JP2828948B2 - Regenerative heat exchanger - Google Patents

Regenerative heat exchanger

Info

Publication number
JP2828948B2
JP2828948B2 JP8076820A JP7682096A JP2828948B2 JP 2828948 B2 JP2828948 B2 JP 2828948B2 JP 8076820 A JP8076820 A JP 8076820A JP 7682096 A JP7682096 A JP 7682096A JP 2828948 B2 JP2828948 B2 JP 2828948B2
Authority
JP
Japan
Prior art keywords
storage material
cold storage
heat exchanger
regenerative heat
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8076820A
Other languages
Japanese (ja)
Other versions
JPH09269156A (en
Inventor
隆広 中村
隆文 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP8076820A priority Critical patent/JP2828948B2/en
Publication of JPH09269156A publication Critical patent/JPH09269156A/en
Application granted granted Critical
Publication of JP2828948B2 publication Critical patent/JP2828948B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/003Gas cycle refrigeration machines characterised by construction or composition of the regenerator

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、動力の発生に用い
るスターリングエンジンや、低温の発生に用いるスター
リング冷凍機などのガス圧縮膨張機に関し、特に、その
再生熱交換器の熱交換性能の改善に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas compression / expansion machine such as a Stirling engine used for generating power and a Stirling refrigerator used for generating low temperature, and more particularly to an improvement in heat exchange performance of a regenerative heat exchanger. Things.

【0002】[0002]

【従来の技術】近年、バイオテクノロジーの分野や電子
デバイスの分野等の先端技術分野において、各種試料や
各種材料の極低温の保存技術の開発が急務になってい
る。特に、スターリング冷凍機などのガス圧縮膨張機
は、上記極低温を実現する手段として注目され各種赤外
線センサー、超電導デバイス等の冷却用やバイオメディ
カル用のフリーザ、冷凍庫等に広く利用されようとして
いる。
2. Description of the Related Art In recent years, there has been an urgent need to develop techniques for preserving various samples and various materials at extremely low temperatures in advanced technology fields such as the field of biotechnology and the field of electronic devices. In particular, gas compression / expansion machines such as Stirling refrigerators are attracting attention as means for achieving the extremely low temperature, and are going to be widely used for cooling, biomedical freezers, freezers, and the like for various infrared sensors, superconducting devices, and the like.

【0003】そして、このガス圧縮膨張機において、再
生熱交換器(蓄冷器)は、膨張室と圧縮室間の作動ガス
流路中に設けられ、移動する作動ガスの熱を蓄熱及び放
熱して、冷凍システムの能力を向上させる装置である。
In this gas compression / expansion machine, a regenerative heat exchanger (regenerator) is provided in a working gas flow path between the expansion chamber and the compression chamber, and stores and radiates heat of the moving working gas. , A device for improving the capacity of a refrigeration system.

【0004】以下では、再生熱交換器を内部に配備した
ディスプレーサタイプのスターリング冷凍機について、
図3に基づき詳述する。本体ハウジング(1)には膨張
シリンダー(2)と圧縮シリンダー(3)とが90度の
角度差で取り付けられ、膨張シリンダー(2)に内蔵さ
れたディスプレーサ(6)と、圧縮シリンダー(3)に
内蔵された圧縮ピストン(7)は、共通のクランク機構
(5)に連結されて、互いに位相がずれた状態で往復駆
動される。
Hereinafter, a displacer type Stirling refrigerator having a regenerative heat exchanger disposed therein will be described.
This will be described in detail with reference to FIG. An expansion cylinder (2) and a compression cylinder (3) are attached to the main body housing (1) at an angle difference of 90 degrees, and a displacer (6) built in the expansion cylinder (2) and a compression cylinder (3) are attached. The built-in compression piston (7) is connected to a common crank mechanism (5) and is reciprocated in a state where the phases are shifted from each other.

【0005】ディスプレーサ(6)は、図4に示す如く
両端が開口(18)(19)した筒体(17)の内部
に、例えば焼結金属からなる蓄冷材(14)が充填され
ており、筒体(17)の一方の開口(18)から流入し
た作動ガスGは蓄冷材(14)の内部を通過し、他方の
開口(19)から流出するまでの過程で、蓄冷材(1
4)との熱交換が行なわれる。
As shown in FIG. 4, the displacer (6) is filled with a cold storage material (14) made of, for example, a sintered metal in a cylindrical body (17) having both ends opened (18, 19). The working gas G flowing from one opening (18) of the cylindrical body (17) passes through the inside of the cold storage material (14) and flows out of the other opening (19) in the process of flowing out of the cold storage material (1).
Heat exchange with 4) is performed.

【0006】該ディスプレーサ(6)は再生熱交換器と
しての機能を兼ね備えたものであって、その熱交換性能
はスターリング冷凍機の成績係数を大きく左右すること
になる。
The displacer (6) also has a function as a regenerative heat exchanger, and its heat exchange performance greatly affects the coefficient of performance of a Stirling refrigerator.

【0007】又、図3の如く膨張シリンダー(2)及び
圧縮シリンダー(3)は夫々オイルシール(8)(9)
によってクランク室(12)と仕切られており、膨張シ
リンダー(2)の基端部と圧縮シリンダー(3)の基端
部とは、連絡管(4)によって互いに連通されている。
クランク室(12)にはオイル(10)が注入されてい
る。
As shown in FIG. 3, the expansion cylinder (2) and the compression cylinder (3) are provided with oil seals (8) and (9), respectively.
Thus, the base end of the expansion cylinder (2) and the base end of the compression cylinder (3) are communicated with each other by a communication pipe (4).
Oil (10) is injected into the crank chamber (12).

【0008】図5は、横軸に時間T、縦軸にストローク
Sをとって、上記スターリング冷凍機の動作を表わした
ものである。スターリング冷凍機に於いては、ディスプ
レーサ(6)が図5の曲線B、Cの如く往復移動すると
同時に、圧縮ピストン(7)が図5の曲線Dの如く往復
移動することによって、膨張シリンダー(2)の膨張空
間(11)は、図5の直線Aと曲線Bに挟まれた幅領域
で容積変化し、圧縮シリンダー(3)の圧縮空間(1
3)は、図5の曲線Cと曲線Dに挟まれた幅領域で容積
変化する。
FIG. 5 shows the operation of the above Stirling refrigerator with time T on the horizontal axis and stroke S on the vertical axis. In the Stirling refrigerator, the displacer (6) reciprocates as shown by curves B and C in FIG. 5, and the compression piston (7) reciprocates as shown by curve D in FIG. 5), the volume of the expansion space (11) changes in the width region between the straight line A and the curve B in FIG. 5, and the compression space (1) of the compression cylinder (3).
3) changes in volume in the width region between the curves C and D in FIG.

【0009】この結果、図5のの行程では、圧縮空間
(13)内のガスが圧縮され、連絡管(4)を経て膨張
シリンダー(2)内へ流入する(理想的には等温圧
縮)。このガスは図5のの行程で、ディスプレーサ
(6)内の蓄冷材(14)を通過し、蓄冷材(14)と
熱交換を行なって、温度低下する(定積冷却)。蓄冷材
(14)を通過したガスは図5のの行程で、膨張シリ
ンダー(2)の膨張空間(11)へ流入し、その後、デ
ィスプレーサ(6)の降下に伴って膨張する(理想的に
は等温膨張)。次に、図5のの行程では、ディスプレ
ーサ(6)の上昇に伴って、膨張空間(11)内のガス
が蓄冷材(14)を通過し、蓄冷材(14)と熱交換を
行なって、温度上昇した後、連絡管(4)を経て再び圧
縮空間(13)へ流入する(定積加熱)。
As a result, in the process of FIG. 5, the gas in the compression space (13) is compressed and flows into the expansion cylinder (2) via the communication pipe (4) (ideally, isothermal compression). In the process of FIG. 5, this gas passes through the cold storage material (14) in the displacer (6) and exchanges heat with the cold storage material (14) to lower the temperature (constant volume cooling). The gas that has passed through the cold storage material (14) flows into the expansion space (11) of the expansion cylinder (2) in the process of FIG. 5, and then expands as the displacer (6) descends (ideally, Isothermal expansion). Next, in the process of FIG. 5, as the displacer (6) rises, the gas in the expansion space (11) passes through the cold storage material (14) and exchanges heat with the cold storage material (14). After the temperature rises, it flows into the compression space (13) again via the communication pipe (4) (fixed volume heating).

【0010】この結果、膨張シリンダー(2)頭部に設
けたコールドヘッド(15)が冷却されるのである。と
ころで、ディスプレーサ(6)は、図4に示す様に筒体
(17)の内部に蓄冷材(14)を充填したものである
が、焼結金属からなる蓄冷材(14)は、上述の如く作
動ガスGと熱交換を行なって、その際に生じる温度差
(例えば約200℃)によって熱変形することになる。
As a result, the cold head (15) provided at the head of the expansion cylinder (2) is cooled. The displacer (6) is a cylinder (17) filled with a cold storage material (14) as shown in FIG. 4, and the cold storage material (14) made of sintered metal is used as described above. Heat exchange is performed with the working gas G, and thermal deformation occurs due to a temperature difference (for example, about 200 ° C.) generated at that time.

【0011】そこで、蓄冷材(14)の自由な熱変形の
ために、図示の如く蓄冷材(14)と筒体(17)の間
には、ある程度の隙間(例えば0.5mm程度)を設け
ることが行なわれている。
Therefore, a certain gap (for example, about 0.5 mm) is provided between the cold storage material (14) and the cylindrical body (17) as shown in the figure for free thermal deformation of the cold storage material (14). Things are going on.

【0012】又、蓄冷材(14)を焼結金属から形成す
る際の加工精度には限度があり、組立の際に蓄冷材(1
4)を筒体(17)の内部に装填するためには、両者の
嵌合せはスキマ嵌めとせざるを得ない。
Further, there is a limit to the processing accuracy when the cold storage material (14) is formed from a sintered metal, and the cold storage material (1) is required for assembly.
In order to load 4) into the inside of the cylindrical body (17), the fitting of both must be a clearance fitting.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、蓄冷材
(14)と筒体(17)の間に隙間が存在すると、筒体
(17)の開口(18)から蓄冷材(14)の内部へ流
入した作動ガスが、矢印の如く蓄冷材(14)の外周面
から隙間空間へ漏出し、流動抵抗の小さい隙間空間を直
進して、蓄冷材(14)と殆ど熱交換を行なうことな
く、筒体(17)の開口(19)から流出することにな
る。この結果、ディスプレーサ(6)によって構成され
る再熱交換器の熱交換性能が低下し、これによってスタ
ーリング冷凍機の成績係数が大きく低下する問題があ
る。尚、この問題は金属線を編み込んだ金属メッシュを
数百枚以上積層して、筒体(17)の内部に蓄冷材(1
4)として充填した場合においても同様に発生する。ま
た、スターリング冷凍機に限らず、再生熱交換器を具え
たその他のガス圧縮膨張機に於いても同様である。
However, if there is a gap between the cold storage material (14) and the cylindrical body (17), it flows from the opening (18) of the cylindrical body (17) into the cold storage material (14). The working gas leaks from the outer peripheral surface of the cold storage material (14) to the gap space as shown by the arrow, goes straight through the gap space having a small flow resistance, and performs almost no heat exchange with the cold storage material (14). It will flow out of the opening (19) of (17). As a result, there is a problem that the heat exchange performance of the reheat exchanger constituted by the displacer (6) is reduced, and thereby the coefficient of performance of the Stirling refrigerator is significantly reduced. This problem is caused by stacking several hundreds or more metal meshes in which metal wires are woven, and forming a cold storage material (1) inside the cylindrical body (17).
The same applies to the case of filling as 4). The same applies to not only the Stirling refrigerator but also other gas compression / expansion machines equipped with a regenerative heat exchanger.

【0014】本発明の目的は、再生熱交換器の熱交換性
能を改善することによって、ガス圧縮膨張機の熱効率を
上げることである。
An object of the present invention is to improve the heat exchange performance of a regenerative heat exchanger, thereby increasing the thermal efficiency of a gas compression and expansion machine.

【0015】[0015]

【課題を解決する為の手段】本発明は、両端が開口した
筒体の内部に、作動ガスの通過が可能な熱交換用の充填
材を配置してなるガス圧縮膨張機の再生熱交換器に於い
て、筒体の内周面と充填材の外周面の隙間に、粒状部材
を充填したことを特徴とする。
SUMMARY OF THE INVENTION The present invention provides a regenerative heat exchanger for a gas compression / expansion machine in which a heat exchange filler through which a working gas can pass is disposed inside a tubular body having both ends opened. Wherein a gap between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the filler is filled with a granular member.

【0016】この構成を用いることにより、仮に充填材
へ流入した作動ガスが、筒体との間の隙間空間へ漏出し
たとしても、該隙間空間には、粒状部材が充填され、筒
軸方向に沿って屈曲した流動抵抗の大きな流路となって
いるので、該隙間空間内の作動ガスは乱流となり、充填
材の表面と衝突することになる。又、流動抵抗の増大に
伴って、充填材から漏出する作動ガスの流量が減少す
る。
By using this configuration, even if the working gas that has flowed into the filler leaks into the gap space between the cylinder and the cylinder, the gap space is filled with the granular member and is filled in the axial direction of the cylinder. The working gas in the clearance space becomes turbulent and collides with the surface of the filler because of the flow path having a large flow resistance bent along. Further, as the flow resistance increases, the flow rate of the working gas leaking from the filler decreases.

【0017】この結果、筒体の開口から充填材へ流入し
た殆どの作動ガスが漏出することなく、充填材の内部を
通過して、充填材と充分に熱交換を行なうことになる。
また、筒体の内周面と充填材の外周面の隙間空間内での
粒状部材の移動により、充填材の熱変形が吸収される。
従って、筒体が変形する虞れはない。
As a result, most of the working gas that has flowed into the filler from the opening of the cylindrical body passes through the inside of the filler without leaking, and sufficiently exchanges heat with the filler.
Further, the thermal deformation of the filler is absorbed by the movement of the granular member in the space between the inner peripheral surface of the cylindrical body and the outer peripheral surface of the filler.
Therefore, there is no fear that the cylindrical body is deformed.

【0018】[0018]

【発明の実施の形態】以下、本発明を上述の図3に示す
スターリング冷凍機のディスプレーサに実施した場合に
つき、図面に沿って詳述する。尚、該スターリング冷凍
機の動作については従来と同一であるので、説明を省略
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A case where the present invention is applied to a displacer of a Stirling refrigerator shown in FIG. 3 will be described in detail with reference to the drawings. Since the operation of the Stirling refrigerator is the same as that of the conventional one, the description is omitted.

【0019】図1に示すディスプレーサ(21)は、樹
脂製の筒体(22)の内部にステンレス鋼、或いは銅か
らなる金属線を編み込んだ金属メッシュ(23)を数百
枚以上積層して充填すると共に、筒体(22)の内周面
と積層金属メッシュ(23)の外周面との隙間に、粒径
150ないし200μmの銅合金材料から形成された粒
状部材(24)が充填されている。
The displacer (21) shown in FIG. 1 is filled with several hundreds or more metal meshes (23) in which metal wires made of stainless steel or copper are braided inside a resin cylinder (22). At the same time, a gap between the inner peripheral surface of the cylindrical body (22) and the outer peripheral surface of the laminated metal mesh (23) is filled with a granular member (24) formed of a copper alloy material having a particle size of 150 to 200 μm. .

【0020】一方、圧縮シリンダー(3)の圧縮空間か
ら膨張シリンダー(2)へ送り込まれたヘリウムなどの
作動ガスは、筒体(22)の一方の開口から蓄冷材とし
ての積層金属メッシュ(23)の内部へ流入し、その殆
どが蓄冷材(23)の内部を通過して、蓄冷材(23)
と充分な熱交換を行なった後、筒体(22)の他方の開
口から膨張シリンダーの膨張空間へ流出する。
On the other hand, the working gas such as helium sent from the compression space of the compression cylinder (3) to the expansion cylinder (2) flows from one opening of the cylindrical body (22) to the laminated metal mesh (23) as a cold storage material. Most of the cold storage material (23) passes through the inside of the cold storage material (23).
After sufficient heat exchange, the gas flows out of the other opening of the cylindrical body (22) into the expansion space of the expansion cylinder.

【0021】ここで、極く一部の作動ガスは、筒体(2
2)の内周面と蓄冷材(23)の外周面の間の隙間空間
へ漏出することになる。しかし、図2に示す如く、筒体
(22)の内周面と積層金属メッシュ(23)の外周面
との隙間に、粒径150ないし200μmの銅合金材料
から形成された粒状部材(24)が充填率約60%で充
填されているため、筒体(22)の内周面と蓄冷材(2
3)の外周面の間の隙間空間へ漏出した作動ガスは従来
のように筒軸方向に直進できず、流路が乱されて長くな
り、これに応じて流動抵抗も増大する。
Here, a very small part of the working gas is supplied to the cylinder (2).
It leaks into the gap space between the inner peripheral surface of 2) and the outer peripheral surface of the cold storage material (23). However, as shown in FIG. 2, a granular member (24) formed of a copper alloy material having a particle size of 150 to 200 μm is provided in a gap between the inner peripheral surface of the cylindrical body (22) and the outer peripheral surface of the laminated metal mesh (23). Is filled at a filling rate of about 60%, so that the inner peripheral surface of the cylindrical body (22) and the cold storage material (2) are filled.
The working gas leaked into the gap space between the outer peripheral surfaces in 3) cannot travel straight in the cylinder axis direction as in the conventional case, and the flow path is disturbed and becomes longer, and the flow resistance increases accordingly.

【0022】この結果、蓄冷材(23)の内部から隙間
空間へ漏出するガスの流量は極く僅かとなり、蓄冷材
(23)へ流入した殆どの作動ガスが蓄冷材(23)内
を流れて、蓄冷材(23)と充分な熱交換を行なうので
ある。また、筒体(22)の内周面と蓄冷材(23)の
外周面の間の隙間に粒状部材(24)を充填しているた
め、温度変化によって蓄冷材(23)が膨張或いは収縮
した場合においても、粒状部材(24)が隙間内で移動
して膨張或いは収縮による蓄冷材(23)の熱変形によ
る応力を分散させ、その熱変形による応力によって筒体
(22)が破損することがない。
As a result, the flow rate of the gas leaking from the inside of the cold storage material (23) to the gap space becomes extremely small, and most of the working gas flowing into the cold storage material (23) flows through the cold storage material (23). And sufficient heat exchange with the cold storage material (23). Further, since the granular member (24) is filled in the gap between the inner peripheral surface of the cylindrical body (22) and the outer peripheral surface of the cold storage material (23), the cold storage material (23) expands or contracts due to a temperature change. Also in this case, the granular member (24) moves in the gap to disperse the stress due to thermal deformation of the cold storage material (23) due to expansion or contraction, and the tubular body (22) may be damaged by the stress due to the thermal deformation. Absent.

【0023】上記実施の形態の説明は、本発明を説明す
るためのものであって、特許請求の範囲に記載の発明を
限定し、或は範囲を減縮する様に解すべきではない。
又、本発明の各部構成は上記実施の形態に限らず、特許
請求の範囲に記載の技術的範囲内で種々の変形が可能で
ある。
The description of the above embodiments is for the purpose of describing the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof.
Further, the configuration of each part of the present invention is not limited to the above embodiment, and various modifications can be made within the technical scope described in the claims.

【0024】例えば、蓄冷材(23)をステンレス鋼、
銅、或いは鉛等の燒結金属から形成しても構わない。ま
た、粒状部材(24)として銅合金の他に、ステンレス
鋼、鉛を用いても構わない。
For example, the cold storage material (23) is made of stainless steel,
It may be formed from a sintered metal such as copper or lead. Further, stainless steel or lead may be used as the granular member (24) in addition to the copper alloy.

【0025】更に、本発明は、図3に示す如くディスプ
レーサに蓄冷材を内蔵したスターリング冷凍機に限ら
ず、再生熱交換器をディスプレーサとは別個に配置した
もの等、あらゆる種類のガス圧縮膨張機に実施できるの
は言うまでもない。
Further, the present invention is not limited to a Stirling refrigerator having a regenerative material incorporated in a displacer as shown in FIG. 3, but may be any type of gas compression / expansion machine such as a regenerative heat exchanger which is arranged separately from the displacer. Needless to say, it can be implemented.

【0026】[0026]

【発明の効果】以上述べたとおり本発明によれば、作動
ガスと充填材が充分に接触して熱交換を行なうので、熱
交換性能が良好であり、この結果、ガス圧縮膨張機の熱
効率は高いものとなる。
As described above, according to the present invention, since the working gas and the filler are sufficiently in contact with each other to perform heat exchange, good heat exchange performance is achieved. As a result, the thermal efficiency of the gas compression and expansion machine is reduced. It will be expensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態におけるディスプレーサの
一部破断斜視図である。
FIG. 1 is a partially broken perspective view of a displacer according to an embodiment of the present invention.

【図2】図1ディスプレーサの要部を拡大した断面図で
ある。
FIG. 2 is an enlarged sectional view of a main part of the displacer of FIG. 1;

【図3】本発明を実施すべきスターリング冷凍機の断面
図である。
FIG. 3 is a sectional view of a Stirling refrigerator in which the present invention is to be implemented.

【図4】従来のディスプレーサの断面図である。FIG. 4 is a sectional view of a conventional displacer.

【図5】スターリング冷凍サイクルの行程を説明する図
である。
FIG. 5 is a diagram illustrating a process of a Stirling refrigeration cycle.

【符号の説明】[Explanation of symbols]

(21) ディスプレーサ (22) 筒体 (23) 金属メッシュ(蓄冷材) (24) 粒状部材 (21) Displacer (22) Cylindrical body (23) Metal mesh (cool storage material) (24) Granular member

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 9/00Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) F25B 9/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 両端が開口した筒体の内部に、作動ガス
の通過が可能な熱交換用の充填材を配置してなるガス圧
縮膨張機の再生熱交換器に於いて、筒体の内周面と充填
材の外周面の隙間に、複数の粒状部材を充填したことを
特徴とするガス圧縮膨張機の再生熱交換器。
In a regenerative heat exchanger of a gas compression / expansion machine, a heat exchange filler through which a working gas can pass is disposed inside a cylindrical body having both ends opened. A regenerative heat exchanger for a gas compression / expansion machine, wherein a plurality of granular members are filled in a gap between a peripheral surface and an outer peripheral surface of a filler.
【請求項2】 前記粒状部材は、粒径150ないし20
0μmの銅合金からなることを特徴とする請求項1記載
のガス圧縮膨張機の再生熱交換器。
2. The method according to claim 1, wherein the granular member has a particle size of 150 to 20.
2. The regenerative heat exchanger for a gas compression / expansion machine according to claim 1, wherein the regenerative heat exchanger is made of a copper alloy having a thickness of 0 [mu] m.
JP8076820A 1996-03-29 1996-03-29 Regenerative heat exchanger Expired - Fee Related JP2828948B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8076820A JP2828948B2 (en) 1996-03-29 1996-03-29 Regenerative heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8076820A JP2828948B2 (en) 1996-03-29 1996-03-29 Regenerative heat exchanger

Publications (2)

Publication Number Publication Date
JPH09269156A JPH09269156A (en) 1997-10-14
JP2828948B2 true JP2828948B2 (en) 1998-11-25

Family

ID=13616318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8076820A Expired - Fee Related JP2828948B2 (en) 1996-03-29 1996-03-29 Regenerative heat exchanger

Country Status (1)

Country Link
JP (1) JP2828948B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5523789B2 (en) * 2009-10-22 2014-06-18 株式会社東芝 Regenerative refrigerator
JP6334406B2 (en) * 2012-10-22 2018-05-30 株式会社東芝 Cold head, superconducting magnet, inspection device, and cryopump
JP6257394B2 (en) * 2014-03-18 2018-01-10 住友重機械工業株式会社 Regenerator type refrigerator
CN104019587B (en) 2014-04-29 2016-08-24 浙江大学 Cryogenic regenerator and Cryo Refrigerator

Also Published As

Publication number Publication date
JPH09269156A (en) 1997-10-14

Similar Documents

Publication Publication Date Title
US20080092536A1 (en) Coolant Penetrating Cold-End Pressure Vessel
US4143520A (en) Cryogenic refrigeration system
KR20030009451A (en) Stirling cycle cryocooler with optimized cold end design
JP2009236456A (en) Pulse tube-type heat storage engine
US4404808A (en) Cryogenic refrigerator with non-metallic regenerative heat exchanger
US5609034A (en) Cooling system
KR20010083615A (en) Aftercooler and its manufacturing mathod for pulse tube refrigerator
JP2828948B2 (en) Regenerative heat exchanger
US4281517A (en) Single stage twin piston cryogenic refrigerator
US8490414B2 (en) Cryocooler with moving piston and moving cylinder
JP2941108B2 (en) Pulse tube refrigerator
GB2273975A (en) Refrigerator for cryogenic temperatures
Gao et al. A hybrid two-stage refrigerator operated at temperatures below 4K
JPS59189254A (en) Cryogenic thermal damper
JP2942045B2 (en) Pulse tube refrigerator
JPH08313095A (en) Cold storage type refrigerating machine
JP2941109B2 (en) Pulse tube refrigerator
JP2941110B2 (en) Pulse tube refrigerator
Shinde et al. A Review Paper on Pulse Tube Refrigerator
JP2877733B2 (en) Gas compressor
JPH10332213A (en) Regenerative heat exchanger
JP2780934B2 (en) Pulse tube refrigerator
JP3883716B2 (en) Gas compression expander
JPH0643648Y2 (en) refrigerator
JPS61225556A (en) Cryogenic cooling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees