
れるために、たとえ、n-形エピタキシャル層の層厚を薄
くさせても、その阻止電圧VBが損なわれる惧れはなく、
これらの結果として、オン抵抗が低くて素子耐圧の高い
パワーMOS FETを得られるのである。
On the other hand, with respect to the breakdown voltage of this element structure, the electric field of the depletion layer extending when a high voltage is applied is relaxed by the gentle slope of the impurity concentration distribution at the n + and n junctions. Therefore, even if the layer thickness of the n -type epitaxial layer is reduced, the blocking voltage V B is not likely to be impaired.
As a result of these, it is possible to obtain a power MOS FET having a low on-resistance and a high device breakdown voltage.

〔実施例〕〔Example〕

以下,この発明に係る電界効果型半導体装置,ここで
は、パワーMOS FETの一実施例につき、第1図を参照し
て詳細に説明する。
An embodiment of a field effect semiconductor device according to the present invention, a power MOS FET here, will be described in detail below with reference to FIG.

第1図はこの実施例を適用したパワーMOS FETの概要構
成を模式的に示す断面図であり、この第1図実施例構成
において、前記した第2図従来例構成と同一符号は同一
または相当部分を表わしている。
FIG. 1 is a sectional view schematically showing a schematic structure of a power MOS FET to which this embodiment is applied. In the structure of the embodiment of FIG. 1, the same symbols as those of the structure of the conventional example of FIG. Represents a part.

すなわち、この第1図に示した実施例構成においても、
n+形基板11としては、この場合,一般的に約1019〜1020
atom/cm3程度の拡散係数の大きいリンなどのn形不純物
を用い、このn+形基板11上に、約25〜30Ω‐cm程度の高
比抵抗をもつn-形エピタキシャル層22を約50μm程度の
厚さに形成させ、その後,熱処理することにより、n+
基板11を約25μm程度n-形エピタキシャル層22側に浮き
上がらせて浮き上り領域12を形成させ、これらのn+形基
板11とn-形エピタキシャル層22間に緩るやかな不純物濃
度分布を与える。
That is, even in the configuration of the embodiment shown in FIG.
In this case, the n + -type substrate 11 is generally about 10 19 to 10 20.
an n-type impurity such as large phosphorus the atom / cm 3 order of the diffusion coefficient, on the n + type substrate 11, n has a high resistivity of about 25~30Ω-cm - about 50μm to form epitaxial layer 22 The n + -type substrate 11 is lifted to the n -type epitaxial layer 22 side by about 25 μm to form the floating region 12 by forming the n + -type substrate 11 and the n + -type substrate 11 by heating the n + -type substrate 11 to a thickness of about 25 μm. and n - give Yururu Ya kana impurity concentration distribution between -type epitaxial layer 22.

次に、前記n-形エピタキシャル層22の第2主表面に、イ
オン注入法とか選択拡散法などによつて約5〜10μm程
度の深さで対向される各p形ベース層23の第1領域部分
23aを選択的にそれぞれ形成させ、かつ各第1領域部分2
3a間でのn-形エピタキシャル層22の表面に、イオン注入
法とか選択拡散法などによつて比較的低抵抗のn形半導
体層30を形成させる。なお、この場合、各第1領域部分
23aを形成する以前にあつて、n-形エピタキシャル層22
の表面部に、エピタキシャル成長法,イオン注入法,選
択拡散法などによつてn形半導体層30を形成させてもよ
い。
Next, the first region of each p-type base layer 23 is opposed to the second main surface of the n -type epitaxial layer 22 by a depth of about 5 to 10 μm by an ion implantation method or a selective diffusion method. part
23a are selectively formed, and each first area portion 2
N between 3a - on the surface of the -type epitaxial layer 22, to form an n-type semiconductor layer 30 of a relatively low resistance One by the ion implantation or the like Toka selective diffusion method. In this case, each first area part
It shall apply prior to forming a 23a, n - -type epitaxial layer 22
The n-type semiconductor layer 30 may be formed on the surface of the substrate by an epitaxial growth method, an ion implantation method, a selective diffusion method, or the like.

ついで、これらの上にゲート絶縁膜26を形成させ、かつ
このゲート絶縁膜26を介してのちにゲート電極27となる
ポリシリコン層を選択的に形成させると共に、このポリ
シリコン層をマスクにして各p形ベース層23の第2領域
部分23bを選択的にそれぞれ形成させる。つまり、この
場合,前記n形半導体層30は、これらの各第2領域部分
23b間に挟まれることになる。そしてこれらの各第2領
域部分23bは、のちにチャネル領域25となるために、し
きい値電圧Vthとの関係で、その不純物濃度,および拡
散深さを選定する必要があつて、通常の場合,その値
は、5×1013〜5×1014cm-3程度の範囲内で、深さが4
〜6μm程度であればよい。
Next, a gate insulating film 26 is formed on these, and a polysilicon layer which will later become a gate electrode 27 is selectively formed via this gate insulating film 26, and each polysilicon layer is used as a mask to form a mask. The second region portions 23b of the p-type base layer 23 are selectively formed. That is, in this case, the n-type semiconductor layer 30 is formed in each of these second region portions.
It will be sandwiched between 23b. Since each of these second region portions 23b later becomes the channel region 25, it is necessary to select the impurity concentration and the diffusion depth thereof in relation to the threshold voltage V th , In that case, the value is within the range of 5 × 10 13 to 5 × 10 14 cm -3 and the depth is 4
It may be about 6 μm.

また次に、前記各p形ベース層23の表面部にあつて、前
記したポリシリコン層をマスクに用い、D-MOS方式によ
り、約3×1020atom/cm3程度の表面濃度をもつ各n+形ソ
ース層24を約0.5〜1μm程度の深さでそれぞれ選択的
に形成させる。そして、これらの各n+形ソース層24と前
記n形半導体層30との間に挟まれる各第2領域部分23b
の表面部が、前記したチャネル領域25となるが、このチ
ャネル領域25の長さは、高耐圧のMOS FETで、約3〜5
μm程度である。
Next, each of the p-type base layers 23 has a surface concentration of about 3 × 10 20 atom / cm 3 by the D-MOS method using the above-mentioned polysilicon layer as a mask. The n + type source layer 24 is selectively formed to a depth of about 0.5 to 1 μm. Then, each second region portion 23b sandwiched between each of the n + type source layers 24 and the n type semiconductor layer 30.
The surface portion of is the above-mentioned channel region 25, and the length of this channel region 25 is about 3 to 5 for a high breakdown voltage MOS FET.
It is about μm.

さらに、前記各n+形ソース層24とn-形エピタキシャル層
22との間に形成されるそれぞれのチャネル領域25上に
は、前記n形半導体層30を覆いかつゲート絶縁膜26を介
してゲート電極27を、前記各p形ベース層23の第1領域
部分23aからn+形ソース層24に跨つてソース電極28を、
前記n+形基板21の裏面にドレイン電極29を、それぞれに
形成させたものである。
Further, each of the n + type source layer 24 and the n − type epitaxial layer
A gate electrode 27 is formed on each of the channel regions 25 formed between the p-type base layer 23 and the channel region 25, and a gate electrode 27 is formed on the channel region 25 via the gate insulating film 26. 23a to the source electrode 28 across the n + type source layer 24,
A drain electrode 29 is formed on the back surface of the n + -type substrate 21, respectively.

従つて、以上のように構成されたこの実施例でのパワー
MOS FETにおいては、n-形エピタキシャル層22の厚さを
薄くさせる,つまり具体的には、この実施例の場合,約
15〜20μm程度にされていて、従来例の場合での同層の
厚さ約35〜40μm程度に比較するとき、約1/2に薄くさ
れるために、その抵抗REpiの値を大幅に低減できる。そ
してこのとき、浮き上り領域12が約25〜30μm程度形成
されるが、その平均比抵抗がn-形エピタキシャル層22の
もつ比抵抗の1/10以下であることから、抵抗REpiとして
は殆んどきかなくなり、これによつても、従来例に比較
するとき、抵抗Ronを約20〜30%程度までの低減させ得
る。
Therefore, the power of this embodiment configured as described above
In the MOS FET, the thickness of the n -type epitaxial layer 22 is reduced, that is, specifically, in the case of this embodiment,
It is set to about 15 to 20 μm, and when compared with the thickness of the same layer of about 35 to 40 μm in the case of the conventional example, the value of the resistance R Epi is drastically reduced because it is thinned to about 1/2. It can be reduced. At this time, the floating region 12 is formed to have a thickness of about 25 to 30 μm. However, since the average specific resistance thereof is 1/10 or less of the specific resistance of the n -type epitaxial layer 22, the resistance R Epi is almost the same. This is no longer the case, and even with this, the resistance R on can be reduced to about 20 to 30% when compared to the conventional example.

また、各p形ベース層23の第2領域部分23b間に挟まれ
る従来例での高抵抗のn-形エピタキシャル層22を、この
実施例の場合には、比較的低抵抗のn形半導体層30によ
つて形成してあるために、同n形半導体層30でのJFET効
果が弱められると共に、従来例に比較するとき、各p形
ベース層23間の間隔Lpを短くし得て、単位面積当りのMO
Sユニットセル密度を高めることができ、その結果、抵
抗RjおよびRchの値についても、約35〜40%程度まで改
善できる。
The second area portion 23b of the high resistance of the conventional example sandwiched between n each p-type base layer 23 - the form epitaxial layer 22, in the case of this embodiment, a relatively low resistance n-type semiconductor layer of Since it is formed by 30, the JFET effect in the same n-type semiconductor layer 30 is weakened, and when compared with the conventional example, the interval L p between each p-type base layer 23 can be shortened, MO per unit area
The S unit cell density can be increased, and as a result, the values of the resistances R j and R ch can be improved to about 35-40%.

すなわち,以上のようにして、この実施例構成でのパワ
ーMOS FETによれば、そのオン抵抗Ronの値を、従来例構
成のものに比較して、おゝよそ35〜40%程度まで改善し
得るのである。
That is, as described above, according to the power MOS FET in the configuration of this embodiment, the value of the on-resistance R on is improved by about 35 to 40% as compared with that of the configuration of the conventional example. You can do it.

なお、前記実施例においては、耐圧500Vの素子構成につ
いて述べたが、500V以上の高耐圧素子であつても、それ
ぞれの耐圧度に対応してn-形エピタキシャル層での比抵
抗と厚さ,n形半導体層での比抵抗と厚さ,および浮き上
り領域のn-形エピタキシャル層への浮き上りの厚さなど
を適切に設定することで、同様な作用,効果が得られる
ものであり、また、この実施例では、第1導電形として
p形,第2導電形としてn形を用いる場合について述べ
たが、これらの導電形を逆にしても有効なことは勿論で
ある。
Incidentally, in the above-mentioned examples, the element structure having a breakdown voltage of 500 V was described, but even with a high breakdown voltage element having a breakdown voltage of 500 V or more, the specific resistance and thickness of the n − type epitaxial layer corresponding to each breakdown voltage, By appropriately setting the specific resistance and thickness of the n-type semiconductor layer, and the thickness of the lifted region in the lifted region to the n -type epitaxial layer, similar effects can be obtained. Further, in this embodiment, the case where the p-type is used as the first conductivity type and the n-type is used as the second conductivity type is described, but it goes without saying that reversing these conductivity types is also effective.

〔発明の効果〕〔The invention's effect〕

以上詳述したように、この発明に係る電界効果型半導体
装置は、Pがドープされたn+形の基板と、この基板との
接合面を介して配設されたn−形のエピタキシャル層
と、このエピタキシャル層の接合面内に形成され、基板
とエピタキシャル層との間に緩やかな不純物濃度分布を
あたえるための浮き上がり領域と、エピタキシャル層の
主表面に選択的に対向して形成され、その中央部である
第1領域部分とこの第1領域部分の周縁に設けられ底部
までの深さが第1領域部分よりも浅い第2領域部分とか
らなるp形のベース領域と、この各ベース領域の表面に
選択的に形成されたn形のソース領域と、この各ソース
領域とエピタキシャル層とに挟まれる第2領域部分の表
面上にゲート絶縁膜を介して形成されたゲート電極と、
各ベース領域の第1領域部分から前記ソース領域に跨っ
て形成されたソース電極と、基板に形成されたドレイン
電極とを備えた、また、各ベース領域の互いに対向する
第2領域部分間であってエピタキシャル層の表面内にn
形の半導体層をさらに形成すると共にゲート電極がソー
ス領域と半導体層とに挟まれる第2領域部分の表面上に
ゲート絶縁膜を介して形成されたから、素子構成でのオ
ン抵抗Ronに最も大きく影響するエピタキシャル層の層
厚を十分に薄くできて、このオン抵抗Ronを従来例に比
較して低減させ得るのであり、また、各ベース層間に挟
まれる半導体層を比較的低抵抗にしているために、これ
らの各ベース層間の間隔Lpを短くしても、その抵抗Rj
低減できると共に、MOSユニットセル自体の密度を高め
得て、チャネル領域の抵抗Rchをも低減でき、さらに、
この素子構成でも耐圧についても、高電圧を印加させた
ときに延びる空乏層の電界が、接合部分での不純物濃度
分布の緩るやかな傾斜によつて緩和されるため、たとえ
エピタキシャル層の層厚を薄くさせても、その阻止電圧
VBが損なわれる惧れはなく、これらの結果として、オン
抵抗が低くて素子耐圧の高いパワーMOS FETを得ること
ができ、しかも、構造的にも比較的簡単で容易に実施で
きるなどの優れた特長を有するものである。
As described above in detail, the field-effect-type semiconductor device according to the present invention includes an n + -type substrate doped with P, and an n -type epitaxial layer provided via a bonding surface with the substrate. , A floating region formed in the junction surface of this epitaxial layer and selectively facing the main surface of the epitaxial layer and a raised region for giving a gentle impurity concentration distribution between the substrate and the epitaxial layer, and its center A p-type base region including a first region portion that is a portion and a second region portion that is provided on the periphery of the first region portion and has a depth to the bottom that is shallower than the first region portion; An n-type source region selectively formed on the surface, and a gate electrode formed on the surface of a second region portion sandwiched between each source region and the epitaxial layer via a gate insulating film,
The base electrode is formed between the first region portion of each base region and the source region, and the drain electrode is formed on the substrate, and is between the mutually opposing second region portions of each base region. N within the surface of the epitaxial layer
Since the gate electrode is formed via a gate insulating film on the surface of the second region portion sandwiched between the source region and the semiconductor layer with further forming a semiconductor layer in the form, the largest on-resistance R on in the device structure The on-resistance R on can be reduced as compared with the conventional example by making the layer thickness of the affected epitaxial layer sufficiently thin, and the semiconductor layer sandwiched between the base layers has a relatively low resistance. Therefore, even if the distance L p between these base layers is shortened, the resistance R j can be reduced, the density of the MOS unit cells themselves can be increased, and the resistance R ch in the channel region can be reduced. ,
In both the element structure and the breakdown voltage, the electric field of the depletion layer that extends when a high voltage is applied is relaxed by the gentle slope of the impurity concentration distribution at the junction, so The blocking voltage
V B is not likely to be impaired, and as a result, it is possible to obtain a power MOS FET with low on-resistance and high element breakdown voltage, and it is also structurally relatively simple and easy to implement. It has the following features.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明装置の一実施例を適用したパワーMOS
FETの概要構成を模式的に示す断面図であり、また、第
2図は従来例での同上パワーMOS FETの概要構成を模式
的に示す断面図である。 11……n+形基板、12……浮き上り領域、22……n-形エピ
タキシャル層、23……p形ベース層、24……n+形ソース
層、25……チャネル領域、26……ゲート絶縁膜、27……
ゲート電極、28……ソース電極、29……ドレイン電極、
30……n形半導体層。
FIG. 1 shows a power MOS to which an embodiment of the device of the present invention is applied.
FIG. 2 is a cross-sectional view schematically showing the general structure of the FET, and FIG. 2 is a cross-sectional view schematically showing the general structure of the same power MOS FET as the conventional example. 11 …… n + type substrate, 12 …… floating region, 22 …… n − type epitaxial layer, 23 …… p type base layer, 24 …… n + type source layer, 25 …… channel region, 26 …… Gate insulating film, 27 ……
Gate electrode, 28 ... Source electrode, 29 ... Drain electrode,
30 ... n-type semiconductor layer.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】Pがドープされたn+形の基板と、 この基板との接合面を介して配設されたn-形のエピタキ
シャル層と、 このエピタキシャル層の上記接合面内に形成され、前記
基板と前記エピタキシャル層との間に緩やかな不純物濃
度分布をあたえるための浮き上がり領域と、 前記エピタキシャル層の主表面に選択的に対向して形成
され、その中央部である第1領域部分とこの第1領域部
分の周縁に設けられ底部までの深さが前記第1領域部分
よりも浅い第2領域部分とからなるp形のベース領域
と、 この各ベース領域の表面に選択的に形成されたn形のソ
ース領域と、 この各ソース領域と前記エピタキシャル層とに挟まれる
前記第2領域部分の表面上にゲート絶縁膜を介して形成
されたゲート電極と、 前記各ベース領域の第1領域部分から前記ソース領域に
跨って形成されたソース電極と 前記基板に形成されたドレイン電極と を備えた電界効果型半導体装置。
1. An n + -type substrate doped with P, an n -type epitaxial layer disposed via a bonding surface of the substrate, and an n -type epitaxial layer formed in the bonding surface of the epitaxial layer, A floating region for giving a gentle impurity concentration distribution between the substrate and the epitaxial layer, and a first region portion which is formed so as to selectively face the main surface of the epitaxial layer and is a central portion thereof. A p-type base region, which is provided on the periphery of the first region portion and includes a second region portion having a depth to the bottom that is shallower than the first region portion, and selectively formed on the surface of each base region. an n-type source region, a gate electrode formed on the surface of the second region portion sandwiched between each source region and the epitaxial layer via a gate insulating film, and a first region portion of each base region From Serial field effect semiconductor device having a source electrode formed over the source region and a drain electrode formed on the substrate.
【請求項2】各ベース領域の互いに対向する前記第2領
域部分間であって前記エピタキシャル層の表面内にn形
の半導体層をさらに形成すると共にゲート電極が前記ソ
ース領域と前記半導体層とに挟まれる前記第2領域部分
の表面上にゲート絶縁膜を介して形成されたことを特徴
とする特許請求の範囲第1項記載の電界効果型半導体装
置。
2. An n-type semiconductor layer is further formed in the surface of the epitaxial layer between the second region portions facing each other in each base region, and a gate electrode is formed in the source region and the semiconductor layer. The field-effect semiconductor device according to claim 1, wherein the field-effect semiconductor device is formed on the surface of the sandwiched second region via a gate insulating film.
JP62241839A 1987-09-24 1987-09-24 Field effect semiconductor device Expired - Lifetime JPH0734470B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP62241839A JPH0734470B2 (en) 1987-09-24 1987-09-24 Field effect semiconductor device
DE3851815T DE3851815T2 (en) 1987-09-24 1988-07-20 Field effect transistor and its manufacturing method.
EP88111722A EP0308612B1 (en) 1987-09-24 1988-07-20 Field effect transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62241839A JPH0734470B2 (en) 1987-09-24 1987-09-24 Field effect semiconductor device

Publications (2)

Publication Number Publication Date
JPS6482565A JPS6482565A (en) 1989-03-28
JPH0734470B2 true JPH0734470B2 (en) 1995-04-12

Family

ID=17080267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62241839A Expired - Lifetime JPH0734470B2 (en) 1987-09-24 1987-09-24 Field effect semiconductor device

Country Status (1)

Country Link
JP (1) JPH0734470B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160407A (en) * 1991-12-09 1993-06-25 Nippondenso Co Ltd Vertical insulating gate type semiconductor device and manufacture thereof
JP3918209B2 (en) 1996-09-11 2007-05-23 株式会社デンソー Insulated gate bipolar transistor and manufacturing method thereof
CN101501859B (en) * 2006-08-17 2011-05-25 克里公司 High power insulated gate bipolar transistors

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742164A (en) * 1980-08-27 1982-03-09 Hitachi Ltd Semiconductor device
JPS57153469A (en) * 1981-03-18 1982-09-22 Toshiba Corp Insulated gate type field effect transistor

Also Published As

Publication number Publication date
JPS6482565A (en) 1989-03-28

Similar Documents

Publication Publication Date Title
JP2622378B2 (en) Method for manufacturing high power MOSFET device
JP3108439B2 (en) Trench field-effect transistor with reduced punch-through and low RDSon
JP2585331B2 (en) High breakdown voltage planar element
US5016066A (en) Vertical power MOSFET having high withstand voltage and high switching speed
US5474943A (en) Method for fabricating a short channel trenched DMOS transistor
US6091086A (en) Reverse blocking IGBT
US4769685A (en) Recessed-gate junction-MOS field effect transistor
JPH0370387B2 (en)
US4729001A (en) Short-channel field effect transistor
JPH0330310B2 (en)
JPH0336311B2 (en)
JP2001077363A (en) Silicon carbide semiconductor device and its manufacturing method
JP2000504879A (en) Semiconductor device controllable by electric field effect
US4952991A (en) Vertical field-effect transistor having a high breakdown voltage and a small on-resistance
GB1396054A (en) Field-effect gridistor-type transistor structure
EP0071335B1 (en) Field effect transistor
JP2000077663A (en) Field-effect semiconductor device
JPH1197689A (en) Semiconductor device
JPH07101737B2 (en) Method for manufacturing semiconductor device
JPH0888357A (en) Lateral igbt
JPS62155567A (en) Manufacture of insulated gate semiconductor device
JPH0734470B2 (en) Field effect semiconductor device
JP2003101021A (en) Field-effect transistor and method of manufacturing the same
JPS6152591B2 (en)
JPH09162422A (en) Planar semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080412

Year of fee payment: 13