JPH0733934B2 - Regenerator - Google Patents

Regenerator

Info

Publication number
JPH0733934B2
JPH0733934B2 JP63029604A JP2960488A JPH0733934B2 JP H0733934 B2 JPH0733934 B2 JP H0733934B2 JP 63029604 A JP63029604 A JP 63029604A JP 2960488 A JP2960488 A JP 2960488A JP H0733934 B2 JPH0733934 B2 JP H0733934B2
Authority
JP
Japan
Prior art keywords
matrix
regenerator
mesh
temperature
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63029604A
Other languages
Japanese (ja)
Other versions
JPH01203852A (en
Inventor
隆 稲口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63029604A priority Critical patent/JPH0733934B2/en
Publication of JPH01203852A publication Critical patent/JPH01203852A/en
Publication of JPH0733934B2 publication Critical patent/JPH0733934B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、例えばギホード−マクマホン冷凍機,スタ
ーリング冷凍機,ビルマイヤー冷凍機,パルスチユーブ
冷凍機等に用いられる蓄冷器に関するものである。
TECHNICAL FIELD The present invention relates to a regenerator used in, for example, a Gifode-McMahon refrigerator, a Stirling refrigerator, a Burmeyer refrigerator, a pulse tube refrigerator, and the like.

〔従来の技術〕[Conventional technology]

第3図は例えば刊行物(「Cryogenics」1987年Vol.27 P
314)に記載された従来のハイブリツド蓄冷器を示す断
面図である。図において、(1)はケースで蓄冷器の外
枠となる。このケース(1)の高温部にはニツケル粒マ
トリツクス(2)が、低温部には鉛粒マトリツクス
(3)が充填されている。なお、図面では簡単のため、
各粒(2),(3)を一部分しか記されなかつたが、各
粒(2),(3)はケース(1)いつぱいに充填されて
いる。第1図、第2図についても同様である。
Figure 3 is an example of a publication (“Cryogenics” 1987 Vol. 27 P
FIG. 314) is a sectional view showing the conventional hybrid regenerator described in (314). In the figure, (1) is a case, which is the outer frame of the regenerator. The high temperature part of this case (1) is filled with nickel grain matrix (2), and the low temperature part is filled with lead grain matrix (3). In addition, for simplicity in the drawing,
Only a part of each grain (2), (3) is not shown, but each grain (2), (3) is filled in the case (1). The same applies to FIGS. 1 and 2.

次に動作について説明する。Next, the operation will be described.

低温(30K〜50K)のガスが、比較的低い温度(70K以
下)で比熱の大きい鉛を材料とした粒状のマトリツクス
(3)に、次いで比較的高い温度(300K〜70K)で比熱
の大きいニツケルを材料とした粒状のマトリツクス
(2)にそれぞれ寒冷を伝達しつつ通り抜ける。通り抜
けたガスは室温となりマトリツクス(2),(3)には
温度勾配が生じる。次に室温のガスがニツケル粒マトリ
ツクス(2)次いで鉛粒マトリツクス(3)を通りぬけ
る。このときガスはマトリツクス(2),(3)から寒
冷を伝達される。このようにして室温のガスと低温のガ
スの熱交換が行なわれる。
A low-temperature (30K-50K) gas has a granular matrix (3) made of lead, which has a large specific heat at a relatively low temperature (70K or less), and then a nickel with a large specific heat at a relatively high temperature (300K-70K). It passes through each of the granular matrixes (2) made from the materials while transmitting the cold. The gas passing through becomes room temperature, and a temperature gradient occurs in the matrices (2) and (3). The room temperature gas then passes through the nickel grain matrix (2) and then the lead grain matrix (3). At this time, the gas transmits cold from the matrices (2) and (3). In this way, heat exchange between the room temperature gas and the low temperature gas is performed.

蓄冷器の熱交換の効率を上げるためにはマトリツクス
(2),(3)の熱容量およびガスとマトリツクス
(2),(3)の伝熱面積が大きく、かつガスがマトリ
ツクス(2),(3)を通ることによつて生じる圧力抵
抗を小さくしなければならない。従来例ではマトリツク
ス(2),(3)の熱容量を大きくするため空げき率の
小さい粒状のマトリツクス(2),(3)を使用してい
る。
In order to increase the heat exchange efficiency of the regenerator, the heat capacity of the matrix (2), (3) and the heat transfer area of the gas and the matrix (2), (3) are large, and the gas is the matrix (2), (3). ) Must reduce the pressure resistance caused by passing through. In the conventional example, in order to increase the heat capacities of the matrices (2) and (3), granular matrices (2) and (3) having a low void ratio are used.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

従来のハイブリツド蓄冷器は以上のように構成されてい
る。ところで、蓄冷器の比較的温度の高い部分(高温
部)ではマトリツクスの材料の比熱が充分大きいのでマ
トリツクスの熱容量は充分大きい。このため蓄冷器の高
温部での熱交換の効率は熱容量よりむしろガスとマトリ
ツクスの伝熱面積に大きく依存する。ところが粒状のマ
トリツクスはメツシユ状のマトリツクスと比べて伝熱面
積が小さい。更に粒状のマトリツクスはメツシユ状のマ
トリツクスよりガスがマトリツクスを通り抜けるときの
圧力抵抗が大きい。以上の理由で従来の蓄冷器は効率が
悪いという問題点があつた。
The conventional hybrid regenerator is configured as described above. By the way, the heat capacity of the matrix is sufficiently large because the specific heat of the material of the matrix is sufficiently large in the relatively high temperature portion (high temperature portion) of the regenerator. Therefore, the efficiency of heat exchange in the high temperature part of the regenerator depends largely on the heat transfer area of the gas and matrix rather than the heat capacity. However, the granular matrix has a smaller heat transfer area than the mesh-shaped matrix. Further, the granular matrix has a larger pressure resistance when the gas passes through the matrix than the mesh-shaped matrix. For the above reasons, the conventional regenerator has a problem of low efficiency.

この発明は上記のような問題点を解消するためになされ
たもので、効率の良い蓄冷器を得ることを目的とし、こ
の蓄冷器を用いた冷凍機の冷凍能力を増大させ、到達温
度を下げることができる。
The present invention has been made to solve the above-mentioned problems, and an object thereof is to obtain an efficient regenerator. The refrigerating capacity of a refrigerator using this regenerator is increased and the ultimate temperature is lowered. be able to.

〔課題を解決するための手段〕[Means for Solving the Problems]

この発明に係る蓄冷器は、高温部にメツシユ状マトリツ
クス、および低温部に粒状マトリツクスをそれぞれれ充
填したものである。
In the regenerator according to the present invention, the high temperature part is filled with the mesh-shaped matrix and the low temperature part is filled with the granular matrix.

〔作用〕[Action]

この発明では蓄冷器の高温部のマトリツクスにメツシユ
状のマトリツクスを使用したことにより、高温部での蓄
冷器効率に大きく依存する伝熱面積を大きくし、また圧
力抵抗も小さくする。
In the present invention, the mesh-shaped matrix is used for the matrix of the high temperature portion of the regenerator, so that the heat transfer area which largely depends on the efficiency of the regenerator at the high temperature portion is increased and the pressure resistance is also reduced.

〔実施例〕〔Example〕

第1図はこの発明の一実施例による蓄冷器の構成を模式
的に示す断面図であり、図において、(1)はマトリツ
クスを収納するケース、(3)はケースの低温部に充填
された粒状マトリツクス例えば鉛粒マトリツクス、
(4)はケースの高温部に充填されたメツシユ状マトリ
ツクス例えば銅メツシユマトリツクスである。
FIG. 1 is a sectional view schematically showing the structure of a regenerator according to an embodiment of the present invention. In the figure, (1) is a case for housing a matrix, and (3) is a low temperature part of the case. Granular matrix, such as lead grain matrix,
(4) is a mesh-shaped matrix filled in the high temperature part of the case, for example, a copper mesh matrix.

第4図は150メツシユ線径61μmの銅メツシユマトリツ
クスと外径440μmの銅粒マトリツクスとを、マトリツ
クスの外径3.5cm,長さ6.8cmの蓄冷器に充填した場合の
熱交換の効率を示す温度効率εを示したものである。温
度効率εは例えば雑誌(3rd Internertional Heat Tran
sfer Confer ence Vol.4.Science Press Inc.Ephrata.P
a(1966)p329)に示された である。ここでCRは銅の熱容量,CGはガスの熱容量,NTU
は熱移動単位数である。マトリツクスの温度は平均温度
を使用した。マトリツクスの質量と全伝熱面積はメツシ
ユマトリツクスではそれぞれ203g,1.41m3,粒マトリツク
スは378g,0.546m3となる。第4図からわかるように温度
が高いとメツシユマトリツクスの方が、温度が低いと粒
マトリツクスの方が効率がよくなる。このことは材料が
銅に限らず、ニッケル,ステンレス等でも同様である。
つまり蓄冷器高温部では、効率は伝熱面積の方に多く依
存し、低温部では熱容量に多く依存する。本実施例で
は、蓄冷器高温部に伝熱面積を多くとれ比較的高温で比
熱の大きい銅メツシユをマトリツクスとして充填し、蓄
冷器低温部では空げき率が小さく比較的低温で比熱の大
きい鉛玉のマトリツクスを使用したので効率は極めてよ
くなる。またガスの粒性係数例えばヘリウムガスの粘性
係数は温度が高いと大きいので圧力抵抗は温度が高い方
が大きくなる。本実施例では蓄冷器高温部にメツシユマ
トリツクスを使用しているので粒状マトリツクスより圧
力抵抗が小さくなる。
Fig. 4 shows the efficiency of heat exchange when a 150 mesh wire diameter 61 μm copper mesh matrix and an outer diameter 440 μm copper grain matrix are filled in a regenerator with an outer diameter of 3.5 cm and a length of 6.8 cm. It shows the temperature efficiency ε shown. Temperature efficiency ε can be calculated, for example, from a magazine (3rd Internertional Heat Tran
sfer Conference Vol.4.Science Press Inc.Ephrata.P
a (1966) p329) Is. Where CR is the heat capacity of copper, CG is the heat capacity of gas, and NTU
Is the number of heat transfer units. The average temperature was used as the temperature of the matrix. The matrix mass and Zenden'netsu area respectively in Metsu Shiyu Matrigel try 203g, 1.41m 3, grain the matrix is 378 g, a 0.546m 3. As can be seen from FIG. 4, when the temperature is high, the mesh matrix is more efficient, and when the temperature is lower, the grain matrix is more efficient. This applies not only to copper but also to nickel, stainless steel or the like.
That is, in the high temperature part of the regenerator, the efficiency depends more on the heat transfer area, and on the low temperature part, the efficiency depends more on the heat capacity. In the present embodiment, the high temperature portion of the regenerator is filled with a copper mesh having a large heat transfer area and a large specific heat at a relatively high temperature as a matrix, and the low temperature portion of the regenerator has a low void ratio and a lead ball having a large specific heat at a relatively low temperature. The efficiency is extremely good because the matrix of is used. Further, since the graininess coefficient of gas, for example, the viscosity coefficient of helium gas is high at high temperature, the pressure resistance becomes higher at higher temperature. In this embodiment, since the mesh matrix is used in the high temperature part of the regenerator, the pressure resistance is smaller than that of the granular matrix.

第5図は実際に本実施例のハイブリツド蓄冷器を使つて
ギホード−マクマホン冷凍機の冷凍能力を測定したもの
である。銅メツシユだけのマトリツクスを使用した蓄冷
器に比べて冷凍能力,到達温度とも格段に優れているの
がわかる。
FIG. 5 is an actual measurement of the refrigerating capacity of the Gifode-McMahon refrigerator using the hybrid regenerator of this embodiment. It can be seen that the refrigeration capacity and ultimate temperature are far superior to those of a regenerator that uses a matrix made of only copper mesh.

なお、メツシユ状マトリツクス(4)としては、上記実
施例で用いた銅メツシユの他に、ニツケルメツシユ,ス
テンレスメツシユ,およびナイロンメツシユのうちの少
なくとも1つが用いられ、粒状マトリツクス(3)とし
ては、鉛粒,銅粒,ガドリロジウム(GdRh)粒,ガドリ
エルビウムロジウム(Gd0.5Er0.5Rh)粒のうちの少なく
とも1つが用いられる。
As the mesh-shaped matrix (4), in addition to the copper mesh used in the above-mentioned example, at least one of nickel mesh, stainless mesh, and nylon mesh is used, and as the granular matrix (3), At least one of lead particles, copper particles, gadolinodium (GdRh) particles, and gadolin erbium rhodium (Gd 0.5 Er 0.5 Rh) particles is used.

第2図はこの発明を2段型蓄冷器に適用した場合の実施
態様を示すもので、1段目蓄冷器(10)の高温部に銅メ
ツシユマトリツクス(4)、1段目蓄冷器の低温部およ
び2段目蓄冷器(20)の高温部に鉛玉マトリツクス
(3)、低温部にユーロピウムサルフアイド玉マトリツ
クス(5)をケース(1)につめたものである。2段型
蓄冷器(20)の2段目蓄冷器(20)低温部は1段だけの
ものより更に低い温度になるため鉛の比熱でさえ充分で
なくなる。低温での蓄冷器の効率はマトリツクスの熱容
量に大きく依存するので2段目蓄冷器(20)の低温部は
例えば10K以下で比熱の大きいユウロピウムサルフアイ
ド(EuS)粒マトリツクス(5)を使用した。このEuSは
GdRh,Gd0.5Er0.5Rh等の他、低温例えば10K以下の温度で
比熱が高いものなう使用できるということはいうまでも
ない。
FIG. 2 shows an embodiment in which the present invention is applied to a two-stage regenerator, in which a high temperature portion of the first-stage regenerator (10) is provided with a copper mesh matrix (4) and a first-stage regenerator. In the case (1), the lead ball matrix (3) is filled in the low temperature part of the second stage regenerator (20) and the europium sulfaid ball matrix (5) is packed in the low temperature part. Since the low temperature part of the second stage regenerator (20) of the two stage regenerator (20) has a lower temperature than that of the one stage only, the specific heat of lead is not sufficient. Since the efficiency of the regenerator at low temperatures greatly depends on the heat capacity of the matrix, the low temperature part of the second stage regenerator (20) used, for example, Europium sulphide (EuS) grain matrix (5) having a large specific heat at 10 K or less. This EuS
It goes without saying that, in addition to GdRh, Gd 0.5 Er 0.5 Rh, etc., it can be used even at low temperatures, for example, at a temperature of 10 K or less and high specific heat.

〔発明の効果〕〔The invention's effect〕

以上のように、この発明によれば、高温部にメツシユ状
マトリツクス、および低温部に粒状マトリツクスをそれ
ぞれ充填したので、効率の良い蓄冷器が得られる効果が
ある。
As described above, according to the present invention, the high temperature portion is filled with the mesh-shaped matrix and the low temperature portion is filled with the granular matrix, so that an efficient regenerator can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例による蓄冷器の構成を模式
的に示す断面図、第2図はこの発明の他の実施例による
蓄冷器の構成を模式的に示す断面図、第3図は従来の蓄
冷器の構成を模式的に示す断面図、第4図は銅メツシユ
マトリツクスと銅粒マトリツクスの温度効率特性を示す
特性図、第5図はこの発明の一実施例および従来の蓄冷
器を用いた冷凍機の冷凍能力特性を示す特性図である。 図において、(1)はケース、(2)はニツケル粒マト
リツクス、(3)は鉛粒マトリツクス、(4)は銅メツ
シユマトリツクス、(5)はユーロピウムサルフアイド
粒マトリツクス、(10)は1段目蓄冷器、(20)は2段
目蓄冷器である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a sectional view schematically showing the constitution of a regenerator according to an embodiment of the present invention, and FIG. 2 is a sectional view schematically showing the constitution of a regenerator according to another embodiment of the present invention. Is a cross-sectional view schematically showing the structure of a conventional regenerator, FIG. 4 is a characteristic diagram showing temperature efficiency characteristics of a copper mesh matrix and a copper grain matrix, and FIG. 5 is an embodiment of the present invention and a conventional one. It is a characteristic view which shows the refrigerating capacity characteristic of the refrigerator which used the regenerator. In the figure, (1) is a case, (2) is a nickel grain matrix, (3) is a lead grain matrix, (4) is a copper mesh matrix, (5) is a europium sulfaid grain matrix, and (10) is 1 The second stage regenerator, (20) is the second stage regenerator. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】高温部にメツシユ状マトリツクス、および
低温部に粒状マトリツクスをそれぞれ充填した蓄冷器。
1. A regenerator in which a high temperature part is filled with a mesh-shaped matrix and a low temperature part is filled with a granular matrix.
JP63029604A 1988-02-10 1988-02-10 Regenerator Expired - Lifetime JPH0733934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63029604A JPH0733934B2 (en) 1988-02-10 1988-02-10 Regenerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63029604A JPH0733934B2 (en) 1988-02-10 1988-02-10 Regenerator

Publications (2)

Publication Number Publication Date
JPH01203852A JPH01203852A (en) 1989-08-16
JPH0733934B2 true JPH0733934B2 (en) 1995-04-12

Family

ID=12280669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63029604A Expired - Lifetime JPH0733934B2 (en) 1988-02-10 1988-02-10 Regenerator

Country Status (1)

Country Link
JP (1) JPH0733934B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2723342B2 (en) * 1990-06-20 1998-03-09 株式会社東芝 Cryogenic refrigerator
JPH0614866U (en) * 1992-07-27 1994-02-25 住友重機械工業株式会社 Regenerator refrigerator
US9423160B2 (en) * 2012-04-04 2016-08-23 Sumitomo Heavy Industries, Ltd. Regenerative refrigerator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115062U (en) * 1986-01-08 1987-07-22

Also Published As

Publication number Publication date
JPH01203852A (en) 1989-08-16

Similar Documents

Publication Publication Date Title
Wang et al. A two-stage pulse tube cooler operating below 4 K
US9567988B2 (en) Cryogenic pump employing tin—gallium alloys and methods of use
US20060201163A1 (en) Heat-storing medium
Daniels et al. Triple-expansion Stirling-cycle refrigerator
US4409799A (en) Heat pump device
US5157938A (en) Three-stage sorption type cryogenic refrigeration systems and methods employing heat regeneration
JPH0733934B2 (en) Regenerator
Wang Numerical analysis of 4 K pulse tube coolers: Part II. Performances and internal processes
JPH0211838B2 (en)
JP2650437B2 (en) Cold storage cryogenic refrigerator
JP3322316B2 (en) Adsorption type reactor module
US3762447A (en) Cold-transporting apparatus
JPS61228263A (en) Cold accumulator
CN107036320B (en) Cold compression type pulse tube refrigerator and precooling type refrigerator system
JP2983215B1 (en) Pulse tube refrigerator heat exchanger
Gao IGC-APD advanced two-stage pulse tube cryocoolers
Li et al. Measurement of ineffectiveness on regenerators packed with magnetic regenerator materials between 4 and 35 K
JPH0528438Y2 (en)
Gschneidner et al. Ductile, high heat capacity, magnetic regenerator alloys for the 10 to 80 K temperature range
JPS59189254A (en) Cryogenic thermal damper
JP2877592B2 (en) Cryogenic refrigeration equipment
JPS59157452A (en) Cold storage instrument of cryogenic refrigerator
JP2828895B2 (en) Cryogenic refrigerator
JPH0530135U (en) Regenerator material for regenerator
JP2957294B2 (en) Cryogenic heat storage material and cryogenic heat storage

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term