JP3592832B2 - Hydraulic hydraulic oil - Google Patents

Hydraulic hydraulic oil Download PDF

Info

Publication number
JP3592832B2
JP3592832B2 JP8276996A JP8276996A JP3592832B2 JP 3592832 B2 JP3592832 B2 JP 3592832B2 JP 8276996 A JP8276996 A JP 8276996A JP 8276996 A JP8276996 A JP 8276996A JP 3592832 B2 JP3592832 B2 JP 3592832B2
Authority
JP
Japan
Prior art keywords
mass
oil
hydraulic
odor
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8276996A
Other languages
Japanese (ja)
Other versions
JPH09272887A (en
Inventor
清 長沼
典之 佐保田
敬紀 浜田
哲也 金井
英一 佐々木
孝司 奈良谷
橘  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Building Systems Co Ltd
Original Assignee
Hitachi Building Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Building Systems Co Ltd filed Critical Hitachi Building Systems Co Ltd
Priority to JP8276996A priority Critical patent/JP3592832B2/en
Publication of JPH09272887A publication Critical patent/JPH09272887A/en
Application granted granted Critical
Publication of JP3592832B2 publication Critical patent/JP3592832B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、油圧エレベータ用作動油に関するものである。
【0002】
【従来の技術】
一般に鉱油を用いた油圧エレベータ用作動油は、基油とこれに添加した添加剤とから製造されている。鉱油は、原油を通常の製油精製工業で用いられる潤滑油精製手段である常圧蒸留、減圧蒸留によって処理して適当な粘度を有する留出油とし、この留出油をフルフラール抽出、水素化精製、脱臘処理、更には必要に応じて白土処理等の公知の精製手段により要求精製度のものを得ている。また、一般的な油圧エレベータ用作動油の基油としては、動粘度が油温40℃で20〜100cStの範囲で、パラフィンが約65質量%、ナフテンが約30質量%、芳香族成分であるアロマが約5質量%、硫黄が約0.1質量%、窒素が約10ppm含有されたものが使用されている。
【0003】
このような組成の基油は、成分中に芳香族成分であるアロマ、硫黄、窒素成分が含有されているため、臭気性が高くなってしまう。従って、油圧エレベータ用作動油として用いた場合、それを構成した昇降路内に臭気が立ちこもり、それを利用する乗客にまで不快感を与えることになってしまう。そこで、これを解決するために特開平7−34078号公報に記載の油圧エレベータ用作動油では、アロマ含有率を1.5質量%以下としている。
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の基油においても、油圧エレベータ用作動油としての低臭気性を満足させるのに十分ではなかった。すなわち、通常、作動油は、酸化防止特性や防錆特性などの基油性能を向上させるために添加剤を添加して製品化しているが、この添加剤による臭気性に対する考慮がなされていなかった。例えば、酸化防止剤として添加されているフェノール系の2.6−ジターシャルブチル−4−メチルフェノールや、アミン系のp−p′−ジオクチルジフェニールアミンが多く含有され、その結果、臭気性を悪化させていることが分かった。さらに、これらの酸化防止剤のみでは、作動油の劣化に伴って臭気性悪化の要因となる過酸化物の発生を抑制することができず、この点でも臭気性を悪化させていることが分かった。また、防錆剤として添加されているイミド系のアルケニルコハク酸イミドも高臭気性であるため、より臭気性を悪化させていた。
【0005】
本発明の目的は、油圧作動油の本来の性能である良好な酸化安定性を損なうことなく、長時間の使用においても臭気性を低く抑えることができる油圧エレベータ用作動油を提供することにある。
【0006】
【課題を解決するための手段】
本発明は上述の目的を達成するために、アロマ含有率を1.5質量%以下とした鉱油を基油として用いた油圧エレベータ用作動油において、添加剤である炭素数3〜6の2級アルキル基を有するジアルキルチオりん酸亜鉛を0.03〜0.08質量%、2.6−ジターシャリブチル−4−メチルフェノールを0.03〜0.20質量%、p−p’−ジオクチルジフェニールアミンを0.01〜0.05質量%含有させたことを特徴とする。
【0007】
本発明の油圧エレベータ用作動油は、硫黄系酸化防止剤の炭素数3〜6の2級アルキル基を有するジアルキルチオりん酸亜鉛(以下、secondly−C3/6−ZDTPという)を0.03〜0.08質量%添加したが、その添加量は、臭気官能試験およびガスクロマト臭気分析試験を行なった結果、臭気性を考慮し0.08質量%以下が好ましく、また、酸化防止剤残存量試験および加速劣化試験の結果、過酸化物発生の抑制および酸化防止性の高寿命化を考慮し、0.03質量%以上とするのが好ましいとの究明結果に基づいて決定し、さらに、2.6−ジターシャブチル−4−メタルフェノールを0.03〜0.20質量%添加したが、その添加量は、硫黄系酸化防止剤のsecondly−C3/6−ZDTPの酸化防止性を補助すれば良いため酸化防止剤残存量試験を行なった結果、酸化防止性を維持するため0.03質量%以上添加するのが好ましく、また、臭気官能試験及びガスクロマト臭気分析試験を行なった結果、臭気性を考慮し0.20質量%以下とするのが好ましいとの究明結果に基づいて決定した。さらに、p−p’−ジオクチルジフェニールアミンを0.01〜0.05質量%添加したが、その添加量は、酸化防止剤残存量試験を行なった結果、酸化防止性を維持するため0.01質量%以上添加するのが好ましく、臭気官能試験及びガスクロマト臭気分析試験を行なった結果、臭気性を考慮し0.05質量%以下とするのが好ましいとの究明結果に基づいて決定した。このようにして、油圧作動油の本来の性能である良好な酸化安定性を損なうことなく、長時間の使用においても臭気性を低く抑えることができる油圧エレベータ用作動油を得ることができた。
【0008】
【発明の実施の形態】
以下、本発明の実施の形態を具体的に説明する。
【0009】
まず、基油としては低臭気性が確認されているアロマ含有率を1.5質量%以下としたものを使用した。つまり、40℃における動粘度が図3に示す如くであり、芳香族含有率が0.72質量%、硫化系含有率が0.01質量%、窒素系含有率が不検出のものを使用した。
【0010】
この基油に添加する各添加剤としては、酸化防止剤、防錆剤、金属不活性剤を次のように選定した。つまり、酸化防止剤としては酸化防止能力が高く、作動油の劣化に伴い発生する過酸化物の発生抑止能力を備え、かつ、比較的低臭気特性を備えた硫黄系酸化防止剤の添加剤である炭素数3〜6の2級アルキル基を有するジアルキルチオりん酸亜鉛(econdly−C3/6−ZDTP)を選定した。また、この硫黄系酸化防止剤の酸化防止能力の補助効果と、硫黄系に対して低臭気特性とを備えたフェノール系添加剤として、2.6−ジターシャリブチル−4−メチルフェノールを選定した。さらに、フェノール系添加剤と相乗効果を生じさせ、酸化劣化抑止能力の高寿命化を得るに効果があるアミン系添加剤として、p−p’−ジオクチルジフェニールアミンを選定した。
【0011】
防錆剤としては、低臭気性を備えた過塩基性Caスルホネートを選定し、作動油と金属との触媒反応を抑制する金属不活性剤としては、極微量で金属不活性能力を得ることができ、これによって、低臭気特性を兼ね備えるベンゾトリアゾールを選定した。
【0012】
上述した基油と添加剤とを調合した各作動油の物性については次の試験に基づいてそれぞれ評価を行ない、実施例の評価結果を図1に、また比較例の評価結果を図2に示している。
【0013】
まず、臭気官能試験から説明すると、この評価試験は12名の試験官により臭気の強度を、通常、臭気試験で行われている6段階臭気強度表示法により評価し、12名のうち最大および最小評価点をそれぞれ削除したものを評価対象とした。この評価点は、点数が低いほど低臭気特性が高いことを示し、0:無臭、1:やっと感知できる臭い、2:なんの臭いであるが判別可能な弱い臭い、3:楽に感知できる臭い、4:強い臭い、5:強烈な臭いとして評価した。
【0014】
この試験方法は、資料30mlを口径27mm、容量50mlのねじ口ビンに封入して激しく振り、その後ビン蓋を開き試験管が臭気を嗅いで、上述のような評価を行うものとし、図1および図2に示すようにその評価平均点を四捨五入し、1点まで良として〇印を付け、それ以上は臭気ありとして×印を付けている。
【0015】
ガスクロマト分析試験は、作動油中に含まれる臭気成分である軽質分(トータルイオン)を測定する分析試験であり、その試験方法としては、試料5mlを容量30mlのインピンジャに入れ、この試料油温をオイルバスで30℃に保持した状態でインピンジャにHeガスを流量30〜100ml/minで流入させて軽質分を流入ガスとともにインピンジャより流出させ、この流出した軽質分を補集管にて30分間にわたり補集した。この補集管をガスクロマト分析装置につないで軽質分の測定を行なった。測定の結果、軽質分の面積値が、新油で100万イオン面積値未満、後述する加速劣化油で200万イオン面積値未満のものを良とし、〇印を付けた。
【0016】
RBOT劣化試験は、作動油中の酸化防止剤残存量を測定し、酸化防止能力の継続性を判別する試験で、JIS−K−2514の回転ボンベ酸化安定試験方法に従って行なった。この試験において、一般的性能を満足するものは150min以上のものである。
【0017】
湿潤試験は、空気中の湿気による錆の発生を抑止する防錆特性を評価する評価試験であり、JIS−K−2246に定められている錆止め油5.34湿潤試験法に従って行なった。なお、この評価は良好となった順からA,B,C,Dを付し、Dよりも良好であれれば一般的な性能を満足しているものとした。
【0018】
シェル4球磨耗試験は、ASTM−D−2783のシェル4球磨耗試験方法に準拠し、試験条件として縦軸回転数を1800rpm、荷重を30kgf、試験時間を30分、試験温度を室温とし、試験材はAKS球軸受用鋼球1/2インチ精密球を用いて行なった。この試験結果において、その磨耗痕径が0.5mm以下であれば一般的性能を満足しているものとした。
【0019】
次に、加速劣化油を得るための加速劣化試験について説明する。
【0020】
まず、試料50gと、予め研磨されて新しい金属肌を出すと共にジエチルエーテルでその研磨肌を脱脂したスパイラル状に巻上げた3mの銅線とを、内径50mmで容量200mmのガラスビンに入れる。このガラスビンを銅製容器に入れ、この銅製容器内に常温の酸素を0.6MPaの圧力で封入し、さらに、この銅製容器を150℃のシリコン油を用いたオイルバスに30°の傾きを持たせて入れる。この状態で銅製容器を100rpmで1時間連続で回転させ、ガラスビン内の試料を撹拌し加熱劣化させ劣化油を得る。
【0021】
このようにして得た劣化油に対し、ここでは赤外線吸光度試験および前述したガスクロマト分析試験を行った。
【0022】
この赤外線吸光度試験は、新油時と比較して、試料内の有機劣化生成物の増加率を測定し、その試料の酸化防止能力を判別する試験である。その試験方法としては、赤外線吸収波長を1790-1cm(カイザー)で0.5mmの厚のKRS−5セル透過法にて行い、増加率が10%以内のものを酸化防止能力良好として図中に〇印を付けた。この劣化油中に、過酸化物が重合して油中に折出した酸化重合(スラッジ)が生成されたものは、図中にその生成の有無を記憶した。ここでスラッジが生成されたものは酸化防止能力が低いものと判定される。
【0023】
次に、図1、図2に基づいて各種試験劣化およびその評価を説明する。
【0024】
まず、臭気特性を臭気官能試験及びガスクロマト分析試験の試験結果に基づき評価する。
【0025】
酸化防止剤の含有率としては、図1および図2に示す実施例1〜14および比較例15〜26のように、硫黄系のsecondly−C3/6−ZDTPを0.10質量%、フェノール系の2.6−ジターシャリブチル−4−メタルフェノールを0.25質量%、アミン系のp−p’−ジオクチルジフェニールアミンを0.07質量%とした場合、それぞれ高臭気性を示したため、secondly−C3/6−ZDTPを0.08質量%以下、フェノール系の2.6−ジターシャリブチル−4−メチルフェノールを0.20質量%以下、アミン系のp−p’−ジオクチルジフエニールアミンを0.05質量%以下とした。
【0026】
また、防腐剤のCaスルホネートとして0.10質量%、50ppmとした場合、また金属不活性剤のベンゾトリアゾールの添加量として0.10質量%、50ppmとした場合、それぞれ高臭気性を示したため、防腐剤のCaスルホネートまた金属不活性剤のベンゾトリアゾールの添加量として、それぞれ0.07質量%以下、30ppm以下とした。
【0027】
このように添加剤を含有させることにより、作動油は、新油における初期臭気で官能試験にて評価点1(やっと感知できる臭い)以下を示し、さらにガスクロマト分析試験でも臭気成分である軽質分は、新油において100万イオン以下、劣化油において200万イオン以下を示し、その臭気の抑制された超低臭気作動油とすることができた。
【0028】
次に、酸化防止剤の酸化防止能力をPBO試験および赤外線吸光度試験の試験結果に基づき評価する。
【0029】
この試験結果から酸化防止剤の含有率は、硫黄系のsecondly−C3/6−ZDTPを0.01質量%、フェノール系の2.6−ジターシャリブチル−4−メチルフェノールを0.01質量%、またアミン系のp−p’−ジオクチルジフェニールアミンを0.005質量%とした場合、それぞれ吸光度増加率が許容範囲を越え酸化安定性に欠ける特性を示したため、硫黄系のsecondly−C3/6−ZDTPを0.03質量%以上、フェノール系の2.6−ジターシャリブチル−4−メチルフェノールを0.03質量%以上、またアミン系のp−p’−ジオクチルジフェニールアミンを0.01質量%以上とした。その結果、RBOT試験では150min以上を示し、また劣化油を対象とした赤外線吸光度試験でも4%以下を示す高水準の酸化防止能力を備えた作動油とすることができた。また、防錆能力は、湿潤試験に基づき評価すると、Caスルホネートの含有率を0.01質量%以上とすれば、C以上の良好な防錆能力を得ることができる。
【0030】
このようにして、酸化防止剤であるsecondly−C3/6−ZDTPを0.03〜0.08質量%、2.6−ジターシャリブチル−4−メチルフェノールを0.03〜0.20質量%、p−p’−ジオクチルジフェニールアミンを0.03〜0.05質量%を含有させれば、超低臭気特性及び良好な酸化防止能力を備えた作動油を得ることができることが分かった。さらに、防錆剤であるCaスルホネートの含有率を0.01〜0.07質量%とすることにより、超低臭気特性及び良好な防錆能力を備えた作動油を得ることができ、金属不活性剤であるベンゾトリアゾールを30ppm以下含有させることにより超低臭気特性を備えた作動油を得ることができる。
【0031】
【発明の効果】
以上のように本発明による油圧エレベータ用作動油は、酸化防止剤であるsecondly−C3/6−ZDTPを0.03〜0.08質量%、2.6−ジターシャリブチル−4−メチルフェノールを0.03〜0.20質量%、p−p’−ジオクチルジフェニールアミンを0.03〜0.05質量%を含有するようにしたため、作動油の基本性能である酸化防止能力を損なうことなく、超低臭気特性をも兼ね備えることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態である油圧エレベータ用作動油における特性と評価結果を示す図である。
【図2】比較例としての油圧エレベータ用作動油における特性と評価結果を示す図である。
【図3】油圧エレベータ用作動油に用いる基油の組成を示す図である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to hydraulic elevator hydraulic oil.
[0002]
[Prior art]
In general, hydraulic elevator hydraulic oils using mineral oil are manufactured from a base oil and additives added thereto. Mineral oil is processed by atmospheric distillation and vacuum distillation, which are lubricating oil refining means used in ordinary oil refinery industry, to obtain a distillate having an appropriate viscosity, and the distillate is extracted with furfural and hydrorefined. The desired degree of purification is obtained by known purification means such as dewaxing and, if necessary, white clay treatment. The base oil of a general hydraulic elevator hydraulic oil has a kinematic viscosity in the range of 20 to 100 cSt at an oil temperature of 40 ° C., about 65% by mass of paraffin, about 30% by mass of naphthene, and an aromatic component. Those containing about 5% by mass of aroma, about 0.1% by mass of sulfur and about 10 ppm of nitrogen are used.
[0003]
Since the base oil having such a composition contains aromatic components, such as aroma, sulfur, and nitrogen components, the odor is increased. Therefore, when used as hydraulic oil for hydraulic elevators, odors are trapped in the hoistway that constitutes the oil, and passengers who use the odors are uncomfortable. In order to solve this problem, the hydraulic elevator hydraulic oil described in JP-A-7-34078 has an aroma content of 1.5% by mass or less.
[0004]
[Problems to be solved by the invention]
However, even the above-mentioned conventional base oil is not enough to satisfy the low odor property as a hydraulic elevator hydraulic oil. That is, hydraulic oils are usually commercialized by adding additives to improve base oil performance such as antioxidant properties and rust prevention properties, but no consideration was given to the odor caused by the additives. . For example, phenol-based 2.6-ditert-butyl-4-methylphenol and amine-based pp'-dioctyldiphenylamine, which are added as antioxidants, are contained in a large amount. It turned out to be worse. Furthermore, it was found that the use of only these antioxidants could not suppress the generation of peroxide, which causes odor deterioration due to the deterioration of the hydraulic oil, and also deteriorated the odor in this respect. Was. Further, imide-based alkenyl succinimide added as a rust preventive also has a high odor, so that the odor is further deteriorated.
[0005]
An object of the present invention is to provide a hydraulic elevator hydraulic oil capable of suppressing odor even during long-term use without impairing good oxidation stability, which is the original performance of the hydraulic hydraulic oil. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a hydraulic elevator hydraulic oil using a mineral oil having an aroma content of 1.5% by mass or less as a base oil, wherein the additive is a secondary class having 3 to 6 carbon atoms. 0.03 to 0.08 wt% of dialkyl thio zinc phosphate with an alkyl group, 2.6 to ditertiary butyl-4-methylphenol 0.03 to 0.20 wt%, p-p'-dioctyl It is characterized by containing 0.01 to 0.05% by mass of diphenylamine.
[0007]
Hydraulic elevator hydraulic oil of the present invention, dialkyl thiophosphoric zinc having secondary alkyl groups having 3 to 6 carbon atoms of sulfur-based antioxidant (hereinafter referred to s econdly-C3 / 6- ZDTP) 0. As a result of conducting an odor sensory test and a gas chromatographic odor analysis test, the amount of addition was preferably 0.08% by mass or less in consideration of odor. As a result of the mass test and the accelerated aging test, in consideration of the suppression of peroxide generation and the prolongation of the antioxidant property, a determination was made based on the finding that the content is preferably 0.03% by mass or more. 2.6-Ditertiabutyl-4-metalphenol was added in an amount of 0.03 to 0.20% by mass, and the amount of addition was determined as the antioxidant property of secondly-C3 / 6-ZDTP, a sulfur-based antioxidant. As a result of the antioxidant residual amount test, it is preferable to add 0.03% by mass or more to maintain the antioxidant property. The result of the odor sensory test and gas chromatographic odor analysis test It was determined on the basis of the result of an investigation that the content is preferably set to 0.20% by mass or less in consideration of odor. Further, pp'-dioctyldiphenylamine was added in an amount of 0.01 to 0.05% by mass. It is preferably added in an amount of not less than 01% by mass. Based on the results of conducting an odor sensory test and a gas chromatographic odor analysis test, it was determined based on the finding that the amount was preferably 0.05% by mass or less in consideration of odor. In this way, it was possible to obtain a hydraulic elevator hydraulic oil capable of suppressing odor even after long-time use without deteriorating good oxidation stability, which is the original performance of the hydraulic hydraulic oil.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described.
[0009]
First, a base oil having an aroma content of 1.5% by mass or less, for which low odor was confirmed, was used. That is, those having a kinematic viscosity at 40 ° C. as shown in FIG. 3, an aromatic content of 0.72 mass%, a sulfide content of 0.01 mass%, and a nitrogen content not detected were used. .
[0010]
As the additives to be added to the base oil, an antioxidant, a rust inhibitor, and a metal deactivator were selected as follows. In other words, it is a sulfur-based antioxidant additive that has a high antioxidant ability as an antioxidant, has the ability to suppress the generation of peroxides generated due to the deterioration of hydraulic oil, and has relatively low odor characteristics. They were selected dialkyl thiophosphoric acid zinc (s econdly-C3 / 6- ZDTP ) having a certain secondary alkyl group having 3 to 6 carbon atoms. In addition, 2.6-ditert-butyl-4-methylphenol was selected as a phenolic additive having an auxiliary effect of the antioxidant ability of the sulfur-based antioxidant and low odor characteristics with respect to the sulfur-based one. . Furthermore, pp'-dioctyldiphenylamine was selected as an amine-based additive which produces a synergistic effect with a phenol-based additive and has an effect of obtaining a longer life of the ability to inhibit oxidation deterioration.
[0011]
As the rust preventive, an overbased Ca sulfonate with low odor is selected, and as a metal deactivator that suppresses the catalytic reaction between the hydraulic oil and the metal, it is possible to obtain a metal deactivation ability in a trace amount. As a result, a benzotriazole having low odor characteristics was selected.
[0012]
The physical properties of each hydraulic oil prepared by mixing the above-described base oil and additives were evaluated based on the following tests, and the evaluation results of the examples are shown in FIG. 1 and the evaluation results of the comparative examples are shown in FIG. ing.
[0013]
First, the odor sensory test will be described. In this evaluation test, the strength of the odor is evaluated by 12 examiners according to the 6-step odor intensity display method usually performed in the odor test, and the maximum and minimum of the 12 persons are evaluated. Those with the respective evaluation points deleted were used as evaluation targets. This evaluation score indicates that the lower the score, the higher the low odor characteristics. 0: odorless, 1: odor that can be detected at last, 2: weak odor that can be discerned, what odor, 3: odor that can be easily detected, 4: Evaluated as strong odor, 5: Intense odor.
[0014]
In this test method, 30 ml of the material was sealed in a screw-bore bottle having a diameter of 27 mm and a capacity of 50 ml and shaken vigorously. Thereafter, the bottle lid was opened, and the test tube was smelled. As shown in FIG. 2, the evaluation average points are rounded off, and a single point is marked with “以上” as good, and a point beyond that is marked with “x” as having odor.
[0015]
The gas chromatographic analysis test is an analysis test for measuring light components (total ions) which are odor components contained in hydraulic oil. As a test method, a sample of 5 ml is put into an impinger having a capacity of 30 ml, and the sample oil temperature is measured. While maintaining the temperature at 30 ° C. in an oil bath, He gas was introduced into the impinger at a flow rate of 30 to 100 ml / min, and light components were discharged from the impinger together with the inflowing gas. Was collected over. This collection tube was connected to a gas chromatography analyzer to measure light components. As a result of the measurement, a light oil having an area value of less than 1 million ion area value for a new oil and an accelerated deteriorated oil having an area value of less than 2 million ion area value for a later-described oil were evaluated as good, and were marked with a triangle.
[0016]
The RBOT deterioration test is a test for measuring the amount of the antioxidant remaining in the hydraulic oil to determine the continuity of the antioxidant ability, and was carried out in accordance with the rotating cylinder oxidation stability test method of JIS-K-2514. In this test, those satisfying the general performance are those for 150 min or more.
[0017]
The wet test is an evaluation test for evaluating rust prevention properties for suppressing the generation of rust due to moisture in the air, and was performed in accordance with the rust-preventive oil 5.34 wet test method specified in JIS-K-2246. In this evaluation, A, B, C, and D were assigned in the order of good evaluation. If the evaluation was better than D, it was determined that general performance was satisfied.
[0018]
The shell four-ball wear test is based on the ASTM-D-2783 shell four-ball wear test method. The test conditions are as follows: the vertical axis rotation speed is 1800 rpm, the load is 30 kgf, the test time is 30 minutes, and the test temperature is room temperature. The material was prepared using a 1/2 inch precision ball for AKS ball bearing steel ball. In this test result, if the wear scar diameter was 0.5 mm or less, it was determined that general performance was satisfied.
[0019]
Next, an accelerated deterioration test for obtaining accelerated deteriorated oil will be described.
[0020]
First, 50 g of a sample and a 3 m copper wire wound in a spiral shape with a new metal skin that has been polished in advance and whose polished skin is degreased with diethyl ether are placed in a glass bottle having an inner diameter of 50 mm and a capacity of 200 mm. This glass bottle is put in a copper container, oxygen at room temperature is sealed in the copper container at a pressure of 0.6 MPa, and the copper container is tilted by 30 ° in an oil bath using silicon oil at 150 ° C. Put in. In this state, the copper container is continuously rotated at 100 rpm for 1 hour, and the sample in the glass bottle is agitated and deteriorated by heating to obtain a deteriorated oil.
[0021]
Here, the deteriorated oil thus obtained was subjected to an infrared absorption test and the gas chromatography analysis test described above.
[0022]
This infrared absorption test is a test for measuring the rate of increase of organic degradation products in a sample as compared with fresh oil, and determining the antioxidant ability of the sample. As the testing method, performed by an infrared absorption wavelength 1790- 1 cm (Kaiser) in thickness of 0.5 mm KRS-5 cell transmission method, in the drawing as an antioxidant ability good things increase rate is within 10% Was marked with a triangle. In the degraded oil, when the peroxide polymerized to form oxidative polymerization (sludge) which was deposited in the oil, the presence or absence of the generation was stored in the figure. Here, the sludge generated is determined to have low antioxidant ability.
[0023]
Next, various test deteriorations and their evaluations will be described with reference to FIGS.
[0024]
First, the odor characteristics are evaluated based on the test results of the odor sensory test and the gas chromatographic analysis test.
[0025]
The content of the antioxidant was 0.10% by mass of sulfur-based secondly-C3 / 6-ZDTP and phenol-based, as in Examples 1 to 14 and Comparative Examples 15 to 26 shown in FIGS. When 2.6-di-tert-butyl-4-metalphenol was 0.25% by mass and amine-based pp'-dioctyldiphenylamine was 0.07% by mass, each of them exhibited high odor. 0.08% by mass or less of secondly-C3 / 6-ZDTP, 0.20% by mass or less of phenol-based 2.6-ditert-butyl-4-methylphenol, and amine-based pp'-dioctyldiphenylamine Was set to 0.05% by mass or less.
[0026]
In addition, when the preservative Ca sulfonate was 0.10% by mass and 50 ppm, and when the addition amount of the metal deactivator benzotriazole was 0.10% by mass and 50 ppm, high odor was exhibited. The addition amounts of the preservative Ca sulfonate and the metal deactivator benzotriazole were 0.07% by mass or less and 30 ppm or less, respectively.
[0027]
By containing the additive in this manner, the hydraulic oil exhibits an initial odor of the new oil of 1 or less in the sensory test in the organoleptic test, and a light component which is an odor component in the gas chromatographic analysis test. Showed less than 1 million ions in the new oil and less than 2 million ions in the degraded oil, and could be an ultra-low odor hydraulic oil with suppressed odor.
[0028]
Next, the antioxidant ability of the antioxidant is evaluated based on the test results of the PBO test and the infrared absorbance test.
[0029]
Based on the test results, the content of the antioxidant was 0.01% by mass for sulfur-based secondly-C3 / 6-ZDTP and 0.01% by mass for phenol-based 2.6-ditert-butyl-4-methylphenol. When the content of the amine-based pp'-dioctyldiphenylamine was 0.005% by mass, the rate of increase in the absorbance exceeded the allowable range and exhibited poor oxidation stability. Therefore, the sulfur-based secondly-C3 / 0.06% by mass or more of 6-ZDTP, 0.03% by mass or more of phenol-based 2.6-ditert-butyl-4-methylphenol, and 0.03% by mass of an amine-based pp'-dioctyldiphenylamine. It was at least 01% by mass. As a result, it was possible to obtain a hydraulic oil having a high level of antioxidant ability, which showed 150 minutes or more in the RBOT test and 4% or less in the infrared absorbance test for the deteriorated oil. In addition, when the rustproofing ability is evaluated based on a wet test, a good rustproofing ability of C or more can be obtained when the content of Ca sulfonate is 0.01% by mass or more.
[0030]
In this way, 0.03 to 0.08% by mass of secondly-C3 / 6-ZDTP, which is an antioxidant, and 0.03 to 0.20% by mass of 2.6-ditert-butyl-4-methylphenol. It has been found that a hydraulic oil having ultra-low odor characteristics and good antioxidant ability can be obtained by adding 0.03 to 0.05% by mass of pp'-dioctyldiphenylamine. Further, by setting the content of Ca sulfonate, which is a rust preventive, to 0.01 to 0.07% by mass, it is possible to obtain a hydraulic oil having ultra-low odor characteristics and good rust preventive ability, and By containing benzotriazole as an activator in an amount of 30 ppm or less, a hydraulic oil having ultra-low odor characteristics can be obtained.
[0031]
【The invention's effect】
As described above, the hydraulic oil for hydraulic elevator according to the present invention comprises secondly-C3 / 6-ZDTP, which is an antioxidant, in an amount of 0.03 to 0.08% by mass and 2.6-ditert-butyl-4-methylphenol. 0.03 to 0.20% by mass, and pp'-dioctyldiphenylamine containing 0.03 to 0.05% by mass, without impairing the antioxidant ability which is the basic performance of hydraulic oil. It can also have ultra-low odor characteristics.
[Brief description of the drawings]
FIG. 1 is a diagram showing characteristics and evaluation results of a hydraulic elevator hydraulic oil according to an embodiment of the present invention.
FIG. 2 is a diagram showing characteristics and evaluation results of a hydraulic elevator hydraulic fluid as a comparative example.
FIG. 3 is a diagram showing the composition of a base oil used for hydraulic elevator hydraulic oil.

Claims (3)

アロマ含有率を1.5質量%以下とした鉱油を基油として用いた油圧エレベータ用作動油において、添加剤である炭素数3〜6の2級アルキル基を有するジアルキルチオりん酸亜鉛を0.03〜0.08質量%、2.6−ジターシャリブチル−4−メチルフェノールを0.03〜0.20質量%、p−p’−ジオクチルジフェニールアミンを0.01〜0.05質量%含有させたことを特徴とする油圧エレベータ用作動油。In hydraulic elevators hydraulic oil with mineral oil aroma content was 1.5 mass% or less as a base oil, a dialkyl thiophosphoric zinc having secondary alkyl groups having 3 to 6 carbon atoms which is additive 0 0.03 to 0.08% by mass, 0.03 to 0.20% by mass of 2.6-ditert-butyl-4-methylphenol, and 0.01 to 0.05% by mass of pp'-dioctyldiphenylamine. % Hydraulic oil for hydraulic elevators. 請求項1記載のものにおいて、さらに防錆剤としてCaスルホネートを0.01〜0.07質量%以下含有させたことを特徴とする油圧エレベータ用作動油。2. A hydraulic elevator hydraulic oil according to claim 1, further comprising 0.01 to 0.07% by mass of Ca sulfonate as a rust preventive. 請求項1記載のものにおいて、さらに金属不活性剤としてベンゾトリアゾールを30ppm以下含有させたことを特徴とする油圧エレベータ用作動油。2. The hydraulic oil for a hydraulic elevator according to claim 1, further comprising 30 ppm or less of benzotriazole as a metal deactivator.
JP8276996A 1996-04-04 1996-04-04 Hydraulic hydraulic oil Expired - Fee Related JP3592832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8276996A JP3592832B2 (en) 1996-04-04 1996-04-04 Hydraulic hydraulic oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8276996A JP3592832B2 (en) 1996-04-04 1996-04-04 Hydraulic hydraulic oil

Publications (2)

Publication Number Publication Date
JPH09272887A JPH09272887A (en) 1997-10-21
JP3592832B2 true JP3592832B2 (en) 2004-11-24

Family

ID=13783649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8276996A Expired - Fee Related JP3592832B2 (en) 1996-04-04 1996-04-04 Hydraulic hydraulic oil

Country Status (1)

Country Link
JP (1) JP3592832B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018531A (en) * 2002-06-12 2004-01-22 Nippon Oil Corp Lubricating oil composition
US8748357B2 (en) 2008-07-15 2014-06-10 Exxonmobil Research And Engineering Company Method for stabilizing diesel engine lubricating oil against degradation by biodiesel fuel
CN106978243B (en) * 2017-05-26 2020-01-14 中国石油化工股份有限公司 Lubricating oil for elevator traction machine and preparation method thereof
JP6980627B2 (en) * 2018-09-19 2021-12-15 三菱重工業株式会社 Oil sludge productivity determination method

Also Published As

Publication number Publication date
JPH09272887A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
EP1899446B1 (en) Use of base stock lubricant blends for enhanced micropitting protection
JP4614025B2 (en) Stabilized hydrotreated and hydrodewaxed lubricant composition
RU2452766C2 (en) Stabilising compositions for lubricating substances
US11220652B2 (en) Method for inspecting lubricating oil composition and method for producing lubricating oil composition
EP0281992A2 (en) Lubricating oil composition and an additive for lubricating oil
JP2012504679A (en) Improved HVI-PAO bimodal lubricant composition
JP2009500489A (en) HVI-PAO in industrial lubricating oil and grease compositions
JP3592832B2 (en) Hydraulic hydraulic oil
CN110225962A (en) Lubricating oil composition for transmission, method for lubricating transmission, and transmission
Cerny et al. Composition and oxidation stability of SAE 15W-40 engine oils
JPH01153792A (en) Refrigerator oil composition
JP2013510198A (en) Lubricating oil composition
AU2003236378A1 (en) Diesel engine lubricants containing zinc dialkyl dithiophosphates and functionalized polymer
WO2007084407A2 (en) Low sulfur, low ash and low phosphorous lubricant additive and composition
Jain et al. Evaluation of thermo-oxidative characteristics of gear oils by different techniques: Effect of antioxidant chemistry
EP0209621A2 (en) An immersion oil for microscope
JP7354008B2 (en) Friction modifiers and lubricating oil compositions
EP0250273A2 (en) Polycyclic thiophene lubricating oil additive
JPH05279730A (en) Composition for heat treating oil
JPH0734078A (en) Base oil of hydraulic oil for hydraulic elevator
KR101982310B1 (en) Rust preventive oil composition
CA2447956A1 (en) Synergistic combination of metallic and ashless rust inhibitors to yield improved rust protection and demulsibility in dispersant-containing lubricants
Rudnick et al. Evaluation of oxidation‐mediated volatility of hydrocarbon lubricant base fluids
JP3500734B2 (en) Ball bearings coated with anti-rust lubricant
Deactivator Zn-Dialkyldithiophosphate, Sulphurized EP-Additive and

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040826

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140903

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees