JPH0734056B2 - Lighting lens - Google Patents

Lighting lens

Info

Publication number
JPH0734056B2
JPH0734056B2 JP62179630A JP17963087A JPH0734056B2 JP H0734056 B2 JPH0734056 B2 JP H0734056B2 JP 62179630 A JP62179630 A JP 62179630A JP 17963087 A JP17963087 A JP 17963087A JP H0734056 B2 JPH0734056 B2 JP H0734056B2
Authority
JP
Japan
Prior art keywords
lens
illuminance
light source
entrance pupil
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62179630A
Other languages
Japanese (ja)
Other versions
JPS6423216A (en
Inventor
健次 遠藤
信一 永田
春生 植村
Original Assignee
大日本スクリ−ン製造株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本スクリ−ン製造株式会社 filed Critical 大日本スクリ−ン製造株式会社
Priority to JP62179630A priority Critical patent/JPH0734056B2/en
Priority to EP88111320A priority patent/EP0299475B1/en
Priority to DE3851485T priority patent/DE3851485T2/en
Priority to KR1019880008903A priority patent/KR910008066B1/en
Priority to US07/220,624 priority patent/US4878745A/en
Publication of JPS6423216A publication Critical patent/JPS6423216A/en
Publication of JPH0734056B2 publication Critical patent/JPH0734056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0047Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with a light source
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 《産業上の利用分野》 この発明は、プリント基板やIC等の回路パターン露光装
置、あるいは製版用焼付装置や殖版機、その他複写装置
等の各種照明係に適用しうる照明用レンズに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION << Industrial Application Field >> The present invention is applied to a circuit pattern exposure device such as a printed circuit board or an IC, a printing apparatus for plate making, a plate-making machine, and other various lighting devices such as copying machines. Illuminating lens.

《従来技術》 この種の照明用レンズとしては、従来より、例えば第14
図に示すようなリレーコンデンサー型のものが周知であ
る。
<< Prior Art >> As an illumination lens of this type, for example, the 14th
A relay capacitor type as shown in the figure is well known.

この光学系はコンデンサレンズCとフィールドレンズF
とから成り、コンデンサーレンズCの前方に配置した光
源Sの実像S′をフイールドレンズFの近傍に形成し、
コンデンサーレンズCの入射瞳Aの実像をフイールドレ
ンズFの後方に配置した被照射面OP上に投影することに
より、被照射面P上に置かれた対象物(例えば焼付用透
過原板等)をできるだけ均一に照明するように構成した
ものである。
This optical system includes a condenser lens C and a field lens F.
And a real image S ′ of the light source S arranged in front of the condenser lens C is formed in the vicinity of the field lens F,
By projecting the real image of the entrance pupil A of the condenser lens C onto the irradiated surface OP arranged behind the field lens F, an object (for example, a transmission original plate for printing) placed on the irradiated surface P can be as much as possible. It is configured to uniformly illuminate.

《発明が解決しようとする問題点》 上記従来の照明用レンズの場合には、被照射面上の照度
分布は、第15図に示すように、いわゆるコサイン4乗則
に従つて周辺部になるほど低下する。ちなみにレンズF
からの出射度θ=27°に対応する被照射面P上での照度
は単純計算によると、中心部(θ=0°)に対して周辺
部では37%まで低下する。しかも周辺部での照度低下の
要因は上記コサイン4乗則だけでなく、レンズのビグネ
ッティング(口径食)や入射瞳Aにおける照度不均一等
もあるので、一般にはコサイン4乗則以上に周辺部の照
度が低下する。
<< Problems to be Solved by the Invention >> In the case of the above-mentioned conventional illumination lens, the illuminance distribution on the illuminated surface is as shown in FIG. descend. By the way, lens F
According to a simple calculation, the illuminance on the irradiated surface P corresponding to the degree of emission θ = 27 ° from is reduced to 37% in the peripheral portion with respect to the central portion (θ = 0 °). In addition, the cause of the decrease in illuminance at the peripheral portion is not only the above cosine fourth law, but also the lens vignetting (vignetting) and the uneven illuminance at the entrance pupil A. Illuminance decreases.

従つてこのような照明系で被照射面に置いた透過原板等
を照明し、その原板の像を結像用光学系で投影する場合
には、投影された像は結像用レンズのコサイン4乗則等
の影響により、周辺部でさらに照度低下したものとな
る。
Therefore, when a transparent original plate or the like placed on the surface to be illuminated is illuminated by such an illumination system and an image of the original plate is projected by the imaging optical system, the projected image is the cosine 4 of the imaging lens. Due to the effect of the power law, the illuminance is further reduced in the peripheral area.

そこで従来は、このような周辺部での照度低下を改善す
るために、照明用光学系の中にグラディエントフイルタ
(中央部ほぼ光透過性を低くしたフイルタ)を介在させ
たり、被照射面と照明レンズとの距離を十分大きく設定
し、かつ、結像用レンズの画角を小さくすること等で対
処していた。しかし、前者の場合にはグラディエントフ
イルタで中央部の透過光量を抑制するため、全体として
大幅な光量の損失を招き、後者の場合には行路長が長く
なるため装置が大型化する等の不都合を生ずるのみなら
ず、投影レンズに起因する周辺照度低下を積極的に補正
することはできなかつた。
Therefore, conventionally, in order to improve such a decrease in illuminance at the peripheral portion, a gradient filter (a filter having a low light transmittance in the central portion) is interposed in the illumination optical system, or the illuminated surface and the illumination are This has been dealt with by setting a sufficiently large distance from the lens and reducing the angle of view of the imaging lens. However, in the former case, the gradient filter suppresses the amount of light transmitted through the central portion, resulting in a large loss of light amount as a whole. Not only does it occur, but it is not possible to positively correct the reduction in peripheral illuminance due to the projection lens.

また、従来においては、例えば特開昭61-267722号公報
に開示されているように、被照射面において、周辺部の
照度を中心部の照度より増加させる照度分布可変コンデ
ンサレンズが知られている。このレンズによれば、グラ
ディエントフィルタを介在させる必要がないので、光量
の損失を抑えることができる。
Further, conventionally, as disclosed in, for example, Japanese Patent Application Laid-Open No. 61-267722, there is known an illuminance distribution variable condenser lens for increasing the illuminance of the peripheral portion over the illuminance of the central portion on the illuminated surface. . According to this lens, since it is not necessary to interpose a gradient filter, it is possible to suppress the loss of light quantity.

しかしながら、上記従来の照度分布可変コンデンサレン
ズにおいては、レンズからの出射光(主光線)が全て光
軸に対して平行になるため、被照射面の径とレンズの有
効径とをほぼ等しくする必要があり、被照射面の拡大に
伴って有効径の大きなレンズ、すなわち装置の大型化が
必要となる。
However, in the conventional illuminance distribution variable condenser lens described above, since all the light emitted from the lens (the principal ray) is parallel to the optical axis, it is necessary to make the diameter of the illuminated surface and the effective diameter of the lens substantially equal. Therefore, it is necessary to increase the size of the lens having a large effective diameter, that is, the device, as the irradiation surface is enlarged.

本発明は、このような事情に鑑みてなされたもので、有
効径より充分に大きな被照射面を照射し、かつ、被照射
面において、周辺部の照度を中心部の照度より増加させ
る照明用レンズの提供を目的とする。
The present invention has been made in view of the above circumstances, and is for illumination that irradiates a surface to be irradiated that is sufficiently larger than the effective diameter and that increases the illuminance of the peripheral portion of the surface to be irradiated from the illuminance of the central portion. The purpose is to provide a lens.

《問題点を解決するための手段》 本発明は、上記目的を達成するために、以下のように構
成される。
<< Means for Solving Problems >> The present invention is configured as follows to achieve the above object.

まず、光源Sと被照射面Pとの間に配置される照明用レ
ンズの入射瞳Aと被照射面Pとを共役とし、上記レンズ
の焦点距離をf、レンズと光源Sとの距離をa、上記レ
ンズと被照射面Pとの距離をbとしたとき、f<<a及
びf<<bの関係を満たす。さらに、第1図に示すよう
に、光源Sからレンズへの入射瞳Aへ入射する光線b1
入射高をhとし、当該光線b1が被照射面Pに達したとき
の被照射面上での照射高をHとするとき、入射高hと照
射高Hとこれらの変化率(dh/dH)とを含む関数f
(H)をf(H)=(h/H)(dh/dH)で規定し、この関
数f(H)が、被照射面周辺部でf(o)<f(H)を
満足するように構成したことを特徴とするものである。
First, the entrance pupil A of the illumination lens arranged between the light source S and the illuminated surface P and the illuminated surface P are conjugated, the focal length of the lens is f, and the distance between the lens and the light source S is a. When the distance between the lens and the irradiated surface P is b, the relations f << a and f << b are satisfied. Further, as shown in FIG. 1 , the incident height of the light ray b 1 incident on the entrance pupil A from the light source S to the lens is set to h, and the light ray b 1 on the illuminated surface when it reaches the illuminated surface P. When the irradiation height at H is H, a function f including the incident height h, the irradiation height H, and the change rates (dh / dH) of these is calculated.
(H) is defined by f (H) = (h / H) (dh / dH), and this function f (H) should satisfy f (o) <f (H) at the periphery of the irradiated surface. It is characterized by being configured in.

《作用》 本発明に係る照明用レンズは上記のように構成されてお
り、被照射面P上の照度分布は以下に示すように考える
ことができる。
<< Operation >> The illumination lens according to the present invention is configured as described above, and the illuminance distribution on the irradiated surface P can be considered as follows.

第1図において、光源Sは光軸Z上にあり、光源Sの中
心(So)からの光線b1はレンズLの入射瞳Aへ入射高h
で入射するとすれば、この光線b1は被照射面P上の照射
高Hに達する。
In FIG. 1, the light source S is on the optical axis Z, and the light beam b 1 from the center (So) of the light source S enters the entrance pupil A of the lens L at an incident height h.
Suppose that the light beam b 1 is incident on the irradiation surface P, then the light beam b 1 reaches the irradiation height H on the irradiation surface P.

ここで、レンズLの入射瞳Aと被照射面Pとは共役であ
るから、入射瞳A上の入射高hを定めると、被照射面P
上の照射高Hが定まる。
Here, since the entrance pupil A of the lens L and the illuminated surface P are conjugate, when the incident height h on the entrance pupil A is determined, the illuminated surface P
The upper irradiation height H is determined.

一方、入射瞳A上で、hから微小高Δh離れた位置へ入
射した光線は、被照射面P上で、Hから微小高ΔH離れ
た位置に達する。
On the other hand, on the entrance pupil A, a light ray incident on a position separated by a minute height Δh from h reaches a position on the irradiated surface P separated by a minute height ΔH from H.

この場合、レンズの透過時における光量損失が全くない
とすると、入射瞳Aで、入射高hを内径とし、幅をΔh
とする輪帯状の微小面積ΔS1を通過した光束は、同時に
被照射面P上の照射高Hを内径とし、幅をΔHとする輪
帯状の微小面積ΔS2に達する。
In this case, assuming that there is no light amount loss during transmission through the lens, the entrance pupil A has an entrance height h as an inner diameter and a width Δh.
The light flux that has passed through the ring-shaped minute area ΔS 1 simultaneously reaches the ring-shaped minute area ΔS 2 having the irradiation height H on the irradiated surface P as the inner diameter and the width ΔH.

ここで、ΔS1,ΔS2は、次式で表わされる。Here, ΔS 1 and ΔS 2 are expressed by the following equations.

ΔS1=π{(h+Δh)2−h2} ΔS2=π{(H+ΔH)2−H2} 従つて入射瞳A上の入射高hにおける照度をeとする
と、被照射面P上の照射高Hにおける照度Eは、上記微
小面積の比(ΔS1/ΔS2)に比例するから次式で表わさ
れる。
ΔS 1 = π {(h + Δh) 2 −h 2 } ΔS 2 = π {(H + ΔH) 2 −H 2 } Therefore, assuming that the illuminance at the incident height h on the entrance pupil A is e, the irradiation on the irradiated surface P is The illuminance E at high H is proportional to the ratio (ΔS 1 / ΔS 2 ) of the minute areas and is represented by the following equation.

E=e(ΔS1/ΔS2) =e(2hΔh+Δh2)/(2HΔH+ΔH2) =e(Δh/ΔH){(2h+Δh)/(2H+ΔH)} ここで、ΔHを限りなく0に近づけると、 および となり、 Eは次式で表わされる。E = e (ΔS 1 / ΔS 2 ) = e (2hΔh + Δh 2 ) / (2HΔH + ΔH 2 ) = e (Δh / ΔH) {(2h + Δh) / (2H + ΔH)} Here, if ΔH approaches 0 as much as possible, and And E is expressed by the following equation.

E=ef(H) ただし、f(H)=(dh/dH)(h/H) である。E = ef (H) However, f (H) = (dh / dH) (h / H).

ここで、入射瞳A上の照度eが入射高hと無関係に一定
であるとみなされる場合(入射瞳Aにおける照度分布が
均一である場合)には、上記関数f(H)は入射瞳A上
の照度に対する被照射面P上の相対照度そのものを示
す。
Here, when the illuminance e on the entrance pupil A is considered to be constant irrespective of the entrance height h (when the illuminance distribution on the entrance pupil A is uniform), the function f (H) is calculated as follows. The relative illuminance itself on the irradiated surface P with respect to the above illuminance is shown.

すなわち、被照射面P上の照射高H=0である中心部の
相対照度はf(0)で表わされ、中心部以外(H≠0)
の相対照度はf(H)で表わされる。
That is, the relative illuminance of the central portion where the irradiation height H = 0 on the surface to be illuminated P is represented by f (0), and other than the central portion (H ≠ 0)
The relative illuminance of is represented by f (H).

従つて本発明に係る照明用レンズでは、h,H及び(dh/d
H)を含む関数f(H)を上記のように規定したとき、
被照射面Pの周辺部ではf(0)<f(H)を満足する
ように構成されているので、被照射面Pの周辺での照度
は中心から周辺部に向けて高くなる。
Therefore, in the illumination lens according to the present invention, h, H and (dh / d
When the function f (H) including H) is defined as above,
Since the peripheral portion of the irradiated surface P is configured to satisfy f (0) <f (H), the illuminance around the irradiated surface P increases from the center toward the peripheral portion.

また本発明では、レンズの焦点距離に対して光源Sがレ
ンズより充分離れて配置される(f<<a)ことによ
り、レンズにはほぼ平行光が入射される。そしてレンズ
からの出射光は、焦点において一旦集光された後に、広
がっていく。このとき、レンズの焦点距離に対して被照
射面Pがレンズより充分離れて配置される(f<<b)
ことにより、レンズの有効径が小さい場合であっても、
大きな被照射面を照射することができる。
Further, in the present invention, since the light source S is arranged far from the lens with respect to the focal length of the lens (f << a), substantially parallel light is incident on the lens. The light emitted from the lens is once condensed at the focal point and then spreads. At this time, the irradiated surface P is arranged far away from the lens with respect to the focal length of the lens (f << b).
As a result, even when the effective diameter of the lens is small,
A large irradiation surface can be irradiated.

なお、近軸領域では、 H=−{(a′−f)/fa′}b′hだから、f(0)
は、f(0)=[fa′/{(a′−f)b′}]2と表
わされる。ここでa′は光源と照明レンズの前側主点の
距離、b′は光源の実像と被照射面の距離である。
In the paraxial region, H =-{(a'-f) / fa '} b'h, so f (0)
Is represented as f (0) = [fa '/ {(a'-f) b'}] 2 . Here, a'is the distance between the light source and the front principal point of the illumination lens, and b'is the distance between the real image of the light source and the illuminated surface.

《実施例》 以下、本発明に係る第1の実施例〜第6の実施例につい
て説明する。なおいずれの実施例においても第1図に示
す位置関係は下記の値になるように設定する。
<< Examples >> Hereinafter, first to sixth examples according to the present invention will be described. In any of the embodiments, the positional relationship shown in FIG. 1 is set to have the following values.

レンズLの焦点距離 f=1.0 光源Sとレンズとの距離 a=50 光源Sの大きさ 2a・tanω レンズLと被照射面との距離 b=100 すなわち、各実施例においては、全てf<<a及びf<
<bの関係が満足されている。
Focal length of lens L f = 1.0 Distance between light source S and lens a = 50 Size of light source S 2a · tan ω Distance between lens L and illuminated surface b = 100 That is, in each embodiment, f << a and f <
The relationship of <b is satisfied.

そして、第1の実施例〜第3の実施例では、レンズLを
構成する各々のレンズG1〜G4は全て球面レンズであ
り、第4〜第6の実施例では、非球面を含むレンズであ
る。
Then, in the first to third embodiments, all each lens G 1 ~G 4 of the lens L is a spherical lens, the fourth to sixth embodiments, a lens including an aspherical surface Is.

なお、レンズの非球面は光軸方向の座標Zと、光軸から
の高さYによつて規定され、ZはYを変数とする次式で
表わされる。
The aspherical surface of the lens is defined by the coordinate Z in the optical axis direction and the height Y from the optical axis, and Z is represented by the following equation with Y as a variable.

Z=CY2/[1+{1-(K+1)C2Y21/2]+A1Y4+A2Y6+A3Y8
+A4Y10 ただし、C=1/r(rは曲率半径) Kはコーニック定数 A1,A2,……は係数である。
Z = CY 2 / [1+ { 1- (K + 1) C 2 Y 2} 1/2] + A 1 Y 4 + A 2 Y 6 + A 3 Y 8
+ A 4 Y 10 However, C = 1 / r (r is a radius of curvature) K is a conic constant A 1 , A 2 , ... Is a coefficient.

第1の実施例 本発明に係る第1の実施例を第2図に示す。この実施例
は、レンズLを構成する3群3枚のレンズG1〜G3が上記
のようにいずれも球面レンズで形成されている。この第
2図に対応するレンズのデータは下記の通りである。
First Embodiment A first embodiment according to the present invention is shown in FIG. In this embodiment, the lenses G 1 to G 3 of the three lenses in the third group, which form the lens L, are all formed of spherical lenses as described above. The data of the lens corresponding to FIG. 2 are as follows.

r d n 1 12.8443 0.599 1.64294 2 −1.5549 0.248 3 1.1351 0.338 1.83139 4 −2.8552 0.301 5 −1.2607 0.631 1.73621 6 −0.7708 この実施例では入射瞳Aの有効直径は1.2、入射瞳Aの
中心から光源Sを臨む有効画角は2ω=43.6°である。
r d n 1 12.8443 0.599 1.64294 2 −1.5549 0.248 3 1.1351 0.338 1.83139 4 −2.8552 0.301 5 −1.2607 0.631 1.73621 6 −0.7708 In this embodiment, the effective diameter of the entrance pupil A is 1.2, and the light source S faces from the center of the entrance pupil A. The effective angle of view is 2ω = 43.6 °.

第3図はこの実施例による被照射面P上での照度分布を
示す図であり、それぞれD0,D1,D2は下記の設定条件で
の照度分布を軸対称に示すグラフである。これらの図
中、横軸は被照射面での光軸からの高さを、縦軸は中心
部の光量を100とする照度比(%)を示す。
FIG. 3 is a diagram showing the illuminance distribution on the irradiated surface P according to this embodiment, and D 0 , D 1 , and D 2 are graphs showing the illuminance distribution under the following setting conditions in an axisymmetric manner. In these figures, the horizontal axis represents the height from the optical axis on the illuminated surface, and the vertical axis represents the illuminance ratio (%) with the light amount in the central portion as 100.

同図中D0は光源Sの中心(S0)からの光線(b1)による
分布を、D1は光源Sの中心から端までの高さの7割の位
置(S1)にある輪帯状部分からの光線による分布を、D2
は光源Sの端(S2)にある輪帯状部分からの光線による
分布を示し、後述する他の実施例においてもこの関係は
同様である。
In the figure, D 0 is the distribution due to the light beam (b 1 ) from the center (S 0 ) of the light source S, and D 1 is the ring at the position (S 1 ) 70% of the height from the center to the end of the light source S. The distribution of the rays from the strip is D 2
Indicates the distribution of light rays from the annular portion at the end (S 2 ) of the light source S, and this relationship is the same in other embodiments described later.

これらのグラフからも明らかなように、被照射面P上の
有効照射域90φ内において、中心から周辺部へかけて漸
次照度が増大する。これにより、冒述した問題点を効果
的に解消することが可能となる。
As is clear from these graphs, in the effective irradiation area 90φ on the irradiation surface P, the illuminance gradually increases from the center to the peripheral portion. As a result, it is possible to effectively eliminate the above-mentioned problems.

この実施例ではレンズLを球面レンズG1〜G3で構成しな
がら、上記有効画角2ωを十分大きくとることができる
点で有利である。
This embodiment is advantageous in that the effective angle of view 2ω can be made sufficiently large while the lens L is composed of spherical lenses G 1 to G 3 .

第2の実施例 本発明に係る第2の実施例を第4図に示す。この実施例
はレンズLを構成する2群2枚のレンズG1,G2が前記の
ようにいずれも球面レンズで形成されている。この第4
図に対応するレンズのデータは下記の通りである。
Second Embodiment A second embodiment according to the present invention is shown in FIG. In this embodiment, the lenses G 1 and G 2 of the two lenses in the second group, which form the lens L, are both spherical lenses as described above. This 4th
The data of the lens corresponding to the figure is as follows.

r d n 1 5.8058 0.702 1.94359 2 −1.5459 0.278 3 0.8281 1.256 1.49028 4 −0.7142 この実施例では入射瞳Aの有効直径は1.06、入射瞳Aの
中心から光源Sを臨む有効画角は2ω=27.0°である。
r d n 1 5.8058 0.702 1.94359 2 −1.5459 0.278 3 0.8281 1.256 1.49028 4 −0.7142 In this embodiment, the effective diameter of the entrance pupil A is 1.06, and the effective angle of view from the center of the entrance pupil A to the light source S is 2ω = 27.0 °. is there.

第5図はこの実施例による被照射面P上での照度分布を
示し、この図からも明らかなように有効照射域90φ内に
おいて漸次周辺部で照度が増大する。又、レンズが2枚
の球面レンズでありながら、周辺の照度が高くなる性質
をもち、製作コストの点などから、非常に有利である。
FIG. 5 shows the illuminance distribution on the irradiated surface P according to this embodiment, and as is clear from this figure, the illuminance gradually increases in the peripheral portion within the effective irradiation area 90φ. Further, even though the lens is two spherical lenses, it has a property of increasing the illuminance in the periphery, which is very advantageous in terms of manufacturing cost.

第3の実施例 本発明に係る第3の実施例を第6図に示す。この実施例
はレンズLを構成する4群4枚のレンズG1〜G4が前記の
ようにいずれも球面レンズで形成されている。この第6
図に対応するレンズのデータは下記の通りである。
Third Embodiment A third embodiment according to the present invention is shown in FIG. In this embodiment, the lenses G 1 to G 4 of the four lenses in the four groups which compose the lens L are all formed of spherical lenses as described above. This 6th
The data of the lens corresponding to the figure is as follows.

r d n 1 1.2970 0.3643 1.67470 2 −2.1677 0.1079 3 −9.6551 0.2889 1.70011 4 −1.7124 0.1473 5 0.8925 0.3064 1.66258 6 1.2785 0.1641 7 −1.8578 0.3579 1.68473 8 0.5743 この実施例では入射瞳Aの有効直径は1.04、入射瞳Aの
中心から光源Sを臨む有効画角は2ω=40.2°である。
rd n 1 1.2970 0.3643 1.67470 2 −2.1677 0.1079 3 −9.6551 0.2889 1.70011 4 −1.7124 0.1473 5 0.8925 0.3064 1.66258 6 1.2785 0.1641 7 −1.8578 0.3579 1.68473 8 0.5743 In this embodiment, the effective diameter of the entrance pupil A is 1.04, and that of the entrance pupil A is 1.04. The effective angle of view of the light source S from the center is 2ω = 40.2 °.

第7図はこの実施例による被照射面P上での照射分布を
示し、有効照射域90φ内にいて、漸次周辺部で照度が増
大することがわかる。
FIG. 7 shows the irradiation distribution on the irradiated surface P according to this embodiment, and it can be seen that the illuminance gradually increases in the peripheral area within the effective irradiation area 90φ.

なお、この実施例では、屈折率nの値が比較的小さいの
で、汎用の光学ガラス材を用いることができる点で有利
である。
In this example, the refractive index n has a relatively small value, which is advantageous in that a general-purpose optical glass material can be used.

第4の実施例 本発明に係る第4の実施例を第8図に示す。この実施例
は2群2枚のレンズG1,G2から成り、光源側(図上左
側)より見て、第2面が非球面で形成されている。この
第8図に対応するレンズのデータは下記の通りである。
Fourth Embodiment A fourth embodiment according to the present invention is shown in FIG. In this embodiment, the second group is composed of two lenses G 1 and G 2 , and the second surface is an aspherical surface when viewed from the light source side (left side in the figure). The data of the lens corresponding to FIG. 8 are as follows.

r d n 1 1.2713 0.467 1.55649 2 −0.8983 0.249 3 1.4294 1.526 1.52216 4 −1.4859 非球面の係数 K A1 A2 A3 A4 2 −1.409 0.630 0.044 0.112 0.086 この実施例では入射瞳Aの有効直径は1.24、入射瞳Aの
中心から光源Sを臨む有効画角は2ω=37.6°である。
r d n 1 1.2713 0.467 1.55649 2 −0.8983 0.249 3 1.4294 1.526 1.52216 4 −1.4859 Aspheric coefficient K A 1 A 2 A 3 A 4 2 −1.409 0.630 0.044 0.112 0.086 In this embodiment, the effective diameter of the entrance pupil A is 1.24. The effective angle of view of the light source S from the center of the entrance pupil A is 2ω = 37.6 °.

第9図はこの実施例による被照射面P上での照度分布を
示し、有効照射域90φ内において、漸次周辺部で照度が
増大することを示す。このグラフから光源が光軸中心に
ある場合の周辺照度は150%以上であり、非常に照度分
布の補正率が高いことがわかる。
FIG. 9 shows the illuminance distribution on the irradiated surface P according to this example, and shows that the illuminance gradually increases in the peripheral portion within the effective irradiation area 90φ. From this graph, it can be seen that the peripheral illuminance is 150% or more when the light source is at the center of the optical axis, and the correction factor of the illuminance distribution is very high.

この実施例では屈折率nの値が小さく、一般の光学ガラ
ス材を用いることができる点でも有利である。
This embodiment is also advantageous in that the value of the refractive index n is small and a general optical glass material can be used.

第5の実施例 本発明に係る第5の実施例を第10図に示す。この実施例
は2群2枚のレンズG1,G2から成り、光源側(図上左
側)より見て第2面及び第3面が非球面で形成されてい
る。この第10図に対応するレンズのデータは下記の通り
である。
Fifth Embodiment A fifth embodiment according to the present invention is shown in FIG. In this embodiment, the second group consists of two lenses G 1 and G 2 , and the second surface and the third surface are aspherical surfaces when viewed from the light source side (left side in the figure). The data of the lens corresponding to FIG. 10 are as follows.

r d n 1 0.9371 0.547 1.47653 2 −1.0495 0.327 3 0.8904 1.079 1.50661 4 −0.9141 非球面の係数 K A1 A2 A3 A4 2 −15.133 0.271 0.555 0.522 2.048 3 −1.036 0.047 −1.756 −0.619 −1.637 この実施例では入射瞳Aの有効直径は1.12、入射瞳Aの
中心から光源Sを臨む有効画角は2ω=43.6°である。
r d n 1 0.9371 0.547 1.47653 2 −1.0495 0.327 3 0.8904 1.079 1.50661 4 −0.9141 Aspheric coefficient K A 1 A 2 A 3 A 4 2 −15.133 0.271 0.555 0.522 2.048 3 −1.036 0.047 −1.756 −0.619 −1.637 In the example, the effective diameter of the entrance pupil A is 1.12, and the effective angle of view of the light source S from the center of the entrance pupil A is 2ω = 43.6 °.

第11図はこの実施例による被照射面P上での照度分布を
示し、有効照射域90φ内において漸次周辺部で照度が増
大している。又、この実施例は、2枚構成でありなが
ら、広い画角をもち、極めて高性能なタイプと言える。
FIG. 11 shows the illuminance distribution on the irradiated surface P according to this embodiment, and the illuminance gradually increases in the peripheral portion within the effective irradiation area 90φ. Further, this embodiment has a wide angle of view even though it has a two-piece construction, and can be said to be an extremely high-performance type.

第6の実施例 本発明に係る第6の実施例を第12図に示す。Sixth Embodiment A sixth embodiment according to the present invention is shown in FIG.

この実施例は単一のレンズから成り、第1面及び第2面
のいずれも非球面で形成されている。この第12図に対応
するレンズのデータは下記の通りである。
In this embodiment, a single lens is used, and both the first surface and the second surface are aspherical surfaces. The data of the lens corresponding to FIG. 12 are as follows.

r d n 1 0.5770 2.124 1.77585 2 −1.3693 非球面の係数 K A1 A2 A3 A4 1 −1.629 −0.010 −0.615 −0.843 −1.011 2 0.582 0.0 0.016 −0.100 −0.219 この実施例では入射瞳Aの有効直径は、1.02、入射瞳A
の中心から光源Sを臨む有効画角は2ω=39.6°、有効
照射域は2H=80φである。
r d n 1 0.5770 2.124 1.77585 2 −1.3693 Aspherical coefficient K A 1 A 2 A 3 A 4 1 −1.629 −0.010 −0.615 −0.843 −1.011 2 0.582 0.0 0.016 −0.100 −0.219 In this embodiment, Effective diameter is 1.02, entrance pupil A
The effective angle of view of the light source S from the center is 2ω = 39.6 °, and the effective irradiation area is 2H = 80φ.

第13図は、この実施例による被照射面P上での照度分布
を示し、有効照射域80φ内において、漸次周辺部で照度
が増大していることを示す。
FIG. 13 shows the illuminance distribution on the irradiated surface P according to this example, and shows that the illuminance gradually increases in the peripheral portion within the effective irradiation area 80φ.

この実施例によれば単一のレンズで構成することが可能
であり、例えばプレス加工により製造した場合、レンズ
間隔の調整が不要なので量産時に非常に有利である。
According to this embodiment, it is possible to form a single lens. For example, when manufactured by press working, it is not necessary to adjust the lens interval, which is very advantageous in mass production.

なお、本発明は上記実施例に限るものではなく、多くの
変形が可能であることは云うまもない。
The present invention is not limited to the above embodiment, and it goes without saying that many modifications are possible.

《発明の効果》 本発明に係る照明用レンズは、被照射面において、周辺
部での照度を中心部よりも高くすることができ、しかも
レンズの有効径が小さい場合であっても、大きな被照射
面を照射することができる。従って、光量損失や装置の
大型化を防止しつつ、大きな被照射面に対して、照度分
布を改善することができる。
<< Effects of the Invention >> The illumination lens according to the present invention can increase the illuminance at the peripheral portion of the illuminated surface more than at the central portion, and even if the effective diameter of the lens is small, a large amount of illumination can be obtained. The illuminated surface can be illuminated. Therefore, it is possible to improve the illuminance distribution on a large illuminated surface while preventing the loss of light amount and the increase in size of the device.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る照明用レンズを規定するための照
明光学系の配置図、第2図は本発明の第1の実施例によ
る照明用レンズの構成を示す配置図、第3図は第1の実
施例に対応する被照射面上での照度分布を示し、これら
の図中、D0,D1,D2はそれぞれ別の設定条件下における
照度分布のグラフ、第4図、第6図、第8図、第10及び
第12図はそれぞれ他の実施例を示す第2図相当図、第5
図、第7図、第9図、第11図及び第13図は、それぞれ他
の実施例に対応する第3図相当図、第14図は従来の照明
用光学系の配置図、第15図はその光学系において、コサ
イン4乗則による照度分布の被照射面周辺部での低下を
示す図である。 A……レンズの入射瞳、a……レンズと光源との距離、
b……レンズと被照射面との距離、b1……入射光線、f
……レンズの焦点距離、h……入射高、H……照射高、
f(H)……関数、(dh/dH)……入射高hの照射高H
に対する変化率、L……照明用レンズ、P……被照射
面、S……光源。
FIG. 1 is a layout view of an illumination optical system for defining an illumination lens according to the present invention, FIG. 2 is a layout view showing a configuration of an illumination lens according to a first embodiment of the present invention, and FIG. The illuminance distribution on the illuminated surface corresponding to the first embodiment is shown. In these figures, D 0 , D 1 , and D 2 are graphs of the illuminance distribution under different setting conditions, respectively, and FIG. FIG. 6, FIG. 8, FIG. 10 and FIG. 12 respectively show another embodiment, which is equivalent to FIG.
FIG. 7, FIG. 9, FIG. 11, FIG. 11 and FIG. 13 respectively correspond to FIG. 3 corresponding to other embodiments, and FIG. 14 is a layout view of a conventional illumination optical system, FIG. FIG. 8 is a diagram showing a decrease in the illuminance distribution according to the cosine fourth law in the periphery of the illuminated surface in the optical system. A: entrance pupil of lens, a: distance between lens and light source,
b: distance between lens and illuminated surface, b 1 ... incident ray, f
…… Lens focal length, h …… incident height, H …… irradiation height,
f (H) ... function, (dh / dH) ... irradiation height H at incident height h
Change rate, L ... Illumination lens, P ... Irradiated surface, S ... Light source.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 植村 春生 京都府京都市上京区堀川通寺之内上る4丁 目天神北町1番地の1 大日本スクリーン 製造株式会社内 (56)参考文献 特開 昭61−267722(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Haruo Uemura Inventor Harukawa-dori Teranouchi, Kamigyo-ku, Kyoto, Kyoto Prefecture 1 Daiichi Screen Manufacturing Co., Ltd., 1-chome Tenjin Kitamachi 1-chome (56) References 61-267722 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】光源Sと被照射面Pとの間に配置される照
明用レンズにおいて、 上記レンズの入射瞳Aと上記被照射面Pとを共役とし、 上記レンズの焦点距離をf、レンズと光源Sとの距離を
a、上記レンズと被照射面Pとの距離をbとしたとき、 f<<a及びf<<b の関係を満たし、 光源Sからレンズの入射瞳Aへ入射する光線b1の入射高
をhとし、当該光線b1が被照射面Pに達したときの被照
射面P上での照射高をHとするとき、入射高hと照射高
Hとこれらの変化率(dh/dH)とを含む関数f(H)を f(H)=(h/H)(dh/dH) で規定し、 この関数f(H)が、被照射面P上の周辺部で f(0)<f(H) を満足するように構成したことを特徴とする照明用レン
ズ。
1. An illumination lens arranged between a light source S and a surface to be illuminated P, wherein an entrance pupil A of the lens and the surface to be illuminated P are conjugated, and the focal length of the lens is f and the lens is When the distance between the lens and the light source S is a and the distance between the lens and the surface P to be illuminated is b, the relations f << a and f << b are satisfied, and the light source S enters the entrance pupil A of the lens. When the incident height of the light beam b 1 is h, and the irradiation height on the irradiated surface P when the light beam b 1 reaches the irradiated surface P is H, the incident height h, the irradiation height H, and their changes The function f (H) including the ratio (dh / dH) is defined by f (H) = (h / H) (dh / dH), and this function f (H) is the peripheral part on the irradiated surface P. And a lens for illumination, characterized in that f (0) <f (H) is satisfied.
JP62179630A 1987-07-17 1987-07-17 Lighting lens Expired - Fee Related JPH0734056B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62179630A JPH0734056B2 (en) 1987-07-17 1987-07-17 Lighting lens
EP88111320A EP0299475B1 (en) 1987-07-17 1988-07-14 Optical system for effecting increased irradiance in peripheral area of object
DE3851485T DE3851485T2 (en) 1987-07-17 1988-07-14 Optical system for increasing the illuminance in peripheral object zones.
KR1019880008903A KR910008066B1 (en) 1987-07-17 1988-07-16 Optical system for effecting increased irradiance in peripheral area of object
US07/220,624 US4878745A (en) 1987-07-17 1988-07-18 Optical system for effecting increased irradiance in peripheral area of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62179630A JPH0734056B2 (en) 1987-07-17 1987-07-17 Lighting lens

Publications (2)

Publication Number Publication Date
JPS6423216A JPS6423216A (en) 1989-01-25
JPH0734056B2 true JPH0734056B2 (en) 1995-04-12

Family

ID=16069124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62179630A Expired - Fee Related JPH0734056B2 (en) 1987-07-17 1987-07-17 Lighting lens

Country Status (1)

Country Link
JP (1) JPH0734056B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61267722A (en) * 1985-05-22 1986-11-27 Canon Inc Optical device for illumination

Also Published As

Publication number Publication date
JPS6423216A (en) 1989-01-25

Similar Documents

Publication Publication Date Title
CN205539675U (en) Throw with optical system and throw type display device
CN103959126B (en) Projection optical system and projection type video display device
US4948238A (en) Optical projection system
CN205539665U (en) Throw with optical system and throw type display device
US5781278A (en) Projection optical system and exposure apparatus with the same
JP3608580B2 (en) Illumination optical apparatus, exposure apparatus, exposure method, and fly-eye lens
TW201913158A (en) Lens and projection device using the same
JP2004045885A (en) Optical integrator, illumination optical device, and device and method for exposure
JPH10325922A (en) Projection optical system
JP2893768B2 (en) Focus detection device
KR910001503B1 (en) Optical system for illumination
EP0299475B1 (en) Optical system for effecting increased irradiance in peripheral area of object
EP0059193B1 (en) An optical system for projection
JP3723654B2 (en) Shooting lens system
JPH0734056B2 (en) Lighting lens
JPS5813887B2 (en) Copying variable magnification lens system
JP3026648B2 (en) 1x projection lens
CN104181676B (en) Microminiature lens
JPH10333030A (en) Precision copying lens
JP2015138124A (en) Projection optical system, projection exposure device, and manufacturing method for the same
JPH0820596B2 (en) Projection lens
JPH0434424A (en) Projection device
JPH0731306B2 (en) Lighting lens
JPH0548441B2 (en)
JPH0727117B2 (en) Lighting lens

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees