JPS59157452A - Cold storage instrument of cryogenic refrigerator - Google Patents

Cold storage instrument of cryogenic refrigerator

Info

Publication number
JPS59157452A
JPS59157452A JP3164583A JP3164583A JPS59157452A JP S59157452 A JPS59157452 A JP S59157452A JP 3164583 A JP3164583 A JP 3164583A JP 3164583 A JP3164583 A JP 3164583A JP S59157452 A JPS59157452 A JP S59157452A
Authority
JP
Japan
Prior art keywords
regenerator
ultra
refrigerant
low temperature
temperature refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3164583A
Other languages
Japanese (ja)
Other versions
JPH0316591B2 (en
Inventor
雄治郎 鵜飼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP3164583A priority Critical patent/JPS59157452A/en
Publication of JPS59157452A publication Critical patent/JPS59157452A/en
Publication of JPH0316591B2 publication Critical patent/JPH0316591B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の対象及び本発明の利用分野) 本発明は、スターリングあるいはギフオード・マクマホ
ン等の超低ン品冷凍機に用いらrしる蓄冷器に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Object of the Invention and Field of Application of the Invention) The present invention relates to a regenerator used in ultra-low-quality refrigerators such as Sterling or Gifford-McMahon.

(従来技術) スターリングあるいはギフオード・マクマホン等の極低
温冷凍機に用いられる蓄冷器は、比較的高い圧力の冷媒
が最初の方向に離れる際に、冷媒から熱企受取り、その
熱を短い期間に蓄積し、比較的低い圧力の冷媒か逆方向
に流れる際に熱を冷媒に与える。
(Prior Art) A regenerator used in a Stirling or Gifford-McMahon cryogenic refrigerator receives heat from the refrigerant when the relatively high pressure refrigerant leaves in the initial direction, and stores the heat in a short period of time. However, heat is imparted to the refrigerant as the refrigerant flows in the opposite direction at a relatively low pressure.

今、第1図に示すスターリング冷凍′機を例にとって説
明する。これは、圧縮シリンダー12′内の冷媒全圧縮
ピストン1によって圧縮し、同時に、高温槽と熱的に結
合した高湿フランジ3によって熱を排出する。蓄冷器4
は比較的高い圧力になった冷媒が通過する際に、冷喚か
ら熱を受取り内部に蓄積する。膨張シリンダー6に入つ
スー冷媒は、膨張シリンダー7によって膨張させられ、
同時に低温槽と熱的に結合した低温7ランジ5によって
熱を吸収する。蓄冷器4は比較的低い圧力になった冷媒
が逆方向に通過する際に、冷媒に熱ケ与える第2図に温
度−エントロピー線図上におけるスターリング冷凍機の
理想・サイクルを示す、まず、サイクル上の点8から点
9の過程において膨張ピストン7か最も上方の位置にあ
るとき、圧縮ピストン1か下方に動き、冷媒全圧縮する
。その際発生する熱鍛Q1%7扁濡フランジ3?辿して
温度T】の高温槽へ排出する。次に、サイクル上の点9
から点10の過程において、圧縮ピストン1と膨張ピス
トン7が同時に下方に動き、冷媒が蓄冷器4を通過して
圧縮シリンダー2から膨張シリンダー6に移動する。冷
凍機が定常状態に達した場合、蓄冷器Φの上端、下端の
湿度はそれぞれT1+ T2になっている。、このため
、冷媒の温度が刀から1に降下し、蓄冷器4は冷媒から
熱量Qnを受けとる。サイクル上の点10から点】1の
過程において、圧縮ピストンlは最も下方の位置にあり
、膨張ピストン7が最も下方の位fffまで動き、冷媒
が膨張する。その際、低温7ランジ5を通して温度′1
′2の低温槽から熱量Q2ヶ吸収する。最後に、ザイク
lル上の点1]から12の過程において、膨張ピストン
7と圧縮ピストン1が同時に上方に動き、冷ηすか蓄冷
器4を通過して膨張シリング−6から圧縮シリンダーに
移動する。このとき、冷媒の温度け1゜からTlに上昇
し、蓄冷器Φは冷媒に熱量Qb%−与える0 蓄冷器4が冷媒と交換する熱tQaは冷媒の温度がT1
からT2に降下する際の冷媒のエンタルピ変化に対応し
、Qbは冷媒の温度がT2からT1に上昇する際の冷媒
のエンタルピ変化に対応する。蓄冷器4と冷媒が熱交換
する際、蓄冷器の熱容量12は上、下端の温度Tl、 
T2かほとんど変化しないよう十分に大きくならなけれ
ばならない。しかも、蓄冷器4と冷媒の熱交換が短い周
期でくり返されるため蓄冷器4の横方向への熱拡散が十
分に大きい必要がある。さらに、蓄冷器4の上下方向に
は上端が温度T1、下端が温度T2という定常的な温度
分布が存在する。上端から下端への熱侵入を抑えるため
、上下方向の熱抵抗か十分に大きい必要がある。冷延と
17でヘリウムを用いた吸熱流度T2が20に以下の超
低温冷凍機の場合、蓄冷器の主要な熱量H(体(以下蓄
冷機と呼ぶ)どし7て通常鉛が用いられている。第8F
4に20に以下の低温での鉛102の単位体積あたりの
熱容量全示す。温度の降下とともに熱容量が急速に低下
するため・IOK以下の温度では出力はおろか所定;の
温度に達しない場合かほどんどである。同様な現象が鉛
基外の固体材料でもみられる。第8図に圧力1.0at
r+f7)ヘリウム100と圧力1atmのヘリウム1
01の単位体積あたりの熱容量全併記する。ヘリウムは
、lOK以下の温度で高いIIl¥を示し、水素、窒素
等の元素も同様な特性を示す。このため蓄冷機としてへ
りつムを用いる試みが行なわれてきた。
Now, explanation will be given by taking the Stirling refrigerator shown in FIG. 1 as an example. It is compressed by the refrigerant full compression piston 1 in the compression cylinder 12' and at the same time removes heat by the high humidity flange 3 which is thermally connected to the hot bath. Cool storage device 4
When the relatively high pressure refrigerant passes through the system, it receives heat from the refrigeration system and stores it inside. The sous refrigerant entering the expansion cylinder 6 is expanded by the expansion cylinder 7,
At the same time, heat is absorbed by the low temperature 7 lunge 5 which is thermally coupled to the low temperature chamber. The regenerator 4 provides heat to the refrigerant when the refrigerant, which has reached a relatively low pressure, passes in the opposite direction. Figure 2 shows the ideal cycle of a Stirling refrigerator on the temperature-entropy diagram. In the process from point 8 to point 9 above, when the expansion piston 7 is at the uppermost position, the compression piston 1 moves downward, completely compressing the refrigerant. Hot forging Q1%7 flattened flange 3 that occurs at that time? It is then discharged to a high-temperature bath at a temperature of T. Next, point 9 on the cycle
In the process from point 10 to point 10, the compression piston 1 and the expansion piston 7 move downward simultaneously, and the refrigerant passes through the regenerator 4 and moves from the compression cylinder 2 to the expansion cylinder 6. When the refrigerator reaches a steady state, the humidity at the upper and lower ends of the regenerator Φ is T1+T2, respectively. , Therefore, the temperature of the refrigerant drops to 1, and the regenerator 4 receives the amount of heat Qn from the refrigerant. In the process from point 10 to point 1 on the cycle, the compression piston 1 is at the lowest position, the expansion piston 7 moves to the lowest position fff, and the refrigerant expands. At that time, the temperature '1 is passed through the low temperature 7 lunge 5.
It absorbs Q2 amount of heat from the cryostat '2. Finally, in the process from points 1 to 12 on the cycle, the expansion piston 7 and the compression piston 1 simultaneously move upward, passing through the regenerator 4 and moving from the expansion cylinder 6 to the compression cylinder. . At this time, the temperature of the refrigerant increases from 1° to Tl, and the regenerator Φ gives the refrigerant an amount of heat Qb% - 0. The heat tQa exchanged with the refrigerant by the regenerator 4 is
Qb corresponds to the enthalpy change of the refrigerant when the temperature of the refrigerant decreases from T2 to T2, and Qb corresponds to the enthalpy change of the refrigerant when the temperature of the refrigerant increases from T2 to T1. When the regenerator 4 and the refrigerant exchange heat, the heat capacity 12 of the regenerator is the temperature Tl at the upper and lower ends,
It must be large enough so that T2 changes little. Moreover, since the heat exchange between the regenerator 4 and the refrigerant is repeated in short cycles, the heat diffusion in the lateral direction of the regenerator 4 needs to be sufficiently large. Further, in the vertical direction of the regenerator 4, there is a steady temperature distribution in which the upper end is at a temperature T1 and the lower end is at a temperature T2. In order to suppress heat intrusion from the top end to the bottom end, the thermal resistance in the vertical direction must be sufficiently large. In the case of an ultra-low temperature refrigerator with an endothermic flow rate T2 of 20 or less using helium in cold rolling and 17, lead is usually used as the main heat quantity H (body (hereinafter referred to as a regenerator)) of the regenerator. Yes.8th floor
The total heat capacity per unit volume of lead 102 at low temperatures below 4 and 20 is shown. As the heat capacity decreases rapidly as the temperature decreases, at temperatures below IOK, there are almost no cases in which the specified temperature is not reached, let alone the output. A similar phenomenon is observed in solid materials other than lead-based materials. Figure 8 shows pressure 1.0at.
r+f7) 100 helium and 1 helium at a pressure of 1 atm
All heat capacities per unit volume of 01 are also listed. Helium exhibits high IIl\ at temperatures below lOK, and elements such as hydrogen and nitrogen also exhibit similar characteristics. For this reason, attempts have been made to use heritsum as a regenerator.

従来の蓄冷機としてヘリウムを用いた蓄冷器について、
第4図および第5図全参照して説明する。接続管21は
蓄冷器と膨張シリンダーあるいは  ′圧縮シリンダー
全接続し冷媒がその内部を通過する流路となる。7ラン
ジ22、外管2;3によって蓄冷器の外壁がつくられる
。多孔熱伝導板24゜と熱絶縁板25が交互に積層され
、内周熱絶縁板258の内filllに影線ざ1また冷
媒の流路け、多孔熱伝導板の有する細孔26bによって
連絡する。、蓄冷機は、供給管27を辿L7て供給され
る、蓄冷器の横方向への熱拡散は、多孔熱伝導板24.
によって行なわn、上下方向の熱抵抗は、熱絶縁板25
によって確保さ7Lる。
Regarding conventional regenerators using helium,
This will be explained with reference to FIGS. 4 and 5. The connecting pipe 21 connects the regenerator and the expansion cylinder or the compression cylinder, and serves as a flow path through which the refrigerant passes. 7 The outer wall of the regenerator is formed by the flange 22 and the outer tubes 2 and 3. The porous heat conductive plates 24° and the heat insulating plates 25 are alternately laminated, and are connected to the inner fill of the inner circumferential heat insulating plate 258 by the shaded line 1 and the coolant flow path through the pores 26b of the porous heat conductive plates. . , the regenerator is supplied by following the supply pipe 27 L7, and the heat diffusion in the lateral direction of the regenerator is caused by the porous heat conduction plate 24.
The thermal resistance in the vertical direction is determined by the thermal insulation plate 25.
Secured by 7L.

第4図および第5図に示す従来の蓄冷器では、多孔熱伝
導板24の材料としてアルミニウム、熱絶縁板25の材
料として工ぎキシ等の樹脂またけFRPか用いらnlそ
の間金接着剤で接合していた接着の際、空気中で150
℃稈度の高温にするため、表面酸化による接着性の劣化
の問題から、多孔熱伝導板241の材料として、より熱
伝導率の高い@を用いることができなかった。
In the conventional regenerators shown in FIGS. 4 and 5, aluminum is used as the material for the porous heat conduction plate 24, and FRP covered with resin such as porcelain is used as the material for the heat insulating plate 25. 150℃ in air during bonding
Due to the high temperature of 0.degree. C., it was not possible to use a material with higher thermal conductivity as the material for the porous heat conductive plate 241 due to the problem of deterioration of adhesiveness due to surface oxidation.

また、一般にヘリウム、水素等の質量数の小さい気体に
対して気密性を得ることはむずかしく、しかも第4図お
よび第5図の構造では接着箇所が通常500〜1000
程度にものほり、すべての箇所に気密性を得ることは極
めて固唾である。その上、当初気密性か得られていても
、冷浦枦の運叱・休出のたびに室温から4にの熱サイク
ルケ受けるため、使用中に気密性を失なうことか頻繁に
生ずる0したがって、内周熱絶縁板25fiと多孔熱伝
達板24−で形成びrlる冷媒と蓄冷機の境界壁が、気
密性を失ない連通し、冷媒に対して蓄冷機の圧カケ高く
設定でせず、蓄冷機の単位体積あ1ニリの熱容量を大き
くできないばかりか、蓄冷機の貯蔵器が死空間となり、
所定の圧縮比を確保できず、使用不能の状態か多発して
いた。
In addition, it is generally difficult to obtain airtightness for gases with small mass numbers such as helium and hydrogen, and in the structures shown in Figures 4 and 5, there are usually 500 to 1000 adhesive points.
It is extremely important to achieve airtightness in all areas. Moreover, even if airtightness is obtained initially, the airtightness may often be lost during use because it is subjected to heat cycles from room temperature to 4. Therefore, the boundary wall between the refrigerant and the regenerator, which is formed by the inner heat insulating plate 25fi and the porous heat transfer plate 24-, communicates with each other without losing airtightness, and the pressure of the regenerator can be set to a high level relative to the refrigerant. Not only is it impossible to increase the heat capacity per unit volume of the regenerator, but the storage container of the regenerator becomes a dead space.
The specified compression ratio could not be ensured, resulting in frequent unusable conditions.

さらに、多孔熱伝導板2傷は、フィン等の突起物がない
ため、伝熱面積が小さく、冷II体あるいは蓄冷機との
熱伝達が十分でない欠点があった。
Furthermore, since the porous heat conductive plate 2 has no protrusions such as fins, the heat transfer area is small, and heat transfer with the cold body II or the regenerator is not sufficient.

(技術的課題) そこで、本発明は、冷媒と蓄冷機の境界において信頼性
の高い気密性が容易にrられること、また本発明G、j
冷媒あるいは蓄冷機の伝熱面積を大きくすることを、さ
らに、本発明は冷媒と蓄冷機の間の熱伝導部材にアルミ
ニウムより熱伝導率の高い銅等の材料を使用することを
、その技術的;21!題とするものである。
(Technical Problem) Therefore, the present invention aims to easily achieve reliable airtightness at the boundary between the refrigerant and the regenerator, and also to provide the present invention G, j.
The present invention also aims to increase the heat transfer area of the refrigerant or regenerator, and furthermore, the present invention aims to use a material such as copper, which has higher thermal conductivity than aluminum, for the heat conductive member between the refrigerant and the regenerator. ;21! This is the subject.

(技術的手段) 上記技術的課嘱ケ解決するために講じた技術的手段は、
勢、4図δよひ第5 Mf参jFf して説明すると、
内1731が上下に貫通し、膨張シリンダーあるいけ圧
縮シリンダーに接続され、その内部を冷媒が通過するf
AF、路となる。外管34と7ランジ35によって蓄冷
器の外壁か形成さnる。内管81の内側に内側メツシュ
83n1外側に外側メツシュ33bか積層され、内管8
1とメンシュ33は接合される。内側メツシュ88fl
はストッパー82によって固定される。蓄冷機は供給管
864通して供緬されるが、常温において高圧に[7て
封じ切る方法、予冷時間を短縮するため液化ガスを流し
7込んで封じ切る方法、あるいは外5部タンクから温度
降下に応じて圧力を制御する方法など種々考えられるわ (技術的手段の作用) 上記技術的手段の作用は、次のように作用する。′fな
わち、このような構成の蓄冷器において、内管81が上
下に貫通し7ているため、上端の高温部から下端の低温
部へ熱が侵入することが間顧になる。このため、内管8
1の材質の達定が重要である。第8図は20 K以下の
低温における各釉金属材刺の熱伝導率を示し7でいる。
(Technical measures) The technical measures taken to solve the above technical issues are:
To explain this, refer to Figure 4, δ, and 5th Mf, jFf.
The inner 1731 penetrates vertically and is connected to an expansion cylinder or a compression cylinder, through which the refrigerant passes.
AF becomes the road. The outer tube 34 and the seven flange 35 form the outer wall of the regenerator. An inner mesh 83n1 is laminated on the inside of the inner pipe 81, and an outer mesh 33b is laminated on the outside of the inner pipe 81.
1 and the mensch 33 are joined. Inner mesh 88fl
is fixed by a stopper 82. The regenerator is supplied through the supply pipe 864, but it can be sealed off by sealing it off at high pressure at room temperature, or it can be sealed off by pouring liquefied gas into it to shorten the pre-cooling time, or the temperature can be lowered from an external 5-part tank. Various methods can be considered, such as ways to control the pressure depending on the situation (effects of technical means).The effects of the above technical means are as follows. In other words, in the regenerator having such a configuration, since the inner tube 81 penetrates vertically 7, it is inevitable that heat will infiltrate from the high-temperature part at the upper end to the low-temperature part at the lower end. For this reason, the inner pipe 8
It is important to achieve the desired material quality. FIG. 8 shows the thermal conductivity of each glazed metal barb at a low temperature of 20 K or less, which is 7.

内管81に5US304端・200の熱伝導率の低い材
料を使用し7た場合、上端から下端への熱侵入Gjはけ
完全に抑えることができるが、横方向の熱拡散に対して
大きな抵抗となる。通に、内管3 ]、にタフピッチ銅
等(C1100) 201の熱伝導率の高い材料を使用
した場合、横方向の熱拡散は非常に良くなるか、゛上端
から下端への熱侵入量か大・きくなりすぎる。本発明で
は、5US8041等200の熱伝導率の低い材料とタ
フピッチ銅等(Cl100) 201 の熱伝導率の高
い材料の両者に対し、熱伝導率が中間のイ1々となる相
料、例えばリン脱酸銅(C1220) 202、工業用
純チタン(H4600) 203を内管31に使用すれ
ば、上下方向に長くかつ薄肉である構造も助長し7て横
方向の熱拡散は十分良く、上端から下端への熱侵入も十
分に抑え得ることを見出した。
If the inner tube 81 is made of a material with low thermal conductivity such as 5US304 end and 200°, the heat intrusion Gj from the upper end to the lower end can be completely suppressed, but there is a large resistance to lateral heat diffusion. becomes. In general, if a material with high thermal conductivity such as tough pitch copper (C1100) 201 is used for the inner tube 3], will the lateral heat diffusion be very good? Too loud. In the present invention, a phase material having an intermediate thermal conductivity, such as phosphor If deoxidized copper (C1220) 202 and industrially pure titanium (H4600) 203 are used for the inner tube 31, the structure is long and thin in the vertical direction, and the lateral heat diffusion is sufficiently good. It has been found that heat intrusion into the lower end can also be sufficiently suppressed.

次に、横方向の熱拡散′(l−良くするため、メツシュ
88にはタフピッチ錫@ (Cl、]、OO)  20
1の熱伝導率の高い材料7川いるか、上下方向に積層さ
れているため上端から下端への熱侵入か生じる。メツシ
ュ33を積層した場合の接触面積は非常に小さく、従っ
て熱侵入量も小となり、迫1常の場合問題にならない。
Next, in order to improve the lateral heat diffusion' (l-, the mesh 88 is made of tough pitch tin @ (Cl, ], OO) 20
Since the materials are stacked vertically, heat may enter from the top to the bottom. When the meshes 33 are laminated, the contact area is very small, and therefore the amount of heat penetration is also small, so there is no problem in normal situations.

しかし、メツシュ33に高純度無酵素−等の熱伝導率の
非常に高い材料を使用した場合・あるいは冷凍機の出力
が非常に小さい場合にはこの熱侵入も問題となる。本発
明では高熱伝導率材料のメツシュ83の間に適当な間隔
全おいて5us304等200の低熱伝導率材料のメツ
シュあ?挿入することで、積層されたメンシュ88を上
下方向に通しての熱侵入を十分に抑え得ることを見出し
た。
However, if the mesh 33 is made of a material with very high thermal conductivity, such as high-purity enzyme-free material, or if the output of the refrigerator is very small, this heat infiltration also becomes a problem. In the present invention, between the meshes 83 of high thermal conductivity material, there are meshes of low thermal conductivity material of 200 mm, such as 5 us 304, with appropriate intervals between them. It has been found that by inserting it, it is possible to sufficiently suppress heat intrusion through the stacked mensch 88 in the vertical direction.

参考までに、工業用純アルミニウム<Anoo−。For reference, industrial pure aluminum <Anoo-.

)204の温度(Klに対する熱伝導率(2)A・K)
を第8図に示す。
) 204 temperature (thermal conductivity to Kl (2) A・K)
is shown in Figure 8.

さらに、第6図および第7図の構造では、一般に内管3
1とメツシュ88を接合することが非常にむすか[7い
。本発明では真空炉(J!” 1 (J’ Torr)
にて内管;31とメツシュ38を高g、 (胚1800
〜1050℃)に加熱し7て、原子の拡散現象を利用し
た接合法、いわゆる拡散接合全利用することにより両者
の接合’e rzJ能にした。
Furthermore, in the structures of FIGS. 6 and 7, the inner tube 3 is generally
It is very difficult to join 1 and mesh 88 [7. In the present invention, a vacuum furnace (J!" 1 (J' Torr)
Inner tube; 31 and mesh 38 at high g, (embryo 1800
The bonding method using the atomic diffusion phenomenon, so-called diffusion bonding, was used to achieve bonding between the two.

上記のように内管81とメツシュ88の材質の選定、お
よび両者の接合かなされた、第6図および第7図の実施
例では、内v4′:31が上下に貫通し、冷媒の流路と
輩冷機の貯蔵部を完全に分離しているため、両者の間の
気密性が容易に得られ、しかも運転・休止に伴なう熱サ
イクルによって気密性を矢なつことかない。
In the embodiments shown in FIGS. 6 and 7, in which the materials of the inner tube 81 and the mesh 88 are selected and the two are joined as described above, the inner tube 4': 31 penetrates vertically, and the refrigerant flow path Since the storage parts of the cooler and cooler are completely separated, airtightness between the two can be easily achieved, and the airtightness will not be compromised by thermal cycles that occur during operation and shutdown.

”’ t タN メツシュ8Bは例えば100メツシユ
(線径””’+ k−7チ0−29nn) カEy 2
50メ7 シュ(g径0.0忙だ、ピッチ帆10++y
m)のものが容易に得られ、しかも従来の多孔伝熱板と
比較して数倍の伝熱面積を得ることができる。
For example, the mesh 8B is 100 meshes (wire diameter ""'+ k-7chi0-29nn).
50 mesh 7 (g diameter 0.0 busy, pitch sail 10++y
m) can be easily obtained, and moreover, the heat transfer area can be several times larger than that of conventional porous heat transfer plates.

さらお、表面酸化の問題がないため、メツシュ38の材
料として熱伝導率の高いタフピンチ銅等?使用すること
ができ、横方向の熱拡散が良い8上端から下グアjへの
熱侵入も、内M’ d 1 /l−メツシュ38の相性
に下り十分に抑えることができる。
Furthermore, since there is no problem with surface oxidation, the material for mesh 38 could be tough pinch copper, which has high thermal conductivity. Heat intrusion from the upper end of the mesh 8 to the lower guar j, which has good lateral heat diffusion, can also be sufficiently suppressed due to the compatibility of the inner M' d 1 /l-mesh 38.

(本発明によって生じた特有の効果) 本発明61・次のF4t′I有の効果を牛しる。すなわ
ち、上下に内管が貫通し7ているため、冷媒と蓄冷機の
境界において信頼性の高い気密性が容易に得られ・しか
も内管とメツシュの材質全適当に選択すれば、上端から
下端への熱侵入を十分に抑えることができる。
(Specific Effects Achieved by the Present Invention) Invention 61: The following effects of F4t'I are explained. In other words, since the inner tube penetrates from the top and bottom, highly reliable airtightness can be easily achieved at the boundary between the refrigerant and the regenerator.Moreover, if the materials of the inner tube and mesh are selected appropriately, the inner tube can be passed from the upper end to the lower end. It is possible to sufficiently suppress heat infiltration.

また、内省′の内側と外側にメツシュを積層し・内管と
メツシュを接合しているため、冷媒あるい(ま蓄冷機の
伝熱面積を大きくすることができる。
In addition, because the mesh is layered on the inside and outside of the inner tube and the mesh is connected to the inner tube, the heat transfer area of the refrigerant or regenerator can be increased.

さらに、表面酸化の問題がないため、メツシュにアルミ
ニウムより熱伝導率の高い銅等の材料全使用することが
できる。
Furthermore, since there is no problem of surface oxidation, all materials such as copper, which has a higher thermal conductivity than aluminum, can be used for the mesh.

(実1戦例) 上記技術的手段の一具体例については、前述したとおり
である。
(Actual example) A specific example of the above technical means is as described above.

そこで、以下に本発明の第2の実施例について、第9団
および第10図をゎ照して説明する。接Mf管41 G
ゴ#冷型と1f℃張シリンダーあるいは圧縮シリンダー
〇rfiiで冷媒が通過する疏路である。供給M’42
ケ通して蓄冷機を供給する8内管45が上下に貫通し、
内(1ii1の蓄冷機と外(lullの冷媒を分離する
。内側7ランジ43Q、外側7ランジ48b。
Therefore, a second embodiment of the present invention will be described below with reference to Group 9 and FIG. 10. Contact Mf tube 41 G
This is a canal through which the refrigerant passes between the cold type and the 1f C tension cylinder or compression cylinder 〇rfii. Supply M'42
8 inner pipes 45 that supply the regenerator through the pipes penetrate vertically,
Separate the inner (1ii1) regenerator and the outer (lull) refrigerant.Inner 7 langes 43Q, outer 7 langes 48b.

および外管Φ6によって蓄冷器の外壁が形麻さ1する。The outer wall of the regenerator is shaped by the outer tube Φ6.

第10図は第9図のX−X線に沿う断面図であるか・内
管45の内側に内側メツシュ←iが、外側に外側メツシ
ュ44bが積層さtL、内管45とメジシュ44は接合
される。このように構成された第2の実施例では、第1
の実施例で説明した効果のはか、冷媒の流路を外側に、
蓄冷機の貯蔵器全内側に配f#シているため、冷媒と蓄
冷機の境界図積ゲ大きくとることができ、その結果伝熱
面積を大きくすることができる。
FIG. 10 is a cross-sectional view taken along the line X-X in FIG. 9. The inner mesh ←i is laminated on the inside of the inner tube 45, and the outer mesh 44b is laminated on the outside tL, and the inner tube 45 and mesh 44 are joined. be done. In the second embodiment configured in this way, the first
To achieve the effect explained in the example above, the refrigerant flow path is placed outside,
Since the regenerator is distributed all over the inside of the regenerator, the boundary area between the refrigerant and the regenerator can be increased, and as a result, the heat transfer area can be increased.

本発明の第8の実施例について、第11図およ  ′び
第12図を参照して説明する。第1.1図において、接
続管51は蓄冷器と膨張シリンダーあるいは圧縮シリン
グ−の間で冷奴:が迎過する??iF路である。内側内
管58か上下に貫通し内側の蓄冷機と外側の冷媒を分t
liii L、外側外筈・54も上下に貫通し内側の冷
姐と外側1の蓄浴擾を分離する。7ランジ52と外管5
7によって蓄冷器4の外部が形成される。蓄冷様は供給
誉57全通して外01(1内管5Φの外側の貯蔵部に供
給され、さらに通連管584通して内側内管53の内側
の貯蔵部に供給されZ)第12図は第11図のXll 
−Xll線に沿う断面図であるが、内側内管58の内側
に内側メツシュ56nか、内側内管58と外側内管54
゛の間に中間部メツシュ56bが、そして外側内管54
の外側に外側メツシュ560が積層され、内側内管58
あるいは外側内管54とメツシュ56は接合される。
An eighth embodiment of the present invention will be described with reference to FIGS. 11' and 12. In Figure 1.1, the connecting pipe 51 passes between the regenerator and the expansion cylinder or compression cylinder. ? This is the iF path. The inner pipe 58 penetrates vertically to separate the regenerator on the inside and the refrigerant on the outside.
liii L, the outer sheath 54 is also passed through vertically to separate the inner cooling chamber and the outer sheath 1. 7 langes 52 and outer tube 5
7 forms the outside of the regenerator 4. The cold storage is supplied to the outside storage part of the outside 01 (1 inner pipe 5Φ) through the entire supply 57, and is further supplied to the inside storage part of the inner inner pipe 53 through the communication pipe 584. Xll in Figure 11
This is a cross-sectional view taken along line -
The intermediate mesh 56b is located between the inner and outer tubes 54 and 54.
An outer mesh 560 is laminated on the outside of the inner tube 58.
Alternatively, the outer inner tube 54 and the mesh 56 are joined.

このように構成された第3の・実71i例では、第1の
実施例で説明した効果のほか、3重管構造とし冷媒の流
路を。中r#t+部に、蓄冷nを内部および外部に配置
し7たため、冷媒と蓄冷機の境界面積を大きくとること
ができ、その結果伝熱面積を大きくすることができる。
In the third example 71i configured in this way, in addition to the effects described in the first example, a triple pipe structure is used for the refrigerant flow path. Since the cold storage n is arranged inside and outside the middle r#t+ section, the boundary area between the refrigerant and the cold storage device can be increased, and as a result, the heat transfer area can be increased.

さらに、冷媒と蓄冷機の平均距離を小さくでき、熱抵抗
を低減できる。
Furthermore, the average distance between the refrigerant and the regenerator can be reduced, and thermal resistance can be reduced.

本発明のrS4の実施例について、i 1181;?l
および第14!図を参照して説明する。?、】8図にお
いて、2本の内管61が上下に貫通し内01すの冷媒の
府路と外側の蓄冷機の貯蔵器を分離し7ている。外側・
64と7ランジ65によって蓄冷器の外壁が形成さnる
。供給管66を通して蓄冷機4供給する。第14.図は
第18図の翳−XIv線に沿う断面図であるが、内管6
■の内側に内側メツジュロ3+tが外側に外側メYジュ
ロ3bか積層さ11.内管61とメツジュロ81+は接
合〆れる。。/このように構成1した第4の実施例では
、第1の実施例で説明した効果のほか、冷媒の流路を複
数にしたため、冷媒と蓄冷機の境界面積を大きくとるこ
とができ、その結果伝熱面積ケ大きくとることができる
Regarding the rS4 embodiment of the present invention, i 1181;? l
And the 14th! This will be explained with reference to the figures. ? , ] In Figure 8, two inner pipes 61 penetrate vertically to separate the inner refrigerant flow path and the outer regenerator storage. outside·
64 and 7 langes 65 form the outer wall of the regenerator. The regenerator 4 is supplied through the supply pipe 66. 14th. The figure is a sectional view taken along the line -XIv in FIG.
11. Inner medulo 3+t is laminated on the inside of ■ and outer medulo 3b is laminated on the outside. The inner tube 61 and the mating tube 81+ are joined together. . / In addition to the effects described in the first embodiment, the fourth embodiment having configuration 1 as described above has a plurality of refrigerant flow paths, so the boundary area between the refrigerant and the regenerator can be increased, and the As a result, the heat transfer area can be increased.

尚、本発明は上記し、かつ図面に示した実施例のみに限
定されるものではなく、その要旨を変更しない範囲で、
種々変形し7て実施できることは勿論である。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but may include the following without changing the gist thereof:
Of course, it can be implemented with various modifications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般的なスターリング冷凍機の主要構造を宗す
一部断11j立ii’i図4・第i岨1温度−エン・ト
ロピー線図上におけるスターリング冷凍様の理想、サイ
クル線図、第3 MG:j l atmのヘリウムガス
、I Q atnlのヘリウムガスと鉛の単位体fJi
あたりの比熱に比較し7たグラフ、第41図は従来の超
低温冷凍機の蓄冷器の一部断両立面図、第5図は第4図
のV−V線に゛沿う拡大横断面図、第6図は本発明の超
低温冷凍機の蓄冷器の第1の実施例を示す−r両立面図
、第7図は第6図のVll −Vll線に沿う拡大横断
面図、第8図はタフピッチ銅、工業用純アルミニウム、
リン脱酸銅、工業用純チタン、5US804の熱伝導率
を比較したグラフ、第9図は本発明の超低温冷凍機の蓄
冷器の第2の実施例を示す一部断両立面図、第10図番
才第9図のX−X線に沿う拡大横断面図、第11図は本
発明の超低温冷凍機の蓄冷器の第8の実施例を示す一部
鮪両立面図、第12図は第11図の割−Xll線に沿う
拡大横断面図、第18図は本発明の超低温冷凍機の蓄冷
器の第4の実施例を示す一部助両立面図、そして第14
図は第13図の川−11V線に沿う粧大構Pr面図であ
る。 Φ・・・蓄冷器、31,45.53,541,61・・
・内管、 38 、4.Φ、56.63・・・メツシュ 輯許出lπf人 アイシン精機株式会社 代表者  中 井 令 夫 第2図 第3121 温!(に)6.0i 第4図 第7図 第9図 第1011 第14図 10−10 手続補正書・ ■訓58年 ′7月140 特許庁長官 殿 1、事件の表示 昭11158年特 許 願第03164552、発明の
名称 超低温冷凍機の蓄冷器 3、補正をする者 事件との関係 特許出願人 住所 愛欠肩μり谷萌旧町2丁目1番地4、?iR正の
対象 欄、および図面の簡単な説明の各欄。 5、補正の内容 (1)特許請求の範囲の欄 第1別紙のとおり。  − (2)  発明の詳細な説明及び図面の簡単な説明の各
欄の補正個所および補正内容は、第2別紙のとおり。 (第1別紙) 特許請求の範囲 (1,1冷媒を−・リウムとし、2QK以下の温度で作
動する超低温冷凍機の蓄冷器において、′側をが冷媒の
流れの方向に貫通し、冷媒の流路と蓄冷体の貯蔵部を分
Mlt L、側壁の両面に接して冷媒の流れ方向に垂直
な姿勢でメツシュを積層し、側壁と金網を接合したこと
を特徴とする超低温冷凍機の蓄冷器。 (2+  前記側壁を管とし、管の内部を冷媒の流路と
し、管の外部を蓄冷体の貯蔵部としたことを特徴とする
特許請求の範囲第1項記載の超低温冷凍機の蓄冷器。 (3)前記側壁を管とし、管の外部を冷媒の流路とし、
管の内部を蓄冷化の貯蔵部としたことを特徴とする特許
請求の範囲第1項記載の超低温冷凍機の蓄冷器。 (4)前記側壁を多重管とし、冷媒の流路と蓄冷体の貯
蔵部を交互に設けることを特徴とする特許請求の範囲第
1項記載の超低温冷凍機の蓄冷器。 (5)前記側壁を複数の管とし、管の内部を冷媒の流路
とし、管の周辺を蓄冷1−の貯蔵部としたことを特徴と
する特許請求の範l!II第1項記載の超低温冷凍機の
蓄冷器。 (6)前記側壁と前記メツシュの接合方法を拡散接合と
したことを特徴とする特許請求の範囲第1項記載の超低
温冷凍機の蓄冷器。 (7)前記蓄冷化としてヘリウノ1、水素、ネオン、ア
ルゴン、あるいは酸素およびそれらの混合物を用いるこ
とを特徴とする特許請求の範囲第1項記載の超低温冷凍
機の蓄冷器。 (8)前記側壁の材料をリン脱酸銅あるいは工業用線ヂ
クンとし、メツシュの材料を無酸素銅、タフピッチ銅、
高純度アルミニウム、工業用純アルミニウム、あるいは
銀を用いること ・を特徴とする特許請求の範囲第1項
記載の超低温冷凍機の蓄冷器。 (9)前記メツシュの間に適当な間隔をおいて、ステン
レス鋼、高Mnt[、チタン合金あるいはセラミックか
らなるメツシュまたは板を挿入したことを特徴とする特
許請求の範囲第8項記載の超低温冷凍機の蓄追淵。 (第2別紙) ・
Figure 1 shows a partial section showing the main structure of a general Stirling refrigerator. 3rd MG: j l atm helium gas, I Q atnl helium gas and lead unit fJi
Figure 41 is a partially cross-sectional elevational view of a regenerator of a conventional ultra-low temperature refrigerator, Figure 5 is an enlarged cross-sectional view taken along line V-V in Figure 4, FIG. 6 is a -r elevational view showing the first embodiment of the regenerator for an ultra-low temperature refrigerator of the present invention, FIG. 7 is an enlarged cross-sectional view taken along the line Vll-Vll in FIG. 6, and FIG. Tough pitch copper, industrial pure aluminum,
A graph comparing the thermal conductivities of phosphorous-deoxidized copper, industrially pure titanium, and 5US804. FIG. 9 is a partially cross-sectional elevational view showing the second embodiment of the regenerator for an ultra-low temperature refrigerator of the present invention. FIG. Fig. 11 is an enlarged cross-sectional view taken along the line X-X in Fig. 9, Fig. 11 is a partial elevational view showing the eighth embodiment of the regenerator for the ultra-low temperature refrigerator of the present invention, and Fig. 12 is FIG. 11 is an enlarged cross-sectional view taken along the line Xll in FIG. 11, FIG.
The figure is a plan view of the decorative structure Pr along the line -11V in FIG. 13. Φ・・・Regenerator, 31, 45.53, 541, 61...
・Inner tube, 38, 4. Φ, 56.63... Metsch development permission lπf person Aisin Seiki Co., Ltd. Representative Rei Nakai Figure 2 Figure 3121 Warm! (to) 6.0i Figure 4 Figure 7 Figure 9 Figure 1011 Figure 14 10-10 Procedural amendment ■Kun 58 July 140 Commissioner of the Japan Patent Office 1, Indication of the case 1988 158 Patent application No. 03164552, Title of the invention: Ultra-low temperature refrigerator regenerator 3, Relationship to the person making the amendment case Patent applicant address: 2-1-4 Aikatsukashira Muriya Moe Old Town? iR positive target column and each column for a brief explanation of the drawing. 5. Contents of the amendment (1) As shown in the first appendix in the Scope of Claims column. - (2) The amendments and contents of each column of the detailed description of the invention and the brief description of the drawings are as shown in the second appendix. (First Attachment) Claims (1,1 In a regenerator for an ultra-low temperature refrigerator in which the refrigerant is -.lium and operates at a temperature of 2QK or less, A regenerator for an ultra-low temperature refrigerator, characterized in that the flow path and the regenerator storage part are separated by Mlt L, meshes are stacked in contact with both sides of the sidewall in a posture perpendicular to the flow direction of the refrigerant, and the sidewall and the wire mesh are joined. (2+ A regenerator for an ultra-low temperature refrigerator according to claim 1, wherein the side wall is a tube, the inside of the tube is a flow path for a refrigerant, and the outside of the tube is a storage section for a regenerator. (3) The side wall is a pipe, the outside of the pipe is a refrigerant flow path,
2. A regenerator for an ultra-low temperature refrigerator according to claim 1, wherein the inside of the tube serves as a regenerator. (4) The regenerator for an ultra-low temperature refrigerator according to claim 1, wherein the side wall is made of multiple tubes, and refrigerant flow paths and regenerator storage sections are provided alternately. (5) The side wall is made up of a plurality of pipes, the inside of the pipes is used as a flow path for a refrigerant, and the periphery of the pipes is used as a storage section for cold storage 1-! II. A regenerator for an ultra-low temperature refrigerator according to item 1. (6) A regenerator for an ultra-low temperature refrigerator according to claim 1, wherein the side wall and the mesh are joined by diffusion bonding. (7) The regenerator for an ultra-low temperature refrigerator according to claim 1, wherein Heliuno 1, hydrogen, neon, argon, oxygen, or a mixture thereof is used as the regenerator. (8) The material of the side wall is phosphorus-deoxidized copper or industrial wire, and the material of the mesh is oxygen-free copper, tough pitch copper,
The regenerator for an ultra-low temperature refrigerator according to claim 1, wherein high-purity aluminum, industrial pure aluminum, or silver is used. (9) Ultra-low temperature freezing according to claim 8, characterized in that meshes or plates made of stainless steel, high Mnt, titanium alloy, or ceramic are inserted at appropriate intervals between the meshes. Machine's reservoir. (Second Attachment) ・

Claims (1)

【特許請求の範囲】 (1)冷tN″ff:ヘリウムとし、20に以下の温度
で作動する超低温冷凍機の蓄冷器において、側壁が冷媒
の流れの方向に貫通し、冷媒の流路と蓄冷機の貯蔵部を
分階IL7、側壁の面間に接し、て冷0夕の流れ方向に
垂直な姿勢・でメツシュを積層し、佃財1と金網を接合
したことケ特徴とする超低温冷凍機の蓄冷器や (2)  前記(11tl璧をヤイ゛とし、管の内部ケ
冷娠の流路とし、管の外部全格冷機の貯蔵部とし2左こ
とをqe+徴とするね許肋求の範囲第1項13載の超低
温冷凍機の蓄冷器。 (3)  前記側壁を管とL7、管の外部全冷媒の流路
とし、箸・の内部を蓄冷機の貯蔵部としたことを特徴と
する特許請求の範囲第18記載の超低温冷凍機の蓄冷器
。 (4)  前記側@を多重管とし、冷媒の流路と蓄冷機
の貯蔵部を交互に設けること1に特徴とする特許請求の
範囲第1項記載の超低温冷凍機の蓄冷器。 (5)前記側壁全複相の管とし、管の内部を冷媒の流路
とし、管の周辺を蓄冷機の貯蔵部としたことを特徴とす
る特許Ni’!求の範囲第18項記載の超低温冷凍機。 m  前記側路と前記メツシュの接合方法を拡散接合と
し、たことを特徴とする特許M求の範囲第1項n・ル戟
の超低温冷凍機の蓄冷器。 (7)前記蓄冷機としてヘリウム、水素、ネオン、アル
ゴン、あるいは酸素およびそれらの混合物?用いること
をや「徴と七た特d′r問求の範囲第1項記載の超低温
冷8p、機の蓄冷器。 (8)前記側壁の材料ヲリン脱酸銅あるいけ工業用純チ
タンとし、メツシュの材料を無市素銅、タフピッチ鋼、
高純度アルミニワム、工業用純アルミニウム、ある1ハ
は傾を用いることを特徴とする特許請求の範囲@1項記
載の超低温冷凍機の蓄冷器。 (9)前記メツシュの間に適当な間隔をおいて、ステン
レス鋼、高Mr1@I4、チタン合金あるいはセラミッ
クからなるメツシュまたは板を挿入したことを特徴とす
る特許請求の範囲第8項記載の超低温冷凍機の蓄温器。
[Claims] (1) Cold tN″ff: In a regenerator for an ultra-low temperature refrigerator that uses helium and operates at a temperature below 20°C, the side wall penetrates in the direction of the refrigerant flow, and the refrigerant flow path and the regenerator An ultra-low-temperature refrigerator characterized in that the storage part of the machine is placed on the floor IL7, in contact with the sides of the side walls, and the mesh is stacked in a position perpendicular to the flow direction of the cold water, and the wire mesh is joined to the tsukuzai 1. (2) The above (11 tl wall is assumed to be large, the inside of the pipe is used as a flow path for refrigerating, and the outside of the pipe is used as a storage section for a full-grade refrigerant. 2) The left side is assumed to be a qe+ characteristic. A regenerator for an ultra-low temperature refrigerator according to Item 13 of Scope 1. (3) The side wall is a pipe and L7, and the pipe is used as a flow path for all the refrigerant outside the pipe, and the inside of the chopstick is used as a storage part of the regenerator. A regenerator for an ultra-low temperature refrigerator according to claim 18. (4) A regenerator for an ultra-low temperature refrigerator as set forth in claim 18. A regenerator for an ultra-low-temperature refrigerator according to item 1. (5) The regenerator is characterized in that the side wall is a fully dual-phase tube, the inside of the tube is a flow path for a refrigerant, and the periphery of the tube is a storage part of the regenerator. The ultra-low-temperature refrigerator according to the scope of the patent request, item 18.m The method of joining the side passage and the mesh is diffusion bonding. A regenerator for an ultra-low temperature refrigerator. (7) Is helium, hydrogen, neon, argon, or oxygen or a mixture thereof used as the regenerator? Ultra-low-temperature cooling 8P, machine regenerator as described. (8) The material of the side wall is made of deoxidized copper or industrial pure titanium, and the material of the mesh is plain copper, tough pitch steel,
A regenerator for an ultra-low temperature refrigerator according to claim 1, characterized in that the regenerator is made of high-purity aluminum, industrial pure aluminum, and is made of a tilted material. (9) The ultra-low temperature according to claim 8, characterized in that meshes or plates made of stainless steel, high Mr1@I4, titanium alloy, or ceramic are inserted at appropriate intervals between the meshes. Refrigerator heat storage device.
JP3164583A 1983-02-25 1983-02-25 Cold storage instrument of cryogenic refrigerator Granted JPS59157452A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3164583A JPS59157452A (en) 1983-02-25 1983-02-25 Cold storage instrument of cryogenic refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3164583A JPS59157452A (en) 1983-02-25 1983-02-25 Cold storage instrument of cryogenic refrigerator

Publications (2)

Publication Number Publication Date
JPS59157452A true JPS59157452A (en) 1984-09-06
JPH0316591B2 JPH0316591B2 (en) 1991-03-05

Family

ID=12336926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3164583A Granted JPS59157452A (en) 1983-02-25 1983-02-25 Cold storage instrument of cryogenic refrigerator

Country Status (1)

Country Link
JP (1) JPS59157452A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105212A (en) * 1982-12-08 1984-06-18 ハベル、インコーポレーテッド Electric cable
JPS62118048A (en) * 1985-11-18 1987-05-29 Sanyo Electric Co Ltd Reproduction heat exchanger for stirling engine
AU709347B2 (en) * 1996-07-09 1999-08-26 Nippon Steel Corporation Stave for cooling blast furnace wall and method for producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59105212A (en) * 1982-12-08 1984-06-18 ハベル、インコーポレーテッド Electric cable
JPH0373965B2 (en) * 1982-12-08 1991-11-25
JPS62118048A (en) * 1985-11-18 1987-05-29 Sanyo Electric Co Ltd Reproduction heat exchanger for stirling engine
AU709347B2 (en) * 1996-07-09 1999-08-26 Nippon Steel Corporation Stave for cooling blast furnace wall and method for producing the same
US6126893A (en) * 1996-07-09 2000-10-03 Nippon Steel Corporation Stave for cooling of blast furnace walls and method of manufacturing same
GB2331142B (en) * 1996-07-09 2000-12-27 Nippon Steel Corp Stave for cooling blast furnace wall and method for producing the same

Also Published As

Publication number Publication date
JPH0316591B2 (en) 1991-03-05

Similar Documents

Publication Publication Date Title
CN104232026B (en) Cool storage material and regenerative refrigerator
US20030121637A1 (en) Heat exchanger
CN1325856C (en) Multistage pulse tube refrigeration system for high temperature superconductivity
US20060201163A1 (en) Heat-storing medium
CN113375492B (en) Vacuum heat-insulation type heat storage/cooling device
JPS59157452A (en) Cold storage instrument of cryogenic refrigerator
JP3602823B2 (en) Pulsating tube refrigerator
US11313627B2 (en) Heat pipe
JP2019536972A (en) Heat exchanger for cryogenic refrigerator with helium as working gas, method for producing such heat exchanger, and cryogenic refrigerator including such heat exchanger
CN216430385U (en) Low-temperature cold superconducting vibration isolation device for space low-temperature refrigerator
JP2962286B2 (en) Cold storage material and cold storage refrigerator
JPS63302259A (en) Cryogenic generator
JP3293538B2 (en) Cool storage refrigerator
Tanaeva et al. Heat capacities and magnetic moments of potential regenerator materials at low temperatures
JPH09178278A (en) Cold heat accumulator
JPH0530135U (en) Regenerator material for regenerator
JP3928865B2 (en) Thermal damper for refrigerator
US20050005613A1 (en) Pulse tube refrigerator
JPH0316592B2 (en)
JPS5977266A (en) Helium refrigerator
JPS6023761A (en) Refrigerator and system thereof
JPH01203852A (en) Cold storage device
JPH0528438Y2 (en)
JP2004293998A (en) Pulse pipe refrigerator and manufacturing method thereof
JPH073250Y2 (en) Hydrogen storage / desorption heat exchanger