JPH0734172A - Magnesium alloy for die casting - Google Patents

Magnesium alloy for die casting

Info

Publication number
JPH0734172A
JPH0734172A JP18256493A JP18256493A JPH0734172A JP H0734172 A JPH0734172 A JP H0734172A JP 18256493 A JP18256493 A JP 18256493A JP 18256493 A JP18256493 A JP 18256493A JP H0734172 A JPH0734172 A JP H0734172A
Authority
JP
Japan
Prior art keywords
die casting
strength
magnesium alloy
creep resistance
axial force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18256493A
Other languages
Japanese (ja)
Inventor
Tadashi Takeuchi
正 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP18256493A priority Critical patent/JPH0734172A/en
Publication of JPH0734172A publication Critical patent/JPH0734172A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a magnesium alloy for die casting excellent in creep resistance. CONSTITUTION:This magnesium alloy is a one contg., instead of the conventional Al and Zn, by weight, 0.5 to 2.0% Ag, 0.5 to 3.0% Ca and 0.2 to 0.7% Mn, and the balance Mg with impurity elements. Ag increases its proof stress and strength by solid solution strengthening and contributes to the improvement of the force retaining rate of a bolt shank, Ca crystallized out Mg-Ca series compounds on the grain boundaries and improves its creep resistance and Mn increases its proof stress and strength by solid solution strengthening or precipitation strengthening and improves the force retaining rate of a bolt shank. In this way, in this magnesium alloy for die casting, creep resistance can remarkably be improved compared with that of the conventional magnesium alloy for die casting and proof stress and strength can furthermore be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は耐クリープ性に優れたダ
イカスト用マグネシウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnesium alloy for die casting having excellent creep resistance.

【0002】[0002]

【従来の技術】従来のマグネシウム合金のうちMg−A
l系合金(ASTM規格−AM60B、AM50A、A
M20A等)は、2〜12%のAlを含み、これに少量
のMnが添加されたもので、Mg側はα−Mg固溶体と
β−Mg17Al12化合物の共晶系で、溶体化よにって靱
性が向上し、時効熱処理によってMg17Al12の中間相
の析出による時効硬化が生ずる。
2. Description of the Related Art Among conventional magnesium alloys, Mg-A
l-based alloy (ASTM standard-AM60B, AM50A, A
M20A, etc.) contains 2 to 12% of Al, to which a small amount of Mn is added. On the Mg side, an eutectic system of α-Mg solid solution and β-Mg 17 Al 12 compound is used. As a result, the toughness is improved, and age hardening occurs due to precipitation of the intermediate phase of Mg 17 Al 12 by the aging heat treatment.

【0003】また、Alを5〜10%、Znを1〜3%
含有するMg−Al−Zn系(ASTM規格−AZ91
D等)では、Mg側に広いα−固溶体領域があり、Mg
−Al−Zn系化合物が晶出する。鋳造のままでも強靱
で耐食性に優れているが、時効熱処理によってさらに機
械的性質が改善される。
Further, Al is 5 to 10% and Zn is 1 to 3%.
Mg-Al-Zn system contained (ASTM standard-AZ91
D) has a large α-solid solution region on the Mg side,
The -Al-Zn compound crystallizes out. As-cast, it is tough and has excellent corrosion resistance, but its aging heat treatment further improves its mechanical properties.

【0004】Mg−Zn系合金においては、Mgに4%
のZnを添加した場合に、鋳造のままで最高の強度がえ
られるが、ダイカストすると鋳造割れを生じるので、ダ
イカストでは使用されない。
In the Mg-Zn alloy, the Mg content is 4%.
When Zn is added, the highest strength can be obtained as it is in the casting, but it is not used in die casting because it causes casting cracks when die casting.

【0005】[0005]

【発明が解決しようとする課題】前記マグネシウム合金
のうち、Mg−Al系あるいはMg−Al−Zn系の合
金は、コストも安く、ダイカストが可能であるので、比
較的低温度で使用される部材に採用されつつあるが、M
g−Al系化合物は融点が低く、高温で不安定であるた
め、高温での強度低下、耐クリープ性の低下が大きい。
Among the above-mentioned magnesium alloys, Mg-Al-based or Mg-Al-Zn-based alloys have low cost and can be die-casted, so that they are members used at relatively low temperatures. Is being adopted by M
Since the g-Al-based compound has a low melting point and is unstable at high temperatures, the strength and creep resistance at high temperatures are greatly reduced.

【0006】例えば、AZ91Dは鋳造性、耐食性、室
温〜150℃までの強度に優れるが、100℃以上の耐
クリープ性に劣る。高温クリープ特性が低いと、例えば
ボルト締結部が使用中温度上昇した場合に、締付力(軸
力)が低下するという問題を生ずる。特にダイカスト材
料の場合にこの傾向は顕著となる。
For example, AZ91D is excellent in castability, corrosion resistance and strength from room temperature to 150 ° C, but is poor in creep resistance at 100 ° C or higher. If the high temperature creep property is low, for example, when the temperature of the bolt fastening portion rises during use, the tightening force (axial force) decreases. This tendency is particularly remarkable in the case of die casting materials.

【0007】図6はAZ91DとAM60Mの150℃
で100時間保持後の軸力保持率を示すものであるが、
いずれも数%以下である。なお、軸力保持率テスト方法
を図7に示す。Mg試験片を所定の面圧でボルトで締結
し、所定の炉内に所定時間保持をしてその前後のボルト
締結長さの変化から次式により計算するものである。 軸力保持率=(l2 −l0 )/(l1 −l0 )×100
(%) ここで、 l0 ;ボルト締結前長さ(20℃) l1 ;ボルト締結直後長さ(20℃) l2 ;炉内保持後長さ(20℃)
FIG. 6 shows AZ91D and AM60M at 150 ° C.
Shows the axial force retention rate after being retained for 100 hours.
Both are below a few percent. The axial force retention rate test method is shown in FIG. The Mg test piece is fastened with a bolt at a predetermined surface pressure, held in a predetermined furnace for a predetermined time, and calculated from the change in the bolt fastening length before and after that by the following formula. Axial force retention rate = (l 2 −l 0 ) / (l 1 −l 0 ) × 100
(%) Where, l 0 ; length before bolt fastening (20 ° C) l 1 ; length immediately after bolt fastening (20 ° C) l 2 ; length after holding in furnace (20 ° C)

【0008】このように、従来のダイカスト用Mg基合
金は、添加元素としてAlを用いている。Al添加はM
gの強度を向上させ、また良好な鋳造性を示すが、添加
量1%をピークとして耐クリープ性は悪化する。また、
Al以外の添加元素としてZnがあるが、Znは添加量
が増加するに従い、耐クリープ性が悪化し、また2%を
越えるとダイカストでは鋳造割れし易くなる。
As described above, the conventional Mg-based alloy for die casting uses Al as an additional element. Al addition is M
Although the strength of g is improved and good castability is exhibited, the creep resistance deteriorates with the addition amount of 1% as a peak. Also,
Although Zn is an additional element other than Al, the creep resistance deteriorates as the added amount of Zn increases, and if it exceeds 2%, die cracking easily occurs in casting cracks.

【0009】本発明は従来のダイカスト用マグネシウム
合金が耐クリープ性に劣るという前記のごとき問題点を
解決するためになされたものであって、従来のダイカス
ト用マグネシウム合金の有する強度、耐食性を維持しつ
つ、耐クリープ性に優れ良好な軸力保持率を示すダイカ
スト用マグネシウム合金を提供することを目的とする。
The present invention has been made to solve the above-mentioned problem that the conventional magnesium alloy for die casting is poor in creep resistance, and maintains the strength and corrosion resistance of the conventional magnesium alloy for die casting. At the same time, it is an object of the present invention to provide a magnesium alloy for die casting which has excellent creep resistance and a good axial force retention.

【0010】[0010]

【課題を解決するための手段】前記問題点を解決するた
めに、発明者等は耐クリープ性を悪化させるAl、Zn
を添加せずに、他の合金元素の添加の種々検討を行っ
た。その結果、Ag、Ca、Mnの添加により強度およ
び耐力を維持しつつ、良好な耐クリープ性が得られるこ
とをを見出して本発明を完成した。
In order to solve the above problems, the inventors of the present invention have made Al, Zn which deteriorates the creep resistance.
Various studies were conducted on the addition of other alloying elements without adding. As a result, they have found that good creep resistance can be obtained while maintaining strength and yield strength by adding Ag, Ca, and Mn, and completed the present invention.

【0011】本発明の耐クリープ性に優れたダイカスト
用マグネシウム合金は、重量比で、Ag;0.5〜2.
0%、Ca;0.5〜3.0%、Mn;0.2〜0.7
%を含有し、残部がMgおよび不純物元素からなること
を要旨とする。
The magnesium alloy for die casting having excellent creep resistance according to the present invention has a weight ratio of Ag: 0.5-2.
0%, Ca; 0.5 to 3.0%, Mn; 0.2 to 0.7
%, With the balance being Mg and impurity elements.

【0012】[0012]

【作用】本発明合金は、耐クリープ性を悪化させるA
l、Znを添加せずに、Ag、Ca、Mnを添加するこ
とで、耐クリープ性を向上させることができた。また、
Mnの添加で、微量の存在でも耐食性を悪化させるFe
分の影響を低減し、耐食性を向上させることもできる。
The alloy of the present invention has a deterioration in creep resistance A
Creep resistance could be improved by adding Ag, Ca, and Mn without adding 1 and Zn. Also,
Fe that deteriorates the corrosion resistance by the addition of Mn even in the presence of a trace amount
It is also possible to reduce the influence of minute and improve the corrosion resistance.

【0013】AgはMgα相中に固溶し、固溶強化によ
り耐力、強度を高める役割をする。ボルト軸力保持率の
向上に対しては、温度上昇時にボルトとMgの熱膨張差
により生じるMg側への圧縮増加に耐えるために耐力の
向上として寄与する。前記効果を得るためには少なくと
も0.5%以上含有させる必要がある。しかし2.0%
を越えて含有させると耐食性が劣化するので上限を2.
0%とした。
Ag forms a solid solution in the Mgα phase, and plays a role of enhancing the yield strength and strength by solid solution strengthening. For the improvement of the bolt axial force retention, it contributes to the improvement of the yield strength because it withstands the increase in compression to the Mg side caused by the difference in thermal expansion between the bolt and Mg when the temperature rises. In order to obtain the above effect, it is necessary to contain at least 0.5% or more. But 2.0%
If the content is exceeded, the corrosion resistance will deteriorate, so the upper limit is 2.
It was set to 0%.

【0014】Caは粒界にMg−Ca系化合物として晶
出し、粒界での拡散を抑えて耐クリープ性を向上させ
る。ボルト軸力保持率向上に対しては、長時間高温にさ
らされても圧縮クリープを抑制する効果を持つ。また、
わずかだがMgα相中に固溶し、耐力向上の効果もあ
る。前記効果を得るためには少なくとも0.5%以上含
有させる必要がある。しかし、3.0%を越えて含有さ
せると強度が低下するので上限を3.0%とした。
Ca crystallizes in the grain boundaries as a Mg-Ca compound and suppresses diffusion at the grain boundaries to improve creep resistance. With respect to the improvement of the bolt axial force retention rate, it has the effect of suppressing compression creep even when exposed to high temperatures for a long time. Also,
Although it is a small amount, it forms a solid solution in the Mgα phase and also has the effect of improving the yield strength. In order to obtain the above effect, it is necessary to contain at least 0.5% or more. However, if the content exceeds 3.0%, the strength decreases, so the upper limit was made 3.0%.

【0015】MnはMgα相中に固溶し、Agと同じく
固溶強化によるか、微細なMg−Mn系化合物として析
出強化することで、耐力、強度を高める役割をする。ボ
ルト軸力保持率の向上に対しては、Agと同様である。
前記効果を得るためには少なくとも0.2%以上含有さ
せる必要がある。しかし、ダイカストマシンでの使用溶
湯温度上限の700℃で溶解可能なMn量は0.72%
であったので、上限を0.7%とした。
Mn forms a solid solution in the Mgα phase and strengthens the yield strength and strength by solid solution strengthening like Ag or by precipitation strengthening as a fine Mg-Mn compound. The improvement of the bolt axial force retention rate is similar to Ag.
In order to obtain the above effect, it is necessary to contain at least 0.2% or more. However, the amount of Mn that can be melted at 700 ° C, which is the upper limit of the molten metal temperature used in the die casting machine, is 0.72%.
Therefore, the upper limit was set to 0.7%.

【0016】[0016]

【実施例】本発明の実施例を比較例および従来例と共に
説明し本発明の効果を明らかにする。 (実施例1) Ag添加の検討 Mg−2.2%Ca−0.30%MnにAgを順次添加
した場合の引張強度特性を検討し、結果を図1に示し
た。図1に示したように、Agは0.5%の添加で強度
・0.2%耐力共に向上し,それ以上の添加では漸次向
上していくことが判明した。しかしながら、Agの添加
と腐食速度の関係を示す図2から明らかなように、Ag
の添加が2%を越えると耐食性が著しく劣化する。従っ
て、実用性を考えてAg添加量は0.5〜2.0%に限
定することが適切であることが判明した。
EXAMPLES Examples of the present invention will be described together with comparative examples and conventional examples to clarify the effects of the present invention. (Example 1) Examination of addition of Ag The tensile strength characteristics when Ag was sequentially added to Mg-2.2% Ca-0.30% Mn were examined, and the results are shown in FIG. As shown in FIG. 1, it was found that Ag was improved in both strength and 0.2% proof stress by adding 0.5%, and was gradually improved by adding more. However, as is clear from FIG. 2 showing the relationship between the addition of Ag and the corrosion rate, Ag
If the addition of Al exceeds 2%, the corrosion resistance deteriorates significantly. Therefore, it was found that it is appropriate to limit the Ag addition amount to 0.5 to 2.0% in consideration of practicality.

【0017】(実施例2) Ca添加の検討 Mg−1.9%Ag−0.30%MnにCaを添加した
場合のボルト軸力保持率を測定し、得られた結果を図3
に示した。図3から明らかなように、Caは0.5%の
添加で軸力保持率が急激に増加し、1%以上では80%
以上の良好な軸力保持率を示した。一方、図4はCa添
加量と引張強度の関係を示す線図であるが、Ca添加量
が3%を越えると、強度が低下傾向を示すことが判明し
た。従って、Ca添加量は0.5〜3.0%に限定する
ことが適切であることが判明した。
(Example 2) Examination of Ca addition The bolt axial force retention rate when Ca was added to Mg-1.9% Ag-0.30% Mn was measured, and the obtained results are shown in FIG.
It was shown to. As is clear from Fig. 3, the addition of 0.5% of Ca drastically increases the axial force retention rate, and when 1% or more, the axial force retention rate is
The above-mentioned good axial force retention rate was shown. On the other hand, FIG. 4 is a diagram showing the relationship between the added amount of Ca and the tensile strength. It was found that when the added amount of Ca exceeds 3%, the strength tends to decrease. Therefore, it was found that it is appropriate to limit the amount of Ca added to 0.5 to 3.0%.

【0018】(実施例3) Mn添加量の検討 Mg−1.5%Ag−2.0%CaにMnを添加した場
合のボルト軸力保持力を測定し、得られた結果を図5に
示した。図5に示したように、Mnは0.2%の添加で
軸力保持率に著しい効果があるが、それ以上添加しても
その効果は飽和した。また、溶湯への溶解限は700℃
で0.72%であった。ダイカストでの溶湯温度が70
0℃を越えるとダイカストマシンの射出系の熱損傷が激
しく、実生産には不向きである。従って、Mnの添加量
は0.2〜0.7%に限定することが適切であることが
判明した。
Example 3 Examination of Mn Addition Amount of bolt axial force when Mn was added to Mg-1.5% Ag-2.0% Ca was measured, and the obtained results are shown in FIG. Indicated. As shown in FIG. 5, the addition of 0.2% of Mn had a remarkable effect on the axial force retention rate, but the effect was saturated even if Mn was added more. Also, the melting limit in the molten metal is 700 ° C.
Was 0.72%. Die casting temperature is 70
If the temperature exceeds 0 ° C, the injection system of the die casting machine is severely damaged by heat and is not suitable for actual production. Therefore, it was proved appropriate to limit the amount of Mn added to 0.2 to 0.7%.

【0019】(実施例4)本発明の組成範囲内のMg−
1.5%Ag−1.1%Ca−0.32%Mn合金を溶
製し、溶湯温度690±10℃、金型温度75℃〜11
0℃、鋳造圧力830kgf/cm2でコールドチャン
バーダイカストマシンを使って、テストピースを作製し
た。得られたテストピースについて、ボルト締結部の軸
力保持率試験、引張試験を行った。結果を表1に示す。
なお、比較のために、従来材であるAZ91D材を本発
明の実施例と同一条件にてダイカスト鋳造してテストピ
ースを作製し、同様の試験を行った。結果は表1に併せ
て示した。
(Example 4) Mg-within the composition range of the present invention
A 1.5% Ag-1.1% Ca-0.32% Mn alloy is melted, the melt temperature is 690 ± 10 ° C, and the mold temperature is 75 ° C to 11 ° C.
A test piece was prepared using a cold chamber die casting machine at 0 ° C. and a casting pressure of 830 kgf / cm 2 . With respect to the obtained test piece, an axial force retention test and a tensile test of a bolt fastening portion were performed. The results are shown in Table 1.
For comparison, a conventional material, AZ91D material, was die cast under the same conditions as those of the examples of the present invention to prepare a test piece, and the same test was conducted. The results are also shown in Table 1.

【0020】[0020]

【表1】 [Table 1]

【0021】表1に示したように、従来合金であるAZ
91Dはボルト締結部の軸力保持率はわずかに3%であ
ったのに対して、本発明の実施例のボルト締結部の軸力
保持率はは82%であって、耐クリープ性において著し
くすぐれていることが確認された。また、引張強度につ
いてもAZ91Dが249MPaであるのに対して、本
発明例は260MPaであって引張強度においても優れ
ていることが判明した。
As shown in Table 1, the conventional alloy AZ
In 91D, the axial force retention rate of the bolt fastening portion was only 3%, whereas the axial force retention rate of the bolt fastening portion of the embodiment of the present invention was 82%, which is remarkable in creep resistance. It was confirmed that it was excellent. It was also found that the tensile strength of AZ91D was 249 MPa, whereas the tensile strength of the inventive example was 260 MPa, which was also excellent.

【0022】[0022]

【発明の効果】本発明のダイカスト用マグネシウム合金
は、従来のAlやZnに代わって、重量比で、Ag;
0.5〜2.0%、Ca;0.5〜3.0%、Mn;
0.2〜0.7%を含有し、残部がMgおよび不純物元
素からなることを特徴とするものであって、Agは固溶
強化により耐力、強度を高めると共にボルト軸力保持率
向上に寄与し、Caは粒界にMg−Ca系化合物を晶出
して耐クリープ性を向上させ、Mnは固溶強化または析
出強化することで耐力、強度を高めると共にボルト軸力
保持率を向上させるので、本ダイカスト用マグネシウム
合金は従来のダイカスト用マグネシウム合金に比べての
耐クリープ性が著しく向上すると共に、耐力、強度をも
向上することができる。
INDUSTRIAL APPLICABILITY The magnesium alloy for die casting according to the present invention has a weight ratio of Ag in place of conventional Al or Zn;
0.5-2.0%, Ca; 0.5-3.0%, Mn;
It is characterized by containing 0.2 to 0.7%, and the balance being Mg and impurity elements. Ag contributes to the improvement of proof strength and strength by solid solution strengthening and at the same time, improvement of bolt axial force retention rate. However, Ca crystallizes the Mg-Ca-based compound in the grain boundary to improve the creep resistance, and Mn improves the yield strength and strength by solid solution strengthening or precipitation strengthening and improves the bolt axial force retention rate. The present magnesium alloy for die casting has significantly improved creep resistance as compared with conventional magnesium alloys for die casting, and can also have improved yield strength and strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】Mg−Ca−Mn系合金におけるAg含有量と
引張強度および0.2%耐力の関係を示す線図である。
FIG. 1 is a diagram showing the relationship between Ag content, tensile strength and 0.2% proof stress in a Mg—Ca—Mn alloy.

【図2】Mg−Ca−Mn系合金におけるAg含有量と
腐食速度の関係を示す線図である。
FIG. 2 is a diagram showing the relationship between Ag content and corrosion rate in a Mg—Ca—Mn alloy.

【図3】Mg−Ag−Mn系合金におけるCa含有量と
締結ボルト軸力保持率の関係を示す線図である。
FIG. 3 is a diagram showing a relationship between a Ca content and a fastening bolt axial force retention rate in a Mg-Ag-Mn alloy.

【図4】Mg−Ag−Mn系合金におけるCa含有量と
引張強度の関係を示す線図である。
FIG. 4 is a diagram showing a relationship between Ca content and tensile strength in a Mg—Ag—Mn alloy.

【図5】Mg−Ag−Ca系合金におけるMn含有量と
締結ボルト軸力保持率の関係を示す線図である。
FIG. 5 is a graph showing the relationship between the Mn content in a Mg-Ag-Ca alloy and the fastening bolt axial force retention rate.

【図6】従来マグネシウム合金AZ91DおよびAM6
0Bダイカスト材の締結ボルト軸力保持率を示す線図で
ある。
FIG. 6 Conventional magnesium alloys AZ91D and AM6
It is a diagram showing a fastening bolt axial force retention rate of 0B die-cast material.

【図7】軸力保持率テスト法を説明する側面図である。FIG. 7 is a side view illustrating an axial force retention rate test method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量比で、Ag;0.5〜2.0%、C
a;0.5〜3.0%、Mn;0.2〜0.7%を含有
し、残部がMgおよび不純物元素からなることを特徴と
する耐クリープ性に優れたダイカスト用マグネシウム合
金。
1. A weight ratio of Ag: 0.5 to 2.0%, C
A magnesium alloy for die casting having excellent creep resistance, characterized by containing a: 0.5 to 3.0%, Mn: 0.2 to 0.7%, and the balance being Mg and an impurity element.
JP18256493A 1993-07-23 1993-07-23 Magnesium alloy for die casting Pending JPH0734172A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18256493A JPH0734172A (en) 1993-07-23 1993-07-23 Magnesium alloy for die casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18256493A JPH0734172A (en) 1993-07-23 1993-07-23 Magnesium alloy for die casting

Publications (1)

Publication Number Publication Date
JPH0734172A true JPH0734172A (en) 1995-02-03

Family

ID=16120485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18256493A Pending JPH0734172A (en) 1993-07-23 1993-07-23 Magnesium alloy for die casting

Country Status (1)

Country Link
JP (1) JPH0734172A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199258A1 (en) * 2017-04-26 2018-11-01 国立大学法人九州大学 Electrode, structure and method for manufacturing same, connection structure, and element in which said electrode is used

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018199258A1 (en) * 2017-04-26 2018-11-01 国立大学法人九州大学 Electrode, structure and method for manufacturing same, connection structure, and element in which said electrode is used

Similar Documents

Publication Publication Date Title
US5855697A (en) Magnesium alloy having superior elevated-temperature properties and die castability
JP3204572B2 (en) Heat resistant magnesium alloy
JP3592659B2 (en) Magnesium alloys and magnesium alloy members with excellent corrosion resistance
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
JP2001316753A (en) Magnesium alloy and magnesium alloy member excellent in corrosion resistance and heat resistance
JP2002327231A (en) Cast article of heat-resistant magnesium alloy, and manufacturing method therefor
JP2004162090A (en) Heat resistant magnesium alloy
US20050000604A1 (en) Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
JP4202298B2 (en) Heat-resistant magnesium alloy for die casting and die-cast products of the same alloy
JPH0317890B2 (en)
CA2124512C (en) Heat resistant magnesium alloy
JP4526769B2 (en) Magnesium alloy
JPH07331375A (en) Heat resistant magnesium alloy for casting
JPH09296245A (en) Aluminum alloy for casting
JP3865430B2 (en) Heat and wear resistant magnesium alloy
JPH0734172A (en) Magnesium alloy for die casting
JP3164252B2 (en) Manufacturing method of heat-resistant magnesium alloy
JPH0448856B2 (en)
JP3611759B2 (en) Magnesium alloy and magnesium alloy heat-resistant member with excellent heat resistance and castability
JP3107267B2 (en) Heat resistant magnesium alloy
JPH05171332A (en) Mg-al alloy die casting member excellent in creep resistance and its manufacture
KR20070096477A (en) Magnesium alloy having heat resisting property
JPS6024169B2 (en) magnesium alloy
JPH06172909A (en) High strength cast mg alloy
JP3254848B2 (en) Magnesium alloy for pressure casting with low crack sensitivity