JPH0734131A - Induction heating method for slab - Google Patents

Induction heating method for slab

Info

Publication number
JPH0734131A
JPH0734131A JP5182963A JP18296393A JPH0734131A JP H0734131 A JPH0734131 A JP H0734131A JP 5182963 A JP5182963 A JP 5182963A JP 18296393 A JP18296393 A JP 18296393A JP H0734131 A JPH0734131 A JP H0734131A
Authority
JP
Japan
Prior art keywords
slab
induction heating
slabs
furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5182963A
Other languages
Japanese (ja)
Inventor
Toshiro Fujiyama
寿郎 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP5182963A priority Critical patent/JPH0734131A/en
Publication of JPH0734131A publication Critical patent/JPH0734131A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Control Of Heat Treatment Processes (AREA)

Abstract

PURPOSE:To heat steel slabs for hot rolling uniformly over the entire part by inductively heating the parts overheated in a gas heating furnace while cooling these part with a cooling gas at the time of heating the steel slabs in the gas heating furnace and an induction heating furnace. CONSTITUTION:After the plural steel slabs 1 are heated in the gas heating furnace 6, the slabs are transferred toward the induction heating furnace 2 by the table for slab transfer. The surface temp. distributions of the slabs 1 are measured by a slab surface thermometer group during the course of the transfer and the overheated parts of the slabs 1 are detected. The slabs 1 are transferred from the table 5 for transfer into the induction heating furnace 2 by a slab transfer machine 8 and are energized and reheated by an induction coil 4. The overheated parts of the slabs 1 detected by the thermometer group 7 are inductively heated while these parts are cooled by blowing the cooling gas, such as gaseous nitrogen of <=5% oxygen content thereto from a piping 3. The temp. distributions of the surfaces of the slabs 1 are measured by the thermometer placed in the furnace even during the induction heating and the cooling gas is blown to the high-temp. parts, by which the steel slabs heated to the uniform temp. distribution are obtd. The slabs are then hot rolled by a roughing mill 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】熱間圧延直前における方向性電磁
鋼板用スラブ等、鋼材の加熱方法に関し、特に誘導加熱
炉(通称、I炉という。これは、スラブを厚み方向を底
部とし、いわゆるI形状で炉内に静置、加熱するための
呼び名で、炉内ではスラブ幅方向が高さに相当する)を
用いての加熱技術に関する。
TECHNICAL FIELD The present invention relates to a method for heating steel products such as slabs for grain-oriented electrical steel sheets immediately before hot rolling, and particularly, an induction heating furnace (commonly called an I furnace. It is a name for standing and heating in a furnace in a shape, and the slab width direction corresponds to the height in the furnace).

【0002】[0002]

【従来の技術】方向性電磁鋼板(以下、Grain O
rientedの略でGO材という)スラブは、熱間圧
延前に1350℃以上に加熱される。I炉でGOスラブ
を誘導加熱する理由は、スラブ組織を粗大化させずに、
インヒビター析出物を再固溶させるためである。もしI
炉内でGOスラブ内部に不均一加熱部が発生すると、イ
ンヒビターの再固溶不充分に起因する磁気特性不良(以
下「磁気不良」)、GO材の部分溶解による圧延トラブ
ル及び表面欠陥多発のトラブル等が発生するのである。
その対策として、従来より、I炉の誘導加熱用のコイル
を縦方向で複数段にわけ(図6)、各コイルへの投入電
力を調整して、GOスラブ幅方向温度の不均一を解消す
るようにしている。
2. Description of the Related Art Grained electrical steel sheets (hereinafter referred to as "Grain O")
The slab, which is an abbreviation of lented (GO material), is heated to 1350 ° C. or higher before hot rolling. The reason for induction heating the GO slab in the I furnace is that the slab structure is not coarsened,
This is for re-dissolving the inhibitor precipitate. If I
If a non-uniform heating part occurs inside the GO slab in the furnace, defective magnetic properties (hereinafter referred to as “magnetic defect”) due to insufficient re-solidification of the inhibitor, rolling trouble due to partial melting of the GO material, and troubles with frequent surface defects. And so on.
As a countermeasure, conventionally, the induction heating coil of the I furnace is divided into a plurality of stages in the vertical direction (Fig. 6), and the input power to each coil is adjusted to eliminate the non-uniformity of the temperature in the GO slab width direction. I am trying.

【0003】ところで、GOスラブの加熱は、ガス燃焼
式予熱炉で約1200℃前後にまずGOスラブを加熱
し、そこから抽出したGOスラブを誘導加熱炉に再挿入
し、さらに高温に加熱する。この誘導加熱に際し、従来
は特開昭51−22136号公報に開示されているよう
に、誘導加熱はスラブ中央部の磁束密度が高くなり、過
加熱されることから、過加熱する部分に冷却用ガスを吹
きつけつつ誘導加熱することが提案された。しかし、こ
の問題は、先述した誘導加熱コイルをI炉の高さ方向で
分割した構成とし、磁束密度を分割制御することによっ
てガス吹きしないでも解決できた。また、誘導コイル分
割方式の誘導加熱は、スラブ長手方向の温度分布が不均
一になる欠点もあった。この問題に対しては、特開平2
−11717号公報に記載されているように、炉長手方
向の数カ所に仕切壁を設けて炉内を仕切り、各部屋ごと
に流量を制御したガスを流しつつ、スラブの加熱を行っ
て均一化する方法が提案されている。
The heating of the GO slab is performed by first heating the GO slab in the gas combustion type preheating furnace at about 1200 ° C., reinserting the GO slab extracted from the GO slab into the induction heating furnace, and further heating it to a higher temperature. In the induction heating, as disclosed in Japanese Patent Laid-Open No. 51-22136, the induction heating increases the magnetic flux density in the central portion of the slab and causes overheating, so that the overheating portion is cooled. It was proposed to carry out induction heating while blowing gas. However, this problem could be solved without blowing gas by controlling the magnetic flux density by dividing the induction heating coil described above in the height direction of the I furnace. Further, the induction heating of the induction coil division method has a drawback that the temperature distribution in the longitudinal direction of the slab becomes uneven. To solve this problem, Japanese Patent Laid-Open No.
As described in No. 11717, partition walls are provided at several locations in the longitudinal direction of the furnace to partition the interior of the furnace, and a slab is heated and homogenized while flowing a gas whose flow rate is controlled in each room. A method has been proposed.

【0004】しかしながら、これら既存のスラブ温度の
制御方法は、いずれも誘導加熱中に生じる温度ムラを一
様に解消するものであって、スラブ長手方向及び幅方向
の局部的な加熱ムラは解消できない方法であった。その
理由は、誘導加熱においては、スラブの加熱中に生じる
温度ムラと誘導加熱炉装入時にすでにある温度ムラに起
因する温度ムラの2種類あるからである。従来より温度
ムラ解消対策の提案されているのは、この前者、スラブ
誘導加熱中の問題であった。さらに、誘導加熱中に生じ
るスラブの表面と内部との温度差は加熱後に保持時間を
おくことによって消去も可能である。
However, all of these existing slab temperature control methods uniformly eliminate the temperature unevenness that occurs during induction heating, and cannot eliminate local heating unevenness in the longitudinal and width directions of the slab. Was the way. The reason for this is that in induction heating, there are two types: temperature unevenness that occurs during heating of the slab and temperature unevenness that results from temperature unevenness that already exists when the induction heating furnace is charged. It has been the former problem, that is, the problem during slab induction heating, that has been proposed as a measure for eliminating temperature unevenness. Furthermore, the temperature difference between the surface and the inside of the slab that occurs during induction heating can be erased by setting a holding time after heating.

【0005】一方、後者の問題、すなわちガス燃焼方式
予熱炉のスラブ加熱で生じる温度ムラについてである
が、低温側は主として炉床スキッドとスラブとの接触部
が他部分と比較して昇温し難いことに起因して生じ、高
温側はバーナの燃焼フレーム近傍部位が優先的に昇温す
るため生じる。そして、この高温部分は、次の工程で誘
導加熱される際に持ち越され、他部分より一層高温とな
り(過加熱され)、スラブ表面の過剰酸化、スケールロ
ス増大の問題を招き、GO材の生産及び品質の両面にお
いてマイナスの影響を与えるのである。
On the other hand, regarding the latter problem, that is, the temperature unevenness caused by the heating of the slab in the gas combustion type preheating furnace, the contact portion between the hearth skid and the slab is heated higher than the other portions on the low temperature side. It occurs due to the difficulty, and the high temperature side occurs because the temperature near the combustion flame of the burner is preferentially increased. Then, this high-temperature part is carried over when induction heating is performed in the next step and becomes even hotter (overheated) than other parts, leading to problems such as excessive oxidation of the slab surface and increase of scale loss, and production of GO material. It also has a negative impact on both quality.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記後者の
問題を鑑み、スラブの誘導加熱炉への挿入前に生じてい
る過加熱部分を、誘導加熱炉内で消去せしめ、熱間圧延
前にスラブ全体の温度を均一にする方法の提案を目的と
する。
In view of the latter problem described above, the present invention eliminates the overheated portion generated before the slab is inserted into the induction heating furnace in the induction heating furnace before hot rolling. The purpose is to propose a method for making the temperature of the entire slab uniform.

【0007】[0007]

【課題を解決するための手段】発明者は、上記目的を達
成するため鋭意検討したが、I炉でのスラブの通常加熱
において、炉床や炉上のシールガスの配管破れた等のト
ラブル発生時に、シールガスが直接スラブに吹き付けら
れ、その部分が冷却された経験に着目した。本発明は、
その経験に基づきなされたもので、誘導加熱中のスラブ
過加熱部に冷却ガスを吹きつけつつ、局所的な冷却を行
うものである。すなわち、本発明は、スラブを予熱炉で
加熱した後、炉壁を縦横方向にわたり複数に区分けし、
各区分け部にガス吹出し口を配設した誘導加熱炉に挿入
して誘導加熱するにあたり、前記誘導加熱炉への挿入前
に、該スラブ表面の温度分布を測定し、前記予熱による
スラブの過加熱部を検知し、その過加熱部に近いガス吹
出し口から、冷却用ガスを吹付けつつ誘導加熱すること
を特徴とするスラブの誘導加熱方法である。さらに、効
果を確実にするため、本発明は、誘導加熱中にスラブ表
面の温度分布を測定して高温部を検知し、その高温部に
近いガス吹出し口から冷却用ガスを吹付けつつ誘導加熱
を続行することを特徴とする請求項1記載のスラブの誘
導加熱方法でもある。
Means for Solving the Problems The inventor has made extensive studies in order to achieve the above object. However, in the normal heating of the slab in the I furnace, when a trouble such as a broken pipe of the seal gas on the hearth or the furnace occurs. We focused on the experience that the seal gas was directly blown onto the slab and that part was cooled. The present invention is
This was done based on that experience, and local cooling is performed while blowing a cooling gas to the slab overheating portion during induction heating. That is, the present invention, after heating the slab in the preheating furnace, the furnace wall is divided into a plurality of longitudinal and lateral directions,
When inserting into an induction heating furnace in which a gas outlet is provided in each section and performing induction heating, the temperature distribution of the slab surface is measured before insertion into the induction heating furnace, and the slab is overheated by the preheating. It is an induction heating method for a slab, which is characterized by detecting a portion and performing induction heating while blowing a cooling gas from a gas outlet near the overheated portion. Furthermore, in order to ensure the effect, the present invention detects the high temperature portion by measuring the temperature distribution of the slab surface during the induction heating, and the induction heating while blowing the cooling gas from the gas outlet near the high temperature portion. The method for induction heating of a slab according to claim 1, wherein the method is continued.

【0008】この場合、冷却用ガスとしては、酸素を5
%以下含有するガスが好適である。
In this case, oxygen is used as the cooling gas.
Gases containing less than 100% are suitable.

【0009】[0009]

【作用】本発明では、スラブを熱間圧延する前に加熱す
るに際し、誘導加熱炉への挿入以前から既にある温度ム
ラを事前に検知し、その部分を誘導加熱炉内で局部的に
ガス冷却しつつ、全体の加熱を行うようにしたので、ス
ラブ全体の温度が均一になる。さらに、誘導加熱炉中に
おいても均一化の確認のためスラブの温度分布を測定
し、高温部の局部冷却をするようにしたので、均一化の
効果は一層促進されるようになる。以下、本発明の内容
を図1〜5に基づき説明する。
In the present invention, when heating the slab before hot rolling, temperature unevenness that has already existed prior to insertion into the induction heating furnace is detected in advance, and that portion is locally gas cooled in the induction heating furnace. However, since the entire slab is heated, the temperature of the entire slab becomes uniform. Further, even in the induction heating furnace, the temperature distribution of the slab is measured to confirm the homogenization and the high temperature part is locally cooled, so that the homogenizing effect is further promoted. The contents of the present invention will be described below with reference to FIGS.

【0010】まず、図2にスラブ加熱に関する設備レイ
アウトを示す。図2に示すように、ガス加熱炉6で予熱
をしたGOスラブ1をI炉2に搬送するに際し、途中に
設置した表面温度計群7でGOスラブの表面温度分布を
測定する。その測定結果を図3に示すが、これによりガ
ス予熱炉で生じたGOスラブの過加熱部が検知されるの
である。この過加熱部は、図3のア、イ、ウ部に相当す
る。再び説明は図2に戻り、GOスラブ1はスラブ移載
機8によってI炉2に装入され、誘導加熱が開始され
る。次に、図1に示す冷却ガスブロック15から所定流
量のガス(〔O2〕≦5%の含有量の)が噴出され、炉
内でGOスラブの上記過加熱部に所定時間だけ吹き付け
られる。その後、図4に示すように、I炉2内の複数位
置に設置した温度計(温度計そのものは図示せず)で、
誘導加熱中のGOスラブ表面温度分布を測定し、上述の
加熱ムラが解消されたか否かを再チェックし、解消され
ていないときは、高温部に対して上記のガス吹きアクシ
ョンを更に追加する。
First, FIG. 2 shows an equipment layout for slab heating. As shown in FIG. 2, when the GO slab 1 preheated in the gas heating furnace 6 is conveyed to the I furnace 2, the surface temperature distribution of the GO slab is measured by the surface thermometer group 7 installed on the way. The measurement result is shown in FIG. 3, which detects the overheated portion of the GO slab generated in the gas preheating furnace. This overheated portion corresponds to the portions a, b and c in FIG. Referring back to FIG. 2, the GO slab 1 is loaded into the I furnace 2 by the slab transfer machine 8 and the induction heating is started. Next, a gas (with a content of [O 2 ] ≦ 5%) having a predetermined flow rate is ejected from the cooling gas block 15 shown in FIG. 1 and is blown to the above-mentioned overheated portion of the GO slab for a predetermined time in the furnace. After that, as shown in FIG. 4, thermometers (thermometers themselves are not shown) installed at a plurality of positions in the I-furnace 2,
The GO slab surface temperature distribution during the induction heating is measured, and it is rechecked whether or not the above-mentioned heating unevenness is eliminated. If not solved, the above gas blowing action is further added to the high temperature portion.

【0011】ここで、冷却ガスは〔O2 〕≦5%が好ま
しい。図5に示すように、冷却ガスの酸素含有量が5%
以上あると、I炉内でのスラブ表面の過剰酸化を起こ
し、冷却能力が低下すると共に製品での下地被膜不良の
原因ともなる。さらに、I炉内加熱中に、GOスラブか
らのスケールロスが増え、歩留りが低下すると共に、発
生したノロが原因の操業トラブルも増加するためであ
る。
Here, the cooling gas is preferably [O 2 ] ≦ 5%. As shown in FIG. 5, the oxygen content of the cooling gas is 5%.
In the case of the above, excessive oxidation of the slab surface occurs in the I furnace, which lowers the cooling capacity and causes a defective undercoating in the product. Furthermore, during heating in the I furnace, the scale loss from the GO slab increases, the yield decreases, and the operational troubles due to the generated slag also increase.

【0012】[0012]

【実施例】C:0.05%、Si:3.5%、Mn:
0.08%、Se:0.025%、Sb:0.030
%、N:25ppmを含有するGOスラブを抽出温度目
標1180℃の加熱サイクルでガス予熱炉6に挿入、加
熱した。所定時間後にガス加熱炉6から該スラブ1を抽
出した後、図2の設備レイアウトに示す表面温度計7で
スラブ表面温度を測定した。その結果は、図3のように
なっていた。次に、このGOスラブをI炉2に装入し、
図1に示すガス冷却装置2の(B)、(E)ブロック1
5から、流量10Nm3 /hrのN2 ガス(O2 ≦1.
1)を、(K)ブロックから流量15Nm3 /hrのN
2 ガスを上記GOスラブの過加熱部表面に吹き付けた。
15分後、I炉2内でスラブ表面温度を測定したら、図
3のアの部分が周辺部よりまだ10℃強高かったため、
図1のガス冷却装置の(B)ブロックから8Nm3 /h
rのN2 ガスを15分間吹き付けた。以上の処置を行っ
たGOスラブの圧延後のホットコイルと、同様にガス加
熱炉から抽出し、上記の処置をまったく実施しなかった
GOスラブの圧延後のホットコイル長手方向の鉄損値レ
ベルを比較して図7に示す。本発明に係る処置を実施し
たホットコイルの方が,コイル長手方向に均一な鉄損レ
ベルとなっている。
EXAMPLES C: 0.05%, Si: 3.5%, Mn:
0.08%, Se: 0.025%, Sb: 0.030
%, N: 25 ppm of the GO slab was inserted into the gas preheating furnace 6 and heated in a heating cycle with an extraction temperature target of 1180 ° C. After extracting the slab 1 from the gas heating furnace 6 after a predetermined time, the slab surface temperature was measured by the surface thermometer 7 shown in the equipment layout of FIG. The result was as shown in FIG. Next, this GO slab is charged into the I furnace 2,
(B), (E) block 1 of the gas cooling device 2 shown in FIG.
5, N 2 gas with a flow rate of 10 Nm 3 / hr (O 2 ≦ 1.
1) from the (K) block with a flow rate of 15 Nm 3 / hr N
Two gases were sprayed onto the surface of the overheated part of the GO slab.
After 15 minutes, when the surface temperature of the slab was measured in the I-furnace 2, the portion A in FIG. 3 was still 10 ° C. higher than the peripheral portion.
8 Nm 3 / h from the (B) block of the gas cooling device of FIG.
R 2 gas was blown for 15 minutes. The hot coil after rolling the GO slab subjected to the above-mentioned treatment and the hot coil after the rolling of the GO slab extracted from the gas heating furnace in the same manner and not subjected to the above-mentioned treatment at all were measured for the iron loss value level in the longitudinal direction. A comparison is shown in FIG. The hot coil treated according to the present invention has a more uniform iron loss level in the longitudinal direction of the coil.

【0013】[0013]

【発明の効果】以上の如く、本発明によって、熱間圧延
前の誘導加熱炉でスラブ全体の温度を均一にした結果、
圧延製品の鉄損値は長手方向で均一になり、従来に比べ
製品合格率が10%も高まった。
As described above, according to the present invention, the temperature of the entire slab is made uniform in the induction heating furnace before hot rolling.
The iron loss value of the rolled product became uniform in the longitudinal direction, and the product acceptance rate was increased by 10% compared with the past.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかるI炉内スラブ局所冷却用ガス配
管図(図6のスラブ1面側より見た側面図)である。
FIG. 1 is a gas piping diagram for local cooling of an in-furnace slab according to the present invention (a side view seen from the slab 1 surface side in FIG. 6).

【図2】GOスラブのガス加熱炉〜I炉加熱〜粗圧延間
の設備レイアウトである。
FIG. 2 is an equipment layout between a gas heating furnace of a GO slab, heating of an I furnace, and rough rolling.

【図3】I炉装入前のスラブ表面温度分布の1例であ
る。
FIG. 3 is an example of a slab surface temperature distribution before charging into an I furnace.

【図4】本発明にかかるI炉加熱制御用放射温度計設置
状況である。
FIG. 4 is a view showing the installation state of a radiation thermometer for controlling heating of the I furnace according to the present invention.

【図5】冷却ガス中酸素濃度と品質欠陥歩留り、操業ト
ラブル発生率の関係である。
FIG. 5 shows the relationship between the oxygen concentration in the cooling gas, the yield of quality defects, and the occurrence rate of operational troubles.

【図6】従来からあるI炉内スラブ装入状況と誘導加熱
コイルの設置状況である。
FIG. 6 shows a conventional slab charging situation in an I-furnace and an induction heating coil installation situation.

【図7】コイル長手方向の鉄損値である。FIG. 7 is an iron loss value in the coil longitudinal direction.

【符号の説明】[Explanation of symbols]

1 スラブ(GOスラブ) 2 誘導加熱炉(I炉) 3 冷却用ガス配管 4 誘導コイル 5 スラブ搬送テーブル 6 ガス燃焼方式予熱炉 7 スラブ表面温度計群 8 スラブ移載機 9 粗圧延機 10 ガス流量計 11 ガス流量調節弁 12 ガス遮断弁 13 スラブの1面側 14 スラブの3面側 15 冷却ガス用ノズル・ブロック(AからLまで12
個ある)
1 slab (GO slab) 2 induction heating furnace (I furnace) 3 cooling gas pipe 4 induction coil 5 slab transfer table 6 gas combustion type preheating furnace 7 slab surface thermometer group 8 slab transfer machine 9 rough rolling mill 10 gas flow rate Total 11 Gas flow control valve 12 Gas shutoff valve 13 One side of slab 14 Three side of slab 15 Cooling gas nozzle block (from A to L 12
There are pieces)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スラブを予熱炉で加熱した後、炉壁を縦
横方向にわたり複数に区分けし、各区分け部にガス吹出
し口を配設した誘導加熱炉に挿入して誘導加熱するにあ
たり、 前記誘導加熱炉への挿入前に、該スラブ表面の温度分布
を測定し、前記予熱によるスラブの過加熱部を検知し、
その過加熱部に近いガス吹出し口から、冷却用ガスを吹
付けつつ誘導加熱することを特徴とするスラブの誘導加
熱方法。
1. After heating a slab in a preheating furnace, the furnace wall is divided into a plurality of parts in the vertical and horizontal directions, and the induction heating is performed by inserting the slab into an induction heating furnace in which a gas outlet is provided in each division part. Before insertion into the heating furnace, the temperature distribution of the slab surface is measured, and the overheated portion of the slab due to the preheating is detected,
An induction heating method for a slab, characterized by performing induction heating while blowing a cooling gas from a gas outlet close to the overheating portion.
【請求項2】 誘導加熱中にスラブ表面の温度分布を測
定して高温部を検知し、その高温部に近いガス吹出し口
から冷却用ガスを吹付けつつ誘導加熱を続行することを
特徴とする請求項1記載のスラブの誘導加熱方法。
2. The induction heating is continued while the temperature distribution of the slab surface is measured during the induction heating to detect a high temperature portion, and the cooling gas is blown from the gas outlet near the high temperature portion. The slab induction heating method according to claim 1.
JP5182963A 1993-07-23 1993-07-23 Induction heating method for slab Withdrawn JPH0734131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5182963A JPH0734131A (en) 1993-07-23 1993-07-23 Induction heating method for slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5182963A JPH0734131A (en) 1993-07-23 1993-07-23 Induction heating method for slab

Publications (1)

Publication Number Publication Date
JPH0734131A true JPH0734131A (en) 1995-02-03

Family

ID=16127394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5182963A Withdrawn JPH0734131A (en) 1993-07-23 1993-07-23 Induction heating method for slab

Country Status (1)

Country Link
JP (1) JPH0734131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110078291A (en) * 2009-12-31 2011-07-07 재단법인 포항산업과학연구원 Apparatus and method of uniformizing billet charging temperature
JP2011195932A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Method for heating billet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110078291A (en) * 2009-12-31 2011-07-07 재단법인 포항산업과학연구원 Apparatus and method of uniformizing billet charging temperature
JP2011195932A (en) * 2010-03-23 2011-10-06 Nippon Steel Corp Method for heating billet

Similar Documents

Publication Publication Date Title
EP0750170B1 (en) Non-oxidizing heating method and apparatus therefor
JPH0734131A (en) Induction heating method for slab
JP3845194B2 (en) Heating operation method of steel for continuous hot rolling
JP3083247B2 (en) Method for producing stainless steel strip by continuous casting hot rolling and heat treatment furnace for continuous casting hot rolling of stainless steel strip
JP2693690B2 (en) Method and device for transporting unidirectional electrical steel sheet coil
JP2000212645A (en) Continuous heating of steel material
KR100885884B1 (en) Apparatus for preventing gas intrusion in annealing furnace
JP3345769B2 (en) Method for producing hot-rolled steel strip and hot-rolling equipment line used for this method
TW201938804A (en) Steel sheet heating method in continuous annealing and continuous annealing facility
EP0161861A2 (en) Continuous annealing method and apparatus for cold rolled steel strips
JP2640398B2 (en) Cooling control method of steel pipe in roller hearth heat treatment furnace
JP2002220620A (en) Method for controlling pressure of heating furnace
JPH08246058A (en) Automatic combustion control method in continuous type heating furnace
JP3371686B2 (en) Hot rolled steel strip rolling method
JP2004283846A (en) Hot rolling method and its equipment
JPH07241613A (en) Method for controlling camber shape in width direction of steel plate
JP2640122B2 (en) Hot rolling method of steel material to reduce decarburization
EP0208679B1 (en) Method for the reduction of local temperature irregularity in steel slabs at rolling
JP3791368B2 (en) Hot-rolled steel strip rolling method
JPS61257430A (en) Method and installation for continuous heating of steel strip
JPS6289821A (en) Line speed controlling method for continuous annealing equipment
KR100451823B1 (en) Slow Cooling Method For Hot Rolled Wire Rod
KR101504438B1 (en) Hot-rolling equipment having function of preventing surface defects
JP2001317875A (en) Continuous heating device for steel stock and heating method
KR101504437B1 (en) Hot-rolling equipment having function of controlling width-directional temperature

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20001003