JPH0734078A - Base oil of hydraulic oil for hydraulic elevator - Google Patents
Base oil of hydraulic oil for hydraulic elevatorInfo
- Publication number
- JPH0734078A JPH0734078A JP5182947A JP18294793A JPH0734078A JP H0734078 A JPH0734078 A JP H0734078A JP 5182947 A JP5182947 A JP 5182947A JP 18294793 A JP18294793 A JP 18294793A JP H0734078 A JPH0734078 A JP H0734078A
- Authority
- JP
- Japan
- Prior art keywords
- oil
- odor
- hydraulic
- base oil
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Lubricants (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は油圧エレベータに使用さ
れる作動油の基油に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a base oil for hydraulic oil used in hydraulic elevators.
【0002】[0002]
【従来の技術】鉱油を用いた油圧エレベータ用作動油の
基油は、原油を通常の石油精製工業で用いられる潤滑油
精製手段である常圧蒸留、減圧蒸留によつて処理して適
当な粘度を有する留出油とし、この留出油をフルフラー
ル抽出、水素化精製、脱ロウ処理、更には必要に応じて
白度処理等の公知の手段により、要求精製度のものを得
ている。2. Description of the Related Art A base oil for hydraulic elevator hydraulic oil using mineral oil is prepared by treating crude oil by atmospheric distillation or vacuum distillation, which is a means for refining lubricating oil used in ordinary petroleum refining industry. A distillate having the required degree of refinement is obtained by known means such as furfural extraction, hydrorefining, dewaxing, and, if necessary, whiteness treatment.
【0003】油圧エレベータを駆動させる油圧ジヤツキ
に使用する作動油は、油温40℃で動粘度が20〜10
0cStの範囲のものを用いているが、要求精製度では
基油中のパラフインが約65重量%、ナフテンが約30
重量%、アロマが約5重量%であり、さらに硫化が約
0.1重量%、窒素が約10ppm含まれている。The hydraulic oil used in the hydraulic jack for driving the hydraulic elevator has a kinematic viscosity of 20 to 10 at an oil temperature of 40 ° C.
Although the range of 0 cSt is used, the required refining degree is about 65% by weight of paraffin and about 30% by weight of naphthene in the base oil.
% By weight, about 5% by weight of aroma, about 0.1% by weight of sulfide and about 10 ppm of nitrogen.
【0004】このような鉱油の組成自身が酸化安定性に
貢献していることは広く知られており、逆に、純飽和炭
化水素またはホワイト油は極めて酸化安定性が低いと言
われていた。そのため、上述した組成で基油を構成して
いたが、これらの成分中、アロマ、硫化、窒素成分の揮
発性の高い軟質分が鉱油臭気として基油自身の臭気を形
成していた。この臭気を軽減するため、特開平3−12
2195号公報においては、精密蒸留により蒸発量を低
減することが提案されているが、基油中の組成は上述の
通りであつた。It is widely known that the composition of such mineral oil itself contributes to oxidative stability, and conversely, pure saturated hydrocarbon or white oil is said to have extremely low oxidative stability. Therefore, although the base oil was constituted by the above-mentioned composition, among these components, the highly volatile soft components of the aroma, sulfide and nitrogen components formed the odor of the base oil itself as a mineral oil odor. In order to reduce this odor, JP-A-3-12
In 2195, it is proposed to reduce the amount of evaporation by precision distillation, but the composition in the base oil was as described above.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、油圧エ
レベータに用いられる油圧ジヤツキのように、動作時に
油圧作動油の付着したプランジヤ外壁面が外気に晒され
る構造では、プランジヤ外壁面の油膜より揮発した臭気
成分が、外気に放散されて周囲の環境を悪化させること
になつてしまう。特に、油圧エレベータでは油圧装置部
分に一般の人も近寄る場合があり、この油圧作動油の臭
気が周囲の人々に不快感を与えてしまう。例え、臭気性
の低い添加剤を用いて調合した作動油でも、基油自身に
臭気があり、作動油を納入した直後から鉱油臭気が漂う
問題が散見しており根本的な対策がなされていないのが
現状であつた。また、上述したような鉱油の組成自身が
酸化安定性に貢献しているものと広く知られていた。However, in a structure such as the hydraulic jack used in a hydraulic elevator in which the outer wall surface of the plunger to which the hydraulic fluid is adhered is exposed to the outside air during operation, the odor volatilized from the oil film on the outer wall surface of the plunger is removed. The components are released to the outside air and deteriorate the surrounding environment. In particular, in a hydraulic elevator, an ordinary person may approach the hydraulic device portion, and the odor of the hydraulic fluid causes discomfort to the people around. For example, even with hydraulic oil prepared using additives with low odor, the base oil itself has an odor, and there is a problem that mineral oil odor drifts immediately after the hydraulic oil is delivered, and no fundamental countermeasures have been taken. It was the current situation. Further, it has been widely known that the composition itself of the mineral oil as described above contributes to the oxidation stability.
【0006】本発明の目的は、酸化安定性を低下させる
ことなく臭気を低減させることができる油圧エレベータ
用作動油の基油を提供することにある。An object of the present invention is to provide a base oil for hydraulic oil for hydraulic elevators, which can reduce odor without lowering oxidation stability.
【0007】[0007]
【課題を解決するための手段】本発明は上述の目的を達
成するために、鉱油を用いた油圧エレベータ用作動油の
基油において、基油中のアロマ含有率を1.5重量%以
下としたことを特徴とする。In order to achieve the above object, the present invention provides a base oil for hydraulic elevator hydraulic oil using mineral oil, wherein the aroma content in the base oil is 1.5% by weight or less. It is characterized by having done.
【0008】[0008]
【作用】本発明による油圧エレベータ用作動油の基油
は、酸化安定性を確認するために広く行われている加速
劣化試験において、一般的な鉱油のアロマ含有率である
5重量%から3重量%までの領域では、酸化生成物の増
加を示す吸光度増加率が上がつていくことが知られてお
り、これに基づく予測ではアロマ含有率が低下するのに
伴つて吸光度増加率が上がり酸化安定性が低下すると思
われていたが、アロマ含有率を1.5重量%以下とする
ことにより、吸光度増加率は下がる傾向を示し一般鉱油
の含有率5重量%の酸化安定性を上回ることが分かり、
同時に臭気を低減させることができる。The base oil of the hydraulic oil for hydraulic elevators according to the present invention is used in an accelerated deterioration test which is widely performed to confirm the oxidation stability. It is known that the rate of increase in absorbance, which indicates an increase in oxidation products, increases in the region up to%. Based on this, it is predicted that the rate of increase in absorbance increases with the decrease in aroma content, and oxidation stability increases. Although it was thought that the aroma content would decrease, setting the aroma content to 1.5% by weight or less shows that the rate of increase in absorbance tends to decrease and exceeds the oxidation stability of a general mineral oil content of 5% by weight. ,
At the same time, the odor can be reduced.
【0009】[0009]
【実施例】以下、本発明の実施例を具体的に説明する。
図1は本発明による実施例1〜6を比較例7〜10と共
に示す図である。基油としては、図1に示すように動粘
度40℃で、各数字の芳香族系成分であるアロマ分、硫
化系成分、窒素系成分を有する鉱油を使用している。EXAMPLES Examples of the present invention will be specifically described below.
FIG. 1 is a diagram showing Examples 1 to 6 according to the present invention together with Comparative Examples 7 to 10. As the base oil, as shown in FIG. 1, a mineral oil having a kinematic viscosity of 40 ° C. and having an aromatic component as an aromatic component, a sulfide component and a nitrogen component of each numeral is used.
【0010】この基油に添加する各添加剤としては、酸
化防止剤と防錆剤を次のように選定した。つまり酸化防
止剤として、酸化防止能力の高いフエノール系添加剤と
相乗効果を生じさせるアミン系添加剤の2つの酸化防止
剤、フエノール系として2,6−ジーt−シヤリー4メ
チルフエノールと、アミン系としてp−p’−ジオクチ
ルジフエニールアミンを選択した。また防錆剤として、
アルケニルコハク酸はエステル系あるいはイミド系いず
れとも臭気が高いため、本実施例では紹介しない燐酸系
の耐摩耗性添加剤との相乗効果が確認されているイミド
系のアルケニルコハク酸イミドを選択した。なお、これ
ら酸化防止剤と防錆剤の添加剤を基油に調合するに当た
り、60℃のオイルバスで1500rpmの撹拌を連続
1時間にて調製した。As the additives to be added to this base oil, an antioxidant and a rust preventive were selected as follows. That is, as antioxidants, two antioxidants that are amine-based additives that produce a synergistic effect with phenol-based additives that have high antioxidant ability, and 2,6-di-t-Carryy 4-methylphenol as a phenol-based additive and amine-based additives Was selected as p-p'-dioctyldiphenylamine. As a rust preventive agent,
Since alkenyl succinic acid has a high odor both in the ester type and the imide type, an imide type alkenyl succinimide, which has been confirmed to have a synergistic effect with a phosphoric acid type antiwear additive not introduced in this example, was selected. In addition, when compounding these antioxidant and rust preventive additives into the base oil, stirring was carried out at 1500 rpm in an oil bath at 60 ° C. for 1 hour continuously.
【0011】各作動油の各々の物性について下記に基づ
いてそれぞれ評価した。The physical properties of each hydraulic oil were evaluated based on the following.
【0012】基油の成分は、アロマ系成分の分析はn−
d−m環分析を実施し、硫化系及び窒素系はイオンクロ
マト分析にて測定した。また動粘度は、JIS K 2
283に従つて、40℃における動粘度を測定した。さ
らに蒸発減量は、試料約30mgを、内径φ6mm×深
さ1.5mmのアルミセルに入れ、窒素雰囲気で、室温
から毎分2℃ずつ昇温させ250℃まで昇温し、熱重量
測定器で測定した。The base oil component is n- for analysis of aromatic components.
The d-m ring analysis was carried out, and the sulfide system and the nitrogen system were measured by ion chromatography analysis. The kinematic viscosity is JIS K 2
According to 283, kinematic viscosity at 40 ° C was measured. Furthermore, the evaporation loss is measured by thermogravimetry with about 30 mg of sample placed in an aluminum cell with an internal diameter of φ6 mm and a depth of 1.5 mm, and increasing the temperature from room temperature by 2 ° C./min to 250 ° C. in a nitrogen atmosphere. did.
【0013】評価試験としての臭気官能試験は、12名
の試験官により臭気の強度を官能にて測定した。臭気試
験で通常行われている6段階臭気強度表示法により試験
し、12名の試験官のうち最大、最小評価点の点数を両
限界より1名ずつ削除し、10名の試験官の平均臭気強
度点数で評価した。点数が低いのは臭気性が低く、点数
が高いと臭気性は高いことを示している。6段階臭気強
度は、0:無臭、1:やつと感知できる匂い、2:何の
匂いであるかが判る弱い匂い、3:楽に感知できる匂
い、4:強い匂い、5:強烈な匂いである。In the odor sensory test as an evaluation test, the strength of the odor was sensory measured by 12 testers. Tested by the 6-level odor intensity display method that is usually used in odor tests, the maximum and minimum evaluation points of 12 examiners were deleted one by one from both limits, and the average odor of 10 examiners was deleted. The strength score was evaluated. A low score indicates low odor, and a high score indicates high odor. 6-level odor intensity is 0: no odor, 1: odor that can be perceived as a sickness, 2: weak odor that allows you to know what odor it is, 3: odor that can be easily perceived, 4: strong odor, 5: intense odor .
【0014】試料30mlを口の広さが口径27mmの
容量50mlのねじ口ビンに封入し、ビンを激しく振
り、その後ビン蓋を開き臭気を嗅いで、6段階臭気強度
の評価をし、その評価は臭気強度平均を四捨五入し、1
点までを良として○印を付け、その他点数は臭気有りと
し×印を付けている。30 ml of the sample was sealed in a screw cap bottle having a mouth of 27 mm in diameter and a capacity of 50 ml, the bottle was shaken violently, and then the bottle lid was opened to smell the odor, and the 6-stage odor intensity was evaluated. Rounds the odor intensity average to 1
O is marked as good up to the point, and X is marked as the other points have odor.
【0015】加速劣化試験は、試料50gを予め研磨さ
れ新しい金属肌を出しており、ジエチルエーテルでその
研磨肌を脱脂してあるスパイラル状に巻き上げた3mの
銅線を入れてある内径50mm、容量200mlのガラ
スビンに入れ、更に、ガラスビンを酸素で加圧封入でき
る銅製容器に入れ、この銅製容器内に酸素を常温0.6
MPaの圧力で封入し、更に銅製容器自身150℃のシ
リコン油を用いたオイルバスに30°の傾きを設けて入
れ、銅製容器を毎分100回転で回転しガラス容器内試
料を撹拌しつつ加熱劣化を1時間連続で行うようにし
た。この試料の有機劣化生成物の増加を赤外吸光度測定
器にて測定し、新油時と劣化後の油の赤外吸光度増加率
を測定して評価した。赤外吸収波長は、増加率の高い1
790cmカイザー(単位:~ 1)の波長にて示した。In the accelerated deterioration test, 50 g of the sample was pre-polished to expose a new metal surface, and the polished skin was degreased with diethyl ether. A spirally wound 3 m copper wire was inserted into the sample. Put in a 200 ml glass bottle, and then put the glass bottle in a copper container that can be pressure-sealed with oxygen.
It is sealed at a pressure of MPa, and the copper container itself is placed in an oil bath using silicon oil of 150 ° C with a 30 ° inclination, and the copper container is rotated at 100 rpm to heat the sample in the glass container while stirring. Deterioration was performed continuously for 1 hour. The increase of the organic deterioration product of this sample was measured by an infrared absorption measuring instrument, and the infrared absorption increasing rate of the oil at the time of new oil and after deterioration was measured and evaluated. Infrared absorption wavelength has a high rate of increase 1
The wavelength is shown at 790 cm Kaiser (unit: ~ 1 ).
【0016】実施例での評価で○印を付けたものは、赤
外吸光度増加率が比較例10である基準油の赤外吸光度
増加率以下であり、現状油より酸化安定性に優れている
と判断している。増加率が超えているものは現状油より
性能が落ちると評価し×印を付けている。Those marked with a circle in the evaluation in the examples have an infrared absorption increase rate of not more than the infrared absorption increase rate of the reference oil of Comparative Example 10, which is superior to the current oil in oxidation stability. I have decided. If the rate of increase exceeds that of the current oil, the performance is evaluated to be poorer and marked with an X.
【0017】シエル四球摩耗試験は、ASTM D27
83のシエル四球摩耗試験方法に準拠し、試験条件とし
て縦軸回転数を1800rpm、荷重を30kg、試験
時間を30分、試験温度を室温とし、試験材はAKS球
軸受用鋼球1/2’精密球を用いた。実施例および比較
例はいずれも、酸化防止剤と防錆剤のみ添加したR&O
型一般鉱物油であるので、摩耗痕系は0.48から0.
52mmと推定される。The shell four-ball wear test is ASTM D27.
According to the 83 shell four-ball wear test method, the test conditions were a vertical axis rotation speed of 1800 rpm, a load of 30 kg, a test time of 30 minutes, and a test temperature of room temperature. A precision sphere was used. In each of the examples and the comparative examples, R & O containing only the antioxidant and the rust preventive is added.
Since it is a type general mineral oil, the wear scar system is 0.48 to 0.
It is estimated to be 52 mm.
【0018】RBOT劣化試験は、JIS K 251
4の回転ボンベ酸化安定性試験方法に従つて行つた。不
純物を取り除いた分、酸化劣化反応は抑えられると推定
され、比較例に対し、実施例は極めて高いRBOT値を
得られると推定できる。The RBOT deterioration test is conducted according to JIS K251.
The rotating cylinder oxidative stability test method of 4 was followed. It is presumed that the oxidative deterioration reaction can be suppressed by the amount of the impurities removed, and it can be presumed that the Example can obtain an extremely high RBOT value as compared with the Comparative Example.
【0019】経済的評価として比較例10を基準に基油
コストが2倍以内であるならば実用上支障ないため良と
判断し○印を付けた。2倍以上はランキングコストで負
担が大きいと評価し×印を付けたが、これは任意に決定
することができる。As an economic evaluation, if the base oil cost was within twice the comparative example 10 as a reference, there was no problem in practical use and it was judged as good and marked with a circle. It was evaluated that the cost was more than twice as large as the ranking cost, but a cross was added, but this can be arbitrarily determined.
【0020】次に、図1に示す各種の評価項目について
の試験結果および評価結果を説明する。人の鼻による臭
気官能的試験で、超低臭気となつているのはアロマ含有
率が1.5重量%以下である。また、酸化安定性を確認
するための加速劣化試験結果では、一般的な鉱油のアロ
マ含有率である5重量%から3重量%までの領域では、
酸化生成物の増加を示す吸光度増加率が上がつている
が、この傾向は従来の予想に反して3重量%超えて更に
含有率が低下すると、吸光度増加率は下がる傾向を示
し、特に、アロマ含有率が1.5重量%では、一般鉱油
の含有率5重量%の酸化安定性を上回ることが分かつ
た。従つて、酸化安定性においてアロマ含有率が1.5
重量%以下であることが好ましい。しかしアロマ含有率
が0.5重量%以下では、横ばい傾向を示し、精製度の
一層の向上は酸化安定性に効果を示さない。従つて、経
済性等を考慮すると、アロマ含有率が0.5から1.5
重量%の範囲で使用するのが好ましい。Next, the test results and evaluation results for various evaluation items shown in FIG. 1 will be described. The odor sensory test by human nose shows that the odor is extremely low when the aroma content is 1.5% by weight or less. Further, in the accelerated deterioration test result for confirming the oxidation stability, in the range from 5% by weight to 3% by weight, which is the aroma content rate of general mineral oil,
The rate of increase in absorbance showing an increase in oxidation products is increasing, but this tendency is that contrary to the conventional expectation, if the content exceeds 3% by weight and the content further decreases, the rate of increase in absorbance tends to decrease. It was found that the content of 1.5% by weight exceeds the oxidation stability of the content of general mineral oil of 5% by weight. Therefore, the aroma content is 1.5 in the oxidation stability.
It is preferably not more than weight%. However, when the aroma content is 0.5% by weight or less, it tends to level off, and further improvement in the degree of purification has no effect on oxidative stability. Therefore, considering economic efficiency, the aroma content rate is 0.5 to 1.5.
It is preferably used in the range of weight%.
【0021】更に、作動油寿命を知る酸化防止剤の消耗
度は、アロマ含有率を下げることにより所定の酸化防止
手段を講じてあれば減少し、酸化防止剤残存量は伸び、
基油におけるアロマ含有率の低減は酸化防止剤残存量に
おいても好ましい。しかしながら、流動パラフインに代
表される精製度の極めて高い基油は、その性能に比較し
て経済的負担が高く、経済面をも考慮した場合、アロマ
含有量は下限値を0.5重量%の範囲とすることが好ま
しい。Further, the degree of consumption of the antioxidant for knowing the life of the hydraulic oil is reduced if a predetermined antioxidant measure is taken by lowering the aroma content rate, and the residual amount of the antioxidant is increased.
The reduction of the aroma content in the base oil is preferable also in the residual amount of the antioxidant. However, a highly refined base oil represented by fluid paraffin has a high economic burden compared to its performance, and in consideration of economic aspects, the aroma content has a lower limit of 0.5% by weight. It is preferably within the range.
【0022】このように基油中のアロマ含有率を1.5
重量%以下とすると、水素付加の精製度を上げることに
よりアロマ分等の基油に占める含有率が低下するので、
臭気は水素付加の精製度を上げることにより低く抑える
ことができる。また、アロマ等の鉱油臭気成分を除去す
る水素付加の精製向上は、プランジヤ外壁面の油膜から
の鉱油臭気成分の蒸発量を低く抑えられることになり、
蒸発より臭気の低下にも好ましい。Thus, the aroma content of the base oil is 1.5.
When the content is less than or equal to% by weight, the content ratio of aroma components and the like in the base oil decreases by increasing the degree of refinement of hydrogenation.
The odor can be kept low by increasing the degree of purification of hydrogenation. In addition, the refinement of hydrogenation for removing mineral oil odorous components such as aromas can reduce the evaporation amount of mineral oil odorous components from the oil film on the outer wall of the plunger.
It is also preferable to reduce odor rather than evaporation.
【0023】このように図1に示すように実施例1〜6
に示した基油は、蒸発量、臭気官能試験、加速劣化試験
による酸化安定性、耐摩耗性、酸化防止剤寿命の点でと
もに優れ、且つ、加速試験による酸化安定性の結果で
は、水素付加による精製度の向上をやみ雲に上げること
がない。このようにしてアロマ含有率が1.5重量%以
下とした基油によつて、確実に低臭性とすることがで
き、また、蒸発量を低く抑えられていることより、プラ
ンジヤ外壁面からの蒸発量が抑えられ、エレベータにお
ける環境に対応した低臭性の作動油を提供できる。さら
に、酸化防止剤の効果が基油精製度が良いことにより生
じており、また、基油劣化が低く抑えられることより、
従来の鉱油を基油とした作動油に比較して低臭性の寿命
及び使用寿命を大幅に延ばすことができる。Thus, as shown in FIG. 1, Examples 1 to 6
The base oils shown in 1) are excellent in terms of evaporation amount, odor sensory test, oxidation stability by accelerated deterioration test, wear resistance, and antioxidant life, and the results of oxidation stability by accelerated test show that hydrogen addition The improvement in the degree of refinement due to will not be overlooked. In this way, the base oil having an aroma content of 1.5% by weight or less can surely have a low odor, and since the evaporation amount is suppressed to a low level, it can be removed from the outer wall surface of the plunger. It is possible to provide a low odor hydraulic oil that corresponds to the environment in the elevator by suppressing the evaporation amount of. Furthermore, the effect of the antioxidant is caused by the good degree of refinement of the base oil, and the deterioration of the base oil is suppressed to a low level,
Compared with conventional hydraulic oils that use mineral oil as a base oil, the life with low odor and the service life can be significantly extended.
【0024】[0024]
【発明の効果】以上説明したように本発明の油圧エレベ
ータ用作動油の基油は、基油本来の性能を損なうことな
く鉱油臭気を抑え、しかも酸化劣化を低く抑えることが
できるので、長時間使用しても低臭性を維持でき、長時
間使用後においても油圧エレベータの周囲の環境を快適
に保つことができる。As described above, the base oil of the hydraulic elevator hydraulic oil of the present invention can suppress the odor of mineral oil without impairing the original performance of the base oil, and can suppress the oxidative deterioration to a long time. The low odor can be maintained even when used, and the environment around the hydraulic elevator can be kept comfortable even after long-term use.
【図1】本発明の一実施例による油圧エレベータ用作動
油の基油における特性と評価結果を示す図である。FIG. 1 is a diagram showing characteristics and evaluation results of a hydraulic oil for hydraulic elevator according to an embodiment of the present invention in a base oil.
Claims (1)
基油において、基油中のアロマ含有率を1.5重量%以
下としたことを特徴とする油圧エレベータ用作動油の基
油。1. A base oil of a hydraulic elevator hydraulic oil using mineral oil, wherein the aroma content in the base oil is 1.5% by weight or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5182947A JPH0734078A (en) | 1993-07-23 | 1993-07-23 | Base oil of hydraulic oil for hydraulic elevator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5182947A JPH0734078A (en) | 1993-07-23 | 1993-07-23 | Base oil of hydraulic oil for hydraulic elevator |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0734078A true JPH0734078A (en) | 1995-02-03 |
Family
ID=16127145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5182947A Pending JPH0734078A (en) | 1993-07-23 | 1993-07-23 | Base oil of hydraulic oil for hydraulic elevator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0734078A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020046319A (en) * | 2018-09-19 | 2020-03-26 | 三菱重工業株式会社 | Method for determining degree of sludge formation in oil |
-
1993
- 1993-07-23 JP JP5182947A patent/JPH0734078A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020046319A (en) * | 2018-09-19 | 2020-03-26 | 三菱重工業株式会社 | Method for determining degree of sludge formation in oil |
WO2020059776A1 (en) * | 2018-09-19 | 2020-03-26 | 三菱重工業株式会社 | Method for determining degree of sludge generation in oil |
US11988657B2 (en) | 2018-09-19 | 2024-05-21 | Mitsubishi Heavy Industries, Ltd. | Method for determining degree of sludge generation in oil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4125479A (en) | Oxidation inhibited lubricating oil | |
EP1031621A3 (en) | Process oil, process for producing the same and rubber composition | |
JP2011080141A (en) | Anticorrosive oil composition | |
JPWO2019082915A1 (en) | Lubricating oil composition and method for producing the same | |
JPH01153792A (en) | Refrigerator oil composition | |
EP0716678B1 (en) | Automotive white oil-based lubricant composition | |
JPH0734078A (en) | Base oil of hydraulic oil for hydraulic elevator | |
JP3592832B2 (en) | Hydraulic hydraulic oil | |
JP6087860B2 (en) | Lubricating oil composition | |
CN106190476B (en) | A kind of bearing oil | |
JP4698922B2 (en) | Electrical insulating oil composition | |
JP5248049B2 (en) | Electrical insulating oil composition | |
RU2534528C2 (en) | Functional fluid composition | |
JP4740429B2 (en) | Electrical insulating oil composition | |
JPH04359997A (en) | Hydrocarbon fluid composition | |
JPH0657276A (en) | Lubricant | |
JPH07258677A (en) | Turbine oil composition | |
JPH01115998A (en) | Lubricating oil and composition for hydrogen-containing fluorocarbon refrigerant | |
JPH09176671A (en) | Lubricating oil composition | |
JPH08176573A (en) | Lubricating oil composition | |
JP6283430B2 (en) | Lubricating oil composition | |
CN109312249B (en) | Lubricant composition | |
CN118715309A (en) | Corrosion resistant lubricating oil composition for electrical equipment | |
JP2564556B2 (en) | Lubricating oil composition for internal combustion engines | |
GB2028866A (en) | Lubricating oil formulation |