JP2941109B2 - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator

Info

Publication number
JP2941109B2
JP2941109B2 JP3332804A JP33280491A JP2941109B2 JP 2941109 B2 JP2941109 B2 JP 2941109B2 JP 3332804 A JP3332804 A JP 3332804A JP 33280491 A JP33280491 A JP 33280491A JP 2941109 B2 JP2941109 B2 JP 2941109B2
Authority
JP
Japan
Prior art keywords
expansion
compression
pulse tube
pistons
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3332804A
Other languages
Japanese (ja)
Other versions
JPH05141797A (en
Inventor
嘉宏 石崎
隆行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EKUTEII KK
Aisin Corp
Original Assignee
EKUTEII KK
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EKUTEII KK, Aisin Seiki Co Ltd filed Critical EKUTEII KK
Priority to JP3332804A priority Critical patent/JP2941109B2/en
Priority to DE4234678A priority patent/DE4234678C2/en
Priority to US07/960,837 priority patent/US5435136A/en
Publication of JPH05141797A publication Critical patent/JPH05141797A/en
Application granted granted Critical
Publication of JP2941109B2 publication Critical patent/JP2941109B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2243/00Stirling type engines having closed regenerative thermodynamic cycles with flow controlled by volume changes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1406Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1408Pulse-tube cycles with pulse tube having U-turn or L-turn type geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1422Pulse tubes with basic schematic including a counter flow heat exchanger instead of a regenerative heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1426Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、パルス管を用い且つ低
温度で往復動する膨脹ピストンを必要としないパルス管
式冷凍機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pulse tube refrigerator which uses a pulse tube and does not require an expansion piston reciprocating at a low temperature.

【0002】[0002]

【従来の技術】二つの等温過程と等容過程からなるスタ
ーリングサイクルは、作動流体(ヘリウム、アルゴン、
水素等)を用いた閉サイクル装置であり、外燃機関、或
いは冷凍機として開発されている。このスターリングサ
イクルを用いた冷凍機は、低温度となる長さの長い膨脹
ピストンの往復動により発生する機械的振動がコールド
ヘッドに伝わり、センサー等にノイズを発生させる。
又、長い膨脹ピストンの外周面とシリンダ内周面との接
触は摩耗粉を発生させ、作動流体や蓄冷器を汚染させ
る。これは、冷凍機の性能を劣化や故障の原因となって
いる。
2. Description of the Related Art A Stirling cycle consisting of two isothermal processes and an equal volume process includes a working fluid (helium, argon,
This is a closed cycle device using hydrogen or the like, and has been developed as an external combustion engine or a refrigerator. In a refrigerator using this Stirling cycle, mechanical vibrations generated by reciprocating motion of a long expansion piston having a low temperature are transmitted to a cold head to generate noise in a sensor or the like.
Also, the contact between the outer peripheral surface of the long expansion piston and the inner peripheral surface of the cylinder generates wear powder and contaminates the working fluid and the regenerator. This causes deterioration of the performance of the refrigerator and failure.

【0003】スターリングサイクルを応用した冷凍機の
前述した欠点を解消させるために、1963年にパルス
管式冷凍機(井上龍夫,低温工学 Vol.26No.
2(1991))が提案された。この方式は、圧縮空間
とバッファータンクとの間に、放熱器、再生器(蓄冷
器)、コールドヘッド、パルス管オリフィスを直列に結
合させ、ヘリウム等の作動ガスを媒体として、低温を生
成している。
In order to solve the above-mentioned disadvantages of the refrigerator using the Stirling cycle, a pulse tube refrigerator (Tatsuo Inoue, Low Temperature Engineering Vol. 26 No.
2 (1991)). In this method, a radiator, a regenerator (cold storage), a cold head, and a pulse tube orifice are connected in series between a compression space and a buffer tank, and a low temperature is generated using a working gas such as helium as a medium. I have.

【0004】このパルス管式冷凍機の構成的特色は、金
属やセラミック、又はそれらの複合材からなる円筒状の
パルス管を用いることにある。このパルス管は冷凍機動
作中相当大きな温度勾配を保ち、断熱効果を担ってい
る。しかしながら、知られる如く、パルス管を用いた冷
凍機は効率が必ずしも良くない。
A characteristic feature of the pulse tube refrigerator is that a cylindrical pulse tube made of metal, ceramic, or a composite material thereof is used. This pulse tube maintains a considerably large temperature gradient during the operation of the refrigerator, and has a heat insulating effect. However, as is known, refrigerators using pulse tubes are not always efficient.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前述した従
来技術の不具合を解消させることを解決すべき課題とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned disadvantages of the prior art.

【0006】[0006]

【課題を解決するための手段】本発明は前述した課題を
解決するために、従来用いられているパルス管、オリフ
ィスおよびバッファータンクに代えて、パルス管と常温
の膨脹ピストンとの組合せによる手段を基本的に用い
る。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a means using a combination of a pulse tube and a normal temperature expansion piston in place of the conventionally used pulse tube, orifice and buffer tank. Basically used.

【0007】本発明によれば、具体的には、圧縮空間、
放熱器、蓄冷器、コールドヘッド、パルス管および膨脹
空間を有する低温生成系を複数個熱交換関係で結合させ
ているパルス管式冷凍機において、水平対向型に配した
対の圧縮ピストンにより4組の圧縮空間を作り、両圧縮
ピストンを作動させるクランクシャフトに位相角をもっ
て膨脹ピストンを連結し対の膨脹空間を該膨脹ピストン
により形成し、4組の圧縮空間のうち同位相で動作する
圧縮空間を連通させるパルス管式冷凍機を提供する。
According to the present invention, specifically, a compressed space,
In a pulse tube refrigerator in which a plurality of radiators, regenerators, a cold head, a pulse tube, and a low-temperature generation system having an expansion space are connected in a heat exchange relationship, four pairs are formed by a pair of compression pistons arranged in a horizontally opposed manner. A compression space is formed, and an expansion piston is connected with a phase angle to a crankshaft for operating both compression pistons, and a pair of expansion spaces is formed by the expansion pistons. Provided is a pulse tube refrigerator to be communicated with.

【0008】[0008]

【作用】4組の圧縮空間の内各2組を連結させているの
で、大きな圧縮空間を確保でき、膨脹空間の容積を圧縮
空間の容積の6.6〜30%の範囲に容易にさせることが
できる。
[Function] Since two sets of the four compression spaces are connected to each other, a large compression space can be secured, and the volume of the expansion space can be easily set to 6.6 to 30% of the volume of the compression space. Can be.

【0009】[0009]

【実施例】図1を参照する。パルス管式冷凍機1は、ク
ランクシャフト2に連結されたロッド3により往復動す
る圧縮ピストン4により、シリンダ5内に画定される圧
縮空間6を有す。又、クランクシャフト2に連結された
別のロッド7が、シリンダ8内の膨脹ピストン9を往復
させ、膨脹空間10の容積を可変とさせる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to FIG. The pulse tube refrigerator 1 has a compression space 6 defined in a cylinder 5 by a compression piston 4 reciprocating by a rod 3 connected to a crankshaft 2. Another rod 7 connected to the crankshaft 2 reciprocates the expansion piston 9 in the cylinder 8 to make the volume of the expansion space 10 variable.

【0010】膨脹空間10は、常温状態に置かれ、両ロ
ッド3,7のクランク角は、膨脹空間10が圧縮空間6
に対し、10〜45度の範囲内のある一定の位相差で進
むように選定される。好ましくは、位相差を20〜30
度とする。
The expansion space 10 is kept at a normal temperature, and the crank angle of the rods 3 and 7 is set such that the expansion space 10
Is selected so as to advance with a certain phase difference in the range of 10 to 45 degrees. Preferably, the phase difference is 20-30.
Degree.

【0011】圧縮空間6は、放熱器11、蓄冷器12、
コールドヘッド13、およびパルス管14を介して、膨
脹空間10に連通する。蓄冷器10はステンレスやブロ
ンズのメッシュ、小球の鉛群、奇土類等の蓄冷材を詰め
たものである。このようにして構成される部分を第1の
熱系とする。
The compression space 6 includes a radiator 11, a regenerator 12,
It communicates with the expansion space 10 via the cold head 13 and the pulse tube 14. The regenerator 10 is filled with a regenerator material such as a mesh of stainless steel or bronze, a group of lead of small balls, and rare earths. The portion configured in this manner is referred to as a first heat system.

【0012】第1の熱系と並設して第2の熱系を構成す
る。第2の熱系で第1の熱系と同一部品には、ダッシュ
を付し、その説明を省略する。図1から明らかなよう
に、第2の熱系の蓄冷器は、12′−1と12′−2と
の二部分からなる点で第1の熱系と異る。
A second heat system is provided in parallel with the first heat system. In the second heat system, the same components as those in the first heat system are indicated by dashes, and the description thereof is omitted. As is clear from FIG. 1, the regenerator of the second heat system differs from the first heat system in that it has two parts, 12'-1 and 12'-2.

【0013】第1の熱系と第2の熱系とは、第1の熱系
のコールトヘッド13と、第2の熱系の両蓄冷器12′
−1,12′−2との間の部分とで熱交換15させる関
係で結合させる。このような結合は、第1の熱系のコー
ルドヘッド13の低温を、第2の熱系の作動流体に伝達
させ、第2の熱系で極低温を発生可能とさせる。
The first heat system and the second heat system include a cold head 13 of the first heat system and both regenerators 12 'of the second heat system.
-1 and 12'-2 are connected in a heat exchange 15 relationship. Such coupling allows the low temperature of the cold head 13 of the first thermal system to be transmitted to the working fluid of the second thermal system, so that a cryogenic temperature can be generated in the second thermal system.

【0014】図2の例を説明する。図1に示す例と同一
部品には同一符号を示し、その説明を省略する。図2と
図1を対比するに、図2の例では両圧縮ピストン4,
4′を並設し且つ両膨脹ピストン9,9′を並設させた
ことに加えて、両熱系のパルス管14,14′を同心関
係に配設させたことで、図2の例は図1の例と異る。し
かし、基本的動作は図1と図2とでは同じである。
An example of FIG. 2 will be described. The same parts as those in the example shown in FIG. In comparison with FIG. 2 and FIG. 1, in the example of FIG.
In addition to the juxtaposition of 4 'and the juxtaposition of both expansion pistons 9, 9', the pulse tubes 14, 14 'of both heat systems are arranged concentrically, so that the example of FIG. This is different from the example of FIG. However, the basic operation is the same between FIG. 1 and FIG.

【0015】図3に、図1の例の各要素の配置例を示
す。第2の熱系のパルス管14′を中心に蓄冷器12′
−1,12′−2、蓄冷器12とパルス管14をほぼ同
心関係に円筒形にまとめる。この結果、両熱系をコンパ
クトに構成することができる。
FIG. 3 shows an arrangement example of each element in the example of FIG. The regenerator 12 'is centered on the pulse tube 14' of the second heat system.
-1, 12'-2, the regenerator 12 and the pulse tube 14 are grouped into a cylindrical shape in a substantially concentric relationship. As a result, both heat systems can be made compact.

【0016】図4は、図2の例の各要素の配置例を示
す。本例においても、パルス管14′を中心に同心関係
に、蓄冷器12′−1,12′−2、パルス管14、蓄
冷器12を円筒形に配す。第1の熱系のコールドヘッド
13が第2の熱系の両蓄冷器12′−1,12′−2間
で熱交換15が成される。この構成は、両熱系をコンパ
クトにまとめるのに有効である。
FIG. 4 shows an arrangement example of each element in the example of FIG. Also in this example, the regenerators 12'-1, 12'-2, the pulse tube 14, and the regenerator 12 are arranged in a cylindrical shape concentrically around the pulse tube 14 '. The cold head 13 of the first heat system exchanges heat between the regenerators 12'-1 and 12'-2 of the second heat system. This configuration is effective for compacting both heat systems.

【0017】図3と図4とに蓄冷器とパルス管との好ま
しい具体的配置例を示したが、図5と図6とにクランク
シャフト2まわりの具体的構成を示す。2本複動型ピス
トン4,4′を水平対向に配置し、4組の圧縮空間6,
6,6′,6′を構成し、同位相で動作する一方の圧縮
空間6,6を導通させ且つ他方の圧縮空間6′,6′を
導通させる。
FIGS. 3 and 4 show preferred specific examples of the arrangement of the regenerator and the pulse tube. FIGS. 5 and 6 show specific structures around the crankshaft 2. The two double-acting pistons 4, 4 'are arranged horizontally opposed to each other, and four sets of compression spaces 6,
6, 6 'and 6', one of the compression spaces 6, 6 operating in the same phase is made conductive and the other compression space 6 ', 6' is made conductive.

【0018】膨脹ピストン9は、同一クランクケース1
6内に納められ、二つの膨脹空間10,10′を構成す
る。両ロッド3,3′,6のクランク角は10〜45度
の範囲内とする。図5と図6から明らかなように、クラ
ンクケース16内に両ピストン6,6′,9,9′、ロ
ッド3,3′,7を納めることができ、圧縮空間と膨脹
空間に接続したフレキシブル管を、図3と図4の蓄冷器
とパルス管に接続することでコンパクトな冷凍機が構成
できる。
The expansion piston 9 is the same as the crankcase 1.
6 to form two expansion spaces 10, 10 '. The crank angle of both rods 3, 3 ', 6 is in the range of 10 to 45 degrees. As is clear from FIGS. 5 and 6, the pistons 6, 6 ', 9, 9' and the rods 3, 3 ', 7 can be accommodated in the crankcase 16, and are connected to the compression space and the expansion space. By connecting the tubes to the regenerators and pulse tubes of FIGS. 3 and 4, a compact refrigerator can be constructed.

【0019】各圧縮ピストン4,4′と各膨脹ピストン
9,9′との位相角を同一又は異る角度の組合せとし、
各圧縮空間と各膨脹空間の容積を、コールドヘッドで期
待される低温が得られるよう、可変とさせるとよい。こ
の可変は、クランクシャフトに対するクランク部の角度
を選択することで可能となる。
The phase angles of the compression pistons 4, 4 'and the expansion pistons 9, 9' are set to the same or different angle combinations,
The volume of each compression space and each expansion space may be made variable so as to obtain the expected low temperature in the cold head. This can be changed by selecting the angle of the crank section with respect to the crankshaft.

【0020】図7と図8に示す例は、クランクシャフト
2に代えて、リニアモータ17,18を用いて、両ピス
トン4,9を往復動させるものである。膨脹ピストン9
は、圧縮ピストン4に対し、10〜45度の位相角で進
むよう、両リニアモータ17,18への通電を制御す
る。圧縮空間6とは圧縮ピストン4を介して反対側とな
る部分にバッファータンク19を設ける。圧縮空間16
とバッファータンク19との間は、制御弁20とフィル
ター21を有するフレキシブル管により連通させる。こ
れら制御弁20とフィルター21とは、作動流体中の不
純物を除いて作動流体の純度を高め、又作動流体の圧力
を管理する働きをする。
The examples shown in FIGS. 7 and 8 reciprocate both pistons 4 and 9 using linear motors 17 and 18 instead of the crankshaft 2. Expansion piston 9
Controls the energization of the two linear motors 17 and 18 so as to advance at a phase angle of 10 to 45 degrees with respect to the compression piston 4. A buffer tank 19 is provided at a portion opposite to the compression space 6 via the compression piston 4. Compression space 16
The communication between the control valve 20 and the buffer tank 19 is made by a flexible pipe having a control valve 20 and a filter 21. The control valve 20 and the filter 21 serve to increase the purity of the working fluid by removing impurities in the working fluid and to control the pressure of the working fluid.

【0021】図8に示す例は、膨脹ピストンとして凸型
ピストン9aを用い、第2のバッファータンク22を構
成したものである。両ピストン4,9,9aの動きは位
置センサーにより規制可能である。図7又は図8に示す
例を並設させ、しかし、コールドヘッド13を共通させ
ることで(たとえば、いくつかのコールドヘッド13を
同心円筒形に配し)、一つの大きなコールトヘッドに同
一の冷温を生成させるようにしてもよい。又、図1と図
2に示すように、コールドヘッド13を他の低温生成系
のための予冷として用い、この部分で他の低温生成系と
熱交換させてもよい。
In the example shown in FIG. 8, a second buffer tank 22 is constructed by using a convex piston 9a as an expansion piston. The movement of both pistons 4, 9, 9a can be regulated by a position sensor. The examples shown in FIG. 7 or FIG. 8 are juxtaposed, but the cold heads 13 are made common (for example, several cold heads 13 are arranged in a concentric cylindrical shape), so that one large cold head has the same cold and hot temperatures. May be generated. Further, as shown in FIGS. 1 and 2, the cold head 13 may be used as pre-cooling for another low-temperature generation system, and heat exchange may be performed at this portion with another low-temperature generation system.

【0022】何れの例においても、好ましくは膨脹空間
の容積を圧縮空間の容積の6.6−30%の範囲とする。
圧縮空間の必要な容積をいくつかの圧縮ピストンにより
確保してもよい。
In each case, the volume of the expansion space is preferably in the range of 6.6-30% of the volume of the compression space.
The required volume of the compression space may be ensured by several compression pistons.

【0023】図7と図8に示す例は、リニアモータ1
7,18を用いて両ピストン4,9を動作させている
が、図9に示すように、リニアモータ17,18に代え
て、クランクシャフト2と電動モータMとを用い、両ピ
ストン4,9を往復動させてもよい。
The example shown in FIGS. 7 and 8 is a linear motor 1
The two pistons 4, 9 are operated by using the crankshaft 2 and the electric motor M instead of the linear motors 17, 18, as shown in FIG. May be reciprocated.

【0024】図10に示す例は、膨脹空間10の膨脹仕
事が大きくなると、膨脹空間の温度は常温より低下する
が(たとえば、冷凍温度を80Kとし、膨脹仕事が50
W以上になると、放熱効果が充分でないと、膨脹空間の
温度は250K位まで低下する)、これを防ぐのに有効
である。圧縮空間6からの熱を放熱器23を用いて、膨
脹空間10の作動流体に伝達し、膨脹空間10の温度の
低下を防ぐ。尚、図10に付した符号は、他の例で用い
た符号と同一部品を示す。
In the example shown in FIG. 10, when the expansion work in the expansion space 10 becomes large, the temperature of the expansion space becomes lower than normal temperature (for example, when the freezing temperature is 80K and the expansion work is 50).
If it exceeds W, the temperature of the expansion space drops to about 250K if the heat radiation effect is not sufficient.) It is effective to prevent this. The heat from the compression space 6 is transmitted to the working fluid in the expansion space 10 using the radiator 23 to prevent the temperature of the expansion space 10 from decreasing. The reference numerals shown in FIG. 10 indicate the same parts as those used in other examples.

【0025】尚、圧縮空間6に高純度の作動流体を供給
するには、加圧弁24と減圧弁25との間にフィルター
21を配すればよい。これにより、クランクケースから
の作動流体はフィルター21と圧力制御弁20を介して
圧縮空間6へ高純度の作動流体として供給される。
In order to supply a high-purity working fluid to the compression space 6, a filter 21 may be disposed between the pressurizing valve 24 and the pressure reducing valve 25. As a result, the working fluid from the crankcase is supplied to the compression space 6 as high-purity working fluid via the filter 21 and the pressure control valve 20.

【0026】図11を参照する。図1に示す例におい
て、冷凍温度TEを80Kの一定とさせ、クランク角を
0度より30度まで大きくしていくと、成績係数(冷凍
出力対消費動力の比)は、0.01より0.027に上昇す
る。40Kでは最大の成績係数がクランク角22度の時
である。図11から明らかなように、冷凍温度に応じた
最適なクランク角は存在するが、その値は20〜30度
の範囲内にある。
Referring to FIG. In the example shown in FIG. 1, when the refrigerating temperature TE is kept constant at 80 K and the crank angle is increased from 0 ° to 30 °, the coefficient of performance (ratio of refrigerating output to power consumption) becomes 0.01 from 0.01. It rises to .027. At 40K, the maximum coefficient of performance is when the crank angle is 22 degrees. As is clear from FIG. 11, there is an optimum crank angle corresponding to the freezing temperature, but the value is in the range of 20 to 30 degrees.

【0027】[0027]

【効果】本発明によれば、低温可動部を必要としないた
め、即ち、膨脹ピストンを常温に置けるので、製作、保
守が容易となり、又、複数サイクルにすることができる
ので、用途に応じて冷凍出力を調整できる。実用上の冷
凍能力が従来に比べ向上する。
According to the present invention, since the low-temperature movable part is not required, that is, since the expansion piston can be kept at room temperature, manufacture and maintenance become easy, and a plurality of cycles can be performed. The refrigeration output can be adjusted. Practical refrigeration capacity is improved compared with the conventional case.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一例の説明図である。FIG. 1 is an explanatory diagram of an example of the present invention.

【図2】本発明の他の例の説明図である。FIG. 2 is an explanatory diagram of another example of the present invention.

【図3】本発明の一例の具体的構成を示す断面図であ
る。
FIG. 3 is a cross-sectional view showing a specific configuration of an example of the present invention.

【図4】本発明の他の例の具体的構成を示す断面図であ
る。
FIG. 4 is a cross-sectional view showing a specific configuration of another example of the present invention.

【図5】クランクシャフト部の縦断面図である。FIG. 5 is a longitudinal sectional view of a crankshaft portion.

【図6】クランクシャフト部の横断面図である。FIG. 6 is a cross-sectional view of a crankshaft portion.

【図7】リニアモータを用いた一例の断面図である。FIG. 7 is a sectional view of an example using a linear motor.

【図8】リニアモータを用いた他の例の断面図である。FIG. 8 is a cross-sectional view of another example using a linear motor.

【図9】図7の例にクランクシャフトを適用した例の平
面図である。
FIG. 9 is a plan view of an example in which a crankshaft is applied to the example of FIG.

【図10】本発明の別の例を示す説明図である。FIG. 10 is an explanatory diagram showing another example of the present invention.

【図11】クランクアングルと成績係数との関係を示す
グラフ図である。
FIG. 11 is a graph showing a relationship between a crank angle and a coefficient of performance.

【符号の説明】[Explanation of symbols]

2 クランクシャフト 3,3′,7,7′ ロッド 4,4′ 圧縮ピストン 6,6′ 圧縮空間 9,9′ 膨脹ピストン 10,10′ 膨脹空間 12,12′ 蓄冷器 13,13′ コールドヘッド 14,14′ パルス管 17,18 リニアモータ 19,20 パッファータンク 2 Crankshaft 3, 3 ', 7, 7' Rod 4, 4 'Compression piston 6, 6' Compression space 9, 9 'Expansion piston 10, 10' Expansion space 12, 12 'Regenerator 13, 13' Cold head 14 , 14 'Pulse tube 17,18 Linear motor 19,20 Puffer tank

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F25B 9/00 311 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) F25B 9/00 311

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮空間、放熱器、蓄冷器、コールドヘ
ッド、パルス管および膨脹空間を有する低温生成系を複
数個熱交換関係で結合させているパルス管式冷凍機にお
いて、水平対向型に配した対の圧縮ピストンにより4組
の圧縮空間を作り、両圧縮ピストンを作動させるクラン
クシャフトに位相角をもって膨脹ピストンを連結し対の
膨脹空間を該膨脹ピストンにより形成し、4組の圧縮空
間のうち同位相で動作する圧縮空間を連通させるパルス
管式冷凍機。
1. A pulse tube refrigerator in which a plurality of low-temperature generating systems having a compression space, a radiator, a regenerator, a cold head, a pulse tube, and an expansion space are connected in a heat exchange relationship. Four pairs of compression spaces are created by the pair of compression pistons, and expansion pistons are connected at a phase angle to a crankshaft for operating both compression pistons, and a pair of expansion spaces are formed by the expansion pistons. A pulse tube refrigerator that connects the compression spaces that operate in phase.
【請求項2】 膨脹ピストンのクランク角を圧縮ピスト
ンより90度を進めている請求項1のパルス管式冷凍
機。
2. The pulse tube refrigerator according to claim 1, wherein the crank angle of the expansion piston is advanced by 90 degrees from the compression piston.
JP3332804A 1991-10-15 1991-11-22 Pulse tube refrigerator Expired - Lifetime JP2941109B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP3332804A JP2941109B2 (en) 1991-11-22 1991-11-22 Pulse tube refrigerator
DE4234678A DE4234678C2 (en) 1991-10-15 1992-10-14 Reversible vibrating tube heat engine
US07/960,837 US5435136A (en) 1991-10-15 1992-10-14 Pulse tube heat engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3332804A JP2941109B2 (en) 1991-11-22 1991-11-22 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JPH05141797A JPH05141797A (en) 1993-06-08
JP2941109B2 true JP2941109B2 (en) 1999-08-25

Family

ID=18258990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3332804A Expired - Lifetime JP2941109B2 (en) 1991-10-15 1991-11-22 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP2941109B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095269A (en) * 2011-03-01 2011-06-15 常州鸿源动力科技有限公司 Dual-moving piston cryo refrigerator

Also Published As

Publication number Publication date
JPH05141797A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
US5435136A (en) Pulse tube heat engine
US5022229A (en) Stirling free piston cryocoolers
JPS629827B2 (en)
JP2941108B2 (en) Pulse tube refrigerator
JP2941109B2 (en) Pulse tube refrigerator
JP2551000B2 (en) Cryogenic generator
JP2942045B2 (en) Pulse tube refrigerator
JP2941110B2 (en) Pulse tube refrigerator
US4281517A (en) Single stage twin piston cryogenic refrigerator
JPH03117855A (en) Chiller type cryogenic refrigerator
JP2828948B2 (en) Regenerative heat exchanger
JP2947649B2 (en) Pulse tube heat engine
JP3357774B2 (en) External combustion engine piston
JPH05306846A (en) Stirling refrigerator
JP2943030B2 (en) Pulse tube type Stirling refrigerator
US4877434A (en) Cryogenic refrigerator
JP3167509B2 (en) External combustion engine
JP3363697B2 (en) Refrigeration equipment
JP2869207B2 (en) Stirling refrigerator
JPS625056A (en) Refrigerator
JP2698477B2 (en) Cryogenic refrigerator
JPH09152213A (en) Piston for external combustion engine
JPH074762A (en) Heat loss reducing structure for stirling cycle engine
JPH0660769B2 (en) How to efficiently absorb heat energy at low temperatures
Bapat Feasibility of alpha configuration for miniature Stirling cycle coolers

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120618

Year of fee payment: 13