JPS59189254A - Cryogenic thermal damper - Google Patents

Cryogenic thermal damper

Info

Publication number
JPS59189254A
JPS59189254A JP58062018A JP6201883A JPS59189254A JP S59189254 A JPS59189254 A JP S59189254A JP 58062018 A JP58062018 A JP 58062018A JP 6201883 A JP6201883 A JP 6201883A JP S59189254 A JPS59189254 A JP S59189254A
Authority
JP
Japan
Prior art keywords
gas
helium gas
heat transfer
pressure
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58062018A
Other languages
Japanese (ja)
Other versions
JPH0316592B2 (en
Inventor
川口 悦治
大嶋 勲夫
西谷 富雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Oxygen Industries Ltd
Original Assignee
Osaka Oxygen Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Oxygen Industries Ltd filed Critical Osaka Oxygen Industries Ltd
Priority to JP58062018A priority Critical patent/JPS59189254A/en
Publication of JPS59189254A publication Critical patent/JPS59189254A/en
Publication of JPH0316592B2 publication Critical patent/JPH0316592B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明fZヘリウムガスサイクル冷凍装置に設けられ
てその温度振幅を制振するサーマルダンパに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a thermal damper that is installed in an fZ helium gas cycle refrigeration system and dampens its temperature amplitude.

一般にヘリウムガスザイクル冷凍装置において、被冷却
体として例えば半導体レーザ素子、ジョセフソン素子セ
ンザなどの冷却を行なう場合、冷凍機に素子を直接固定
することは低温熱伝達器の温度振幅のためセンサ性能を
著しく阻害するか、ダメージを与える。この温度振幅を
小さくするため冷凍機と被冷却体の間に高容積比熱のセ
ラミックを用いたサーマルダンパ、あるいは銅より線を
用いた熱伝達緩衝器などを設けているが、高価、有効温
度域が狭い、熱伝達損失が大きいなどの欠点がある。
Generally, in a helium gas cycle refrigeration system, when cooling an object to be cooled such as a semiconductor laser element or a Josephson element sensor, fixing the element directly to the refrigerator will impair sensor performance due to the temperature amplitude of the low-temperature heat transfer device. Significantly impede or damage. In order to reduce this temperature amplitude, thermal dampers using ceramics with high volumetric specific heat or heat transfer buffers using copper strands are installed between the refrigerator and the object to be cooled, but they are expensive and have an effective temperature range. It has disadvantages such as narrow space and large heat transfer loss.

第1図は従来のガスサイクル冷凍機を用いた冷凍装置の
構成を示ず概略図で、図において、1はガス圧縮機、2
はモータ、3はガス切替弁、4は1段シリンダ、5ば2
段シリンダ、6は1段ピストン、7は2段ピストン、8
は1段シール、9は2段シール、10は1段蓄冷材、1
1は2段蓄冷材、12は1段熱伝達器、13は2段熱伝
達器、14は1段冷凍発生部、15は2段冷凍発生部、
16は銅より線、17は被冷却体である。
Fig. 1 is a schematic diagram (not showing the configuration) of a refrigeration system using a conventional gas cycle refrigeration machine; in the figure, 1 is a gas compressor;
is the motor, 3 is the gas switching valve, 4 is the first stage cylinder, 5 is the 2nd stage
Stage cylinder, 6 is 1st stage piston, 7 is 2nd stage piston, 8
1 stage seal, 9 2 stage seal, 10 1 stage cold storage material, 1
1 is a two-stage cold storage material, 12 is a first-stage heat transfer device, 13 is a second-stage heat transfer device, 14 is a first-stage refrigeration generation section, 15 is a second-stage refrigeration generation section,
16 is a copper strand, and 17 is an object to be cooled.

循環ヘリウムガスは圧縮機1で加圧され、その高圧ヘリ
ウムガスは切替弁3に入り、1段蓄冷材10を通り一部
は1段冷凍発生部14へ、残りは2段蓄冷材11を通り
2段冷凍発生部15へ入る。
The circulating helium gas is pressurized by the compressor 1, and the high-pressure helium gas enters the switching valve 3, passes through the first stage cold storage material 10, part of it goes to the first stage refrigeration generator 14, and the rest passes through the second stage cold storage material 11. It enters the second stage freezing generation section 15.

この時性1.2段ピストン6.7はシリンダ4.5内を
上昇し、高圧ヘリウムガスが各1.2段冷凍発生部を満
たす。ピストンが最上端(C達した時切替弁が圧縮機1
の低圧系に連通し、各1.2段冷凍発生部の高圧ヘリウ
ムガスは低圧に膨張し冷凍を発生する。この後谷1.2
段ピストンは下降し、冷凍ガスは各1.2段蓄冷材を通
過し蓄冷材の熱を取り、すなわち冷熱を蓄え圧縮機に常
温ガスとして戻り、上記サイクルを繰り返すことにより
極低温を発生する。この発生した極低温を被冷却体17
に銅より線16などで熱伝達している。
At this time, the 1.2-stage piston 6.7 rises within the cylinder 4.5, and high-pressure helium gas fills each 1.2-stage refrigeration generating section. When the piston reaches the top end (C), the switching valve switches to compressor 1.
The high-pressure helium gas in each 1.2-stage refrigeration generating section expands to low pressure and generates refrigeration. After this valley 1.2
The stage piston descends, and the refrigerated gas passes through each of the 1.2 stage regenerator materials and takes the heat from the regenerator material, that is, stores cold heat and returns to the compressor as normal temperature gas, and the above cycle is repeated to generate extremely low temperatures. This generated extremely low temperature is transferred to the cooled body 17.
Heat is transferred to the strands using copper stranded wires 16 and the like.

上記のように構成された従来の冷凍装置では、冷凍機の
熱伝達器は一般に銅で作られるため、20に以下におい
て銅の容積比熱すなわち熱エネルギを貯蔵する能力が極
めて少なくなり、冷凍機冷凍発生部に高圧ヘリウムガス
が入る温度と、低圧に膨張し冷凍発生して降下した温度
とが熱交換授受され、熱伝達器外人面に極めて抵抗のな
い形で温度振幅として表われてくる。この温度」取幅が
クライオセンサ例えば半導体レーザ素子、ンヨセフンン
素子などに伝達されるとセンサ性能に悪影響を与えるた
め、冷凍(a熱伝達器どセンサとの間に熱伝達緩衝器1
−なわちサーマルダンパとしてセラミック、銅より線な
どを用いているが、セラミックの鴨合多種類のセラミッ
クを温度域に従って選択し複雑な工作を行うことが必要
となり、高価になる欠点があり、又金量より線の場合多
数の本数で数互の長さが必要であり、熱伝達損失が多く
なり不経済である欠点かあった。
In the conventional refrigeration system configured as described above, the heat transfer device of the refrigerator is generally made of copper, so the volumetric specific heat of copper, that is, the ability to store thermal energy, becomes extremely small below 20°C. Heat exchange occurs between the temperature at which high-pressure helium gas enters the generation part and the temperature that drops as it expands to low pressure and refrigeration occurs, and appears as a temperature amplitude on the external surface of the heat transfer device with extremely little resistance. If this temperature range is transmitted to a cryo-sensor, such as a semiconductor laser element or an element, it will adversely affect the sensor performance.
- In other words, ceramics, copper stranded wires, etc. are used as thermal dampers, but they have the disadvantage of being expensive because they require the selection of various types of ceramics according to the temperature range and complicated machining. In the case of wires made of gold, a large number of wires and several lengths are required, which has the disadvantage of increasing heat transfer loss and being uneconomical.

第2図は本発明に関連して99.9%銅およびヘリウム
ガスの温度と容積比熱の物性値を示す。縦軸を容積比熱
(密度と比熱の積)、横軸を絶対温度で表わしてあり、
一般に用いているガスサイクル冷凍機の調熱伝達器材と
冷凍機の運転圧力に相当する冷媒ヘリウムガスの物性比
較を示している。
FIG. 2 shows physical property values of temperature and volume specific heat of 99.9% copper and helium gases in connection with the present invention. The vertical axis represents the volumetric specific heat (product of density and specific heat), and the horizontal axis represents the absolute temperature.
This figure shows a comparison of the physical properties of a commonly used heat control transfer device for a gas cycle refrigerator and a refrigerant helium gas that corresponds to the operating pressure of the refrigerator.

図で明らかなごと(20atmの高圧ヘリウムガスと鋼
材の交点は27に付近にあり、5 atmの低圧ヘリウ
ムガスと鋼材の交点は20に付近となる。
As is clear from the figure (the intersection of 20 atm high pressure helium gas and steel material is near 27, and the intersection of 5 atm low pressure helium gas and steel material is near 20).

一般に温度振幅の影響は15に以下より発生することか
ら、材料の容積比熱の値からみて冷媒ヘリウムガスが有
効なことがわかる。
In general, the influence of temperature amplitude occurs as follows in 15, so it can be seen that helium gas as a refrigerant is effective in terms of the volumetric specific heat value of the material.

本発明はヘリウムガスを冷媒とするガスサイクル冷凍機
置の熱伝達器と被冷却体の間に極低温時の容積比熱の大
きい冷凍機循環ヘリウムガスを内封し、冷凍熱エネルギ
を十分に貯蔵し良熱伝達構造となし、従来装置より温度
制振効果を効率よく簡便に低価格で得られる極低温サー
マルダンパを提供することを目的とするものである。以
下実施例に従って本発明の詳細な説明する。
The present invention encapsulates refrigerating machine circulating helium gas, which has a large volumetric specific heat at cryogenic temperatures, between the heat transfer device of a gas cycle refrigerating machine that uses helium gas as a refrigerant and the object to be cooled, thereby sufficiently storing refrigerating thermal energy. It is an object of the present invention to provide a cryogenic thermal damper which has a good heat transfer structure and can obtain a temperature vibration damping effect more efficiently, simply, and at a lower cost than conventional devices. The present invention will be described in detail below with reference to Examples.

第3図は本発明の一実施例を示す構成図である。FIG. 3 is a configuration diagram showing an embodiment of the present invention.

1.2.12.13.17は第1図の従来冷凍装置の該
当部分に相当する。18は高圧圧力計、19は低圧圧力
計、20は自封式継手、21はフィルタ、22は圧力制
振連結管、23は不純ガス吸着器、24は毛細管、25
は極低温サーマルダンパである。
1.2.12.13.17 correspond to the corresponding parts of the conventional refrigeration system shown in FIG. 18 is a high-pressure pressure gauge, 19 is a low-pressure pressure gauge, 20 is a self-sealing joint, 21 is a filter, 22 is a pressure damping connecting pipe, 23 is an impure gas absorber, 24 is a capillary tube, 25
is a cryogenic thermal damper.

」−記のように構成された冷凍装置において、冷凍機の
作動は常温より低温に温度降下するに従い冷凍機処理ガ
ス量は増加し、高圧圧力計18の圧力振動は20に以下
において約1.atm発生する。
In the refrigeration system configured as described above, the operation of the refrigeration machine increases as the temperature drops from room temperature to a lower temperature, and the amount of gas processed by the refrigeration machine increases, and the pressure oscillation of the high pressure gauge 18 decreases to about 1. ATM is generated.

この圧力4辰動は低圧圧力計19も同様である。ガスサ
イクル冷凍機の切替弁、シール、ピストン、シリンダな
どの各摩耗粉は冷凍機低圧時に低圧ガスと共に圧縮機へ
ガス輸送される。このダストあるいは圧縮機より供給さ
れる高圧ガス中のダストを沢過するフィルタ21、高圧
系又は低圧系よりガス導入するための自封式継手20、
圧力振動を制振するため内挿したオリスイス又は毛細管
など(図示しない)を有する圧力制振連結管22、ヘリ
ウムガス中に含まれた不純ガスを吸着する吸着器23、
熱伝達器12と吸着器23とを連接する管26、毛細管
24を図示の如く設ける。毛細管24は熱侵入を防止す
るごとく冷凍機シリンダ5周囲を適当な接触と適当な長
さで取囲む。冷凍機熱伝達器13と被冷却体17、例え
ばセンサの間に極低温サーマルダンパ25を設ける。各
構成部20.21.22.23.24.25が連通せし
められている。
This pressure 4 movement is the same for the low pressure pressure gauge 19. Abrasion debris from switching valves, seals, pistons, cylinders, etc. of a gas cycle refrigerator is transported to the compressor together with low-pressure gas when the refrigerator is at low pressure. A filter 21 that filters out this dust or dust in the high-pressure gas supplied from the compressor, a self-sealing joint 20 for introducing gas from the high-pressure system or the low-pressure system,
A pressure damping connecting pipe 22 having an oriswiss or capillary tube (not shown) inserted therein to damp pressure vibrations, an absorber 23 for adsorbing impurity gas contained in helium gas,
A tube 26 and a capillary tube 24 connecting the heat transfer device 12 and the adsorber 23 are provided as shown. The capillary tube 24 surrounds the refrigerator cylinder 5 with appropriate contact and length to prevent heat intrusion. A cryogenic thermal damper 25 is provided between the refrigerator heat transfer device 13 and the object to be cooled 17, such as a sensor. Each component 20.21.22.23.24.25 is communicated.

被冷却体の冷却は極低温サーマルダンパ25の金属ケー
ス例えば銅材で行なわれ、この熱伝導率は300に〜5
に付近において約400 w/m、 kの良熱伝導体で
ある。これに対して内側されたヘリウムガスは300に
で0.2 w/m、 kとなり、極めて不良熱伝導体で
あることが知見されている。
The object to be cooled is cooled by using the metal case of the cryogenic thermal damper 25, for example, a copper material, and the thermal conductivity of this material is 300 to 5.
It is a good thermal conductor of about 400 w/m, k in the vicinity of . On the other hand, the helium gas contained inside has a density of 0.2 w/m, k at 300°C, and is known to be an extremely poor thermal conductor.

この相反する物性を有効に機能させるため本発明による
極低温サーマルダンパ25はケース」二下金属フランジ
部よりの熱伝達表面積を広げるため高いフィン27.2
8を設け、ヘリウムガスの対流熱交換効果をあげている
In order to effectively function these contradictory physical properties, the cryogenic thermal damper 25 according to the present invention has high fins 27.2 to increase the heat transfer surface area from the lower metal flange of the case.
8 is provided to increase the effect of convection heat exchange of helium gas.

冷却1・土上記熱伝達抵抗の極めて少い銅材料などで行
なわれ、温度振幅の制振は300に〜27Kまでは主と
して鋼材が熱エネルギを吸収し、割振作用を行い、27
に以下においては容積比熱の大きなヘリウムガスが主と
して制振作用を行うようにする。20atmの高圧ヘリ
ウムガスは27に以下において制振効果が有効で、5a
tmのヘリウムガスは特に7に以下で有効となる。
Cooling 1/Soil This is done using copper materials, etc., which have extremely low heat transfer resistance, and the temperature amplitude is suppressed from 300 to 27K by mainly using steel, which absorbs thermal energy and performs a distributing action.
In the following, helium gas having a large volumetric specific heat mainly performs the damping action. High-pressure helium gas at 20 atm has an effective vibration damping effect below 27, and 5a
tm helium gas is particularly effective below 7.

上記実施例ではイセ低温サーマルダンパの材料として調
料を用い、フィン型熱交換器構造を示したが、サーマル
ダンパとしては極めて熱伝達の悪い構造、例えはステン
レス鋼製の箱型か最も効果がある。変形例としてサーマ
ルダンパの軸方向壁材にステンレス鋼、熱伝達材にアル
ミニウム、アルミ合金材など、熱交侠形式としてスパイ
ラル型、リボン型、多管型なと拐料、構造を適宜選択す
ることができる。
In the above example, a preparation was used as the material for the Ise low-temperature thermal damper, and a fin-type heat exchanger structure was shown.However, as a thermal damper, a structure with extremely poor heat transfer, such as a box-type structure made of stainless steel, is most effective. . As a modification, the axial wall material of the thermal damper may be stainless steel, the heat transfer material may be aluminum, aluminum alloy, etc., and the heat exchanger type may be spiral type, ribbon type, multi-tube type, etc., and the material and structure may be selected as appropriate. I can do it.

以上説明したように、本発明による極低温サーマルダン
パ25を具えたガスザイクル冷凍装置は従来のガスザイ
クル冷凍装置に比して、同様の運転手段をもって、極低
温を被冷却体に有効に熱伝達し、ヘリウムガスでもって
熱エネルギを十分貯蔵し、従来装置より温度制振効果に
優れており、簡便で経済的な効果がある。
As explained above, the gas cycle refrigeration system equipped with the cryogenic thermal damper 25 according to the present invention has the same operating means as the conventional gas cycle refrigeration system, and can effectively transfer heat from extremely low temperatures to the object to be cooled. However, it stores sufficient thermal energy using helium gas, has a better temperature damping effect than conventional devices, and is simple and economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスサイクル冷凍機を用いた冷凍装置の
構成を示す概略図、第2図はヘリウムガスと銅の温度と
容積比熱の物性値、第3図は本発明のサーマルダンパ実
施例を有する冷凍装置の概略図である。 図において、1は圧縮機、2はモータ、12は1段熱伝
達器、13は2段熱伝達器、17は被冷却体、21はフ
ィルタ、22は圧力制振連結管、23は不純ガス吸着器
、24は毛細管、25は極低温サーマルダンパである。 特許出願人  大阪酸素工業株式会社 算J凹 秦2図 巳     7ニゝ″−一一一−1 待開口11759−189254  (4)t3 回 8
Fig. 1 is a schematic diagram showing the configuration of a refrigeration system using a conventional gas cycle refrigeration machine, Fig. 2 is a physical property value of temperature and volumetric specific heat of helium gas and copper, and Fig. 3 is an example of a thermal damper of the present invention. 1 is a schematic diagram of a refrigeration system having a In the figure, 1 is a compressor, 2 is a motor, 12 is a first-stage heat transfer device, 13 is a second-stage heat transfer device, 17 is an object to be cooled, 21 is a filter, 22 is a pressure vibration damping connecting pipe, and 23 is an impure gas 24 is a capillary tube, and 25 is a cryogenic thermal damper. Patent Applicant: Osaka Sanso Kogyo Co., Ltd. 7 Ni''-111-1 Opening 11759-189254 (4) t3 times 8

Claims (3)

【特許請求の範囲】[Claims] (1)ヘリウムガスを冷媒とするガスサイクル冷凍装置
において、冷凍熱伝達器と被冷却体の間に配置され冷凍
機循環ヘリウムガスの一部を内封し温度振幅を制振する
極低温サーマルダンパ。
(1) In a gas cycle refrigeration system that uses helium gas as a refrigerant, a cryogenic thermal damper is placed between the refrigeration heat transfer device and the object to be cooled, and encapsulates a portion of the helium gas circulating in the refrigeration machine to suppress temperature amplitude. .
(2)ガスサイクル冷凍機の高圧系および1氏圧系のい
ずれか一方にフィルタを介して連結されヘリウムガスの
一部を導入し且つ圧力振動を制限する連結管を介して接
続した特許請求の範囲第1項記戦の極低温サーマルダン
パ。
(2) A patent claim that is connected to either the high pressure system or the 1 degree pressure system of a gas cycle refrigerator via a connecting pipe that introduces a portion of helium gas and limits pressure vibrations through a filter. Cryogenic thermal damper listed in item 1 of the range.
(3)前記連結管に不純ガス吸漸器を設けてガスサイク
ル冷凍機の冷凍熱伝達器と連結した特許請求の範囲第2
項記載の極低温サーマルダンパ。
(3) Claim 2, in which the connecting pipe is provided with an impure gas suction device and is connected to a refrigeration heat transfer device of a gas cycle refrigerator.
Cryogenic thermal damper as described in section.
JP58062018A 1983-04-08 1983-04-08 Cryogenic thermal damper Granted JPS59189254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58062018A JPS59189254A (en) 1983-04-08 1983-04-08 Cryogenic thermal damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58062018A JPS59189254A (en) 1983-04-08 1983-04-08 Cryogenic thermal damper

Publications (2)

Publication Number Publication Date
JPS59189254A true JPS59189254A (en) 1984-10-26
JPH0316592B2 JPH0316592B2 (en) 1991-03-05

Family

ID=13188003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58062018A Granted JPS59189254A (en) 1983-04-08 1983-04-08 Cryogenic thermal damper

Country Status (1)

Country Link
JP (1) JPS59189254A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294769A (en) * 1985-10-18 1987-05-01 エイピーデイー・クライオジエニツクス・インコーポレイテツド Two-step thermal coupling
JPH02298765A (en) * 1988-11-09 1990-12-11 Mitsubishi Electric Corp Multistage cold heat accumulation type refrigerator and cooler associated therewith
JPH07146020A (en) * 1993-11-22 1995-06-06 Sumitomo Heavy Ind Ltd Cryogenic refrigerant
JP2004233047A (en) * 2004-02-09 2004-08-19 Mitsubishi Electric Corp Superconductive magnet
JP2008096097A (en) * 2006-09-08 2008-04-24 General Electric Co <Ge> Thermal switch for superconductive magnet cooling system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6278551B2 (en) 2013-01-31 2018-02-14 オリンパス株式会社 Contrast agent, production method and production kit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613855A (en) * 1979-07-13 1981-02-10 Chino Works Ltd Multi-area scanner
JPS589347U (en) * 1981-07-07 1983-01-21 株式会社神戸製鋼所 Spoon retractable cup

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589347B2 (en) * 1974-07-12 1983-02-21 株式会社日立製作所 Reitou Souchino Anzen Souchi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5613855A (en) * 1979-07-13 1981-02-10 Chino Works Ltd Multi-area scanner
JPS589347U (en) * 1981-07-07 1983-01-21 株式会社神戸製鋼所 Spoon retractable cup

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294769A (en) * 1985-10-18 1987-05-01 エイピーデイー・クライオジエニツクス・インコーポレイテツド Two-step thermal coupling
JPH02298765A (en) * 1988-11-09 1990-12-11 Mitsubishi Electric Corp Multistage cold heat accumulation type refrigerator and cooler associated therewith
JPH07146020A (en) * 1993-11-22 1995-06-06 Sumitomo Heavy Ind Ltd Cryogenic refrigerant
JP2004233047A (en) * 2004-02-09 2004-08-19 Mitsubishi Electric Corp Superconductive magnet
JP2008096097A (en) * 2006-09-08 2008-04-24 General Electric Co <Ge> Thermal switch for superconductive magnet cooling system

Also Published As

Publication number Publication date
JPH0316592B2 (en) 1991-03-05

Similar Documents

Publication Publication Date Title
JPS5880474A (en) Cryogenic cooling device
CN100458310C (en) Coolness storage unit and cryopump
US6263677B1 (en) Multistage low-temperature refrigeration machine
JPH10148410A (en) Pulse tube refrigerator
EP1557621B1 (en) Cryocooler with ambient temperature surge volume
JPH0460351A (en) Freezer
JPS59189254A (en) Cryogenic thermal damper
JP2697707B2 (en) Pulse tube refrigerator
US4404808A (en) Cryogenic refrigerator with non-metallic regenerative heat exchanger
JP2650437B2 (en) Cold storage cryogenic refrigerator
JPS63302259A (en) Cryogenic generator
US7047749B2 (en) Regenerative refrigerating apparatus
JP2609327B2 (en) refrigerator
JP2828948B2 (en) Regenerative heat exchanger
JPH03286967A (en) Pulse pipe type freezer
JPH0674584A (en) Cryogenic refrigerator and operating method thereof
JP3928865B2 (en) Thermal damper for refrigerator
JPS6023761A (en) Refrigerator and system thereof
JPH0528438Y2 (en)
US7165406B2 (en) Integral pulse tube refrigerator and cryopump
JP2845724B2 (en) Regenerator for cryogenic refrigerator
JPH08313095A (en) Cold storage type refrigerating machine
JPS5840455A (en) Cryogenic refrigerator
JP2000310458A (en) Pulse tube refrigerator
JPS61225556A (en) Cryogenic cooling device