JPH07335656A - Gettering method - Google Patents

Gettering method

Info

Publication number
JPH07335656A
JPH07335656A JP12534894A JP12534894A JPH07335656A JP H07335656 A JPH07335656 A JP H07335656A JP 12534894 A JP12534894 A JP 12534894A JP 12534894 A JP12534894 A JP 12534894A JP H07335656 A JPH07335656 A JP H07335656A
Authority
JP
Japan
Prior art keywords
condition
temperature
furnace
gettering
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12534894A
Other languages
Japanese (ja)
Inventor
Kazunori Ishizaka
和紀 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12534894A priority Critical patent/JPH07335656A/en
Publication of JPH07335656A publication Critical patent/JPH07335656A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To provide a thermal treatment through which unwanted heavy metal impurities are removed in a semiconductor integrated circuit manufacturing process. CONSTITUTION:A thermal treatment is carried out in a semiconductor device manufacturing process through such a method that it is carried out at a cooling rate of 0.1 deg.C/minute to 1.0 deg.C/minute in a temperature range of 790 deg.C to 750 deg.C from 800 deg.C, 0.1 deg.C/minute to 2.0 deg.C/minute in a temperature range of 750 deg.C to 700 deg.C from soot, and 0.1 deg.C/minute to 3.0 deg.C/minute in a temperature range of voov to 600 deg.C from 800 deg.C. By this setup, elements such as iron slow in diffusion and weak in gettering effect are effectively gettered.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、集積回路など半導体デ
バイス製造工程の熱処理に関するものである。特に、本
発明はデバイス製造中に受ける汚染不純物をシリコン基
板内のデバイス領域から有効に汚染不純物を除去する熱
処理方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to heat treatment in a semiconductor device manufacturing process such as an integrated circuit. In particular, the present invention is a heat treatment method for effectively removing contaminant impurities received during device manufacturing from device regions in a silicon substrate.

【0002】[0002]

【従来の技術】集積回路の高集積化に伴い、ダイナミッ
クメモリ(DRAM)において微小リーク電流の減少は
重要課題となっている。この微小リーク電流は半導体集
積回路製造工程中に混入する鉄、ニッケル、銅に代表さ
れる重金属不純物に起因する。この汚染不純物を除去す
るためにゲッタリング法が用いられる。
2. Description of the Related Art With the high integration of integrated circuits, reduction of minute leak current has become an important issue in dynamic memories (DRAM). This minute leak current is caused by heavy metal impurities typified by iron, nickel and copper that are mixed in during the semiconductor integrated circuit manufacturing process. A gettering method is used to remove the contaminant impurities.

【0003】このゲッタリング法には、半導体集積回路
製造工程中に裏面にリン拡散を行う方法(Journal of E
lectrochemical Society 1975 年 122 巻786 頁)、裏
面に機械的歪を導入する方法(Japanese Journal of Ap
plied Physics 1984年 23 巻959頁)、裏面に多結晶シ
リコン膜を堆積する方法、(Journal of Electrochemic
al Society 1982 年 129 巻 1294 頁)、裏面にアルゴ
ン等のイオンを注入する方法(Journal of Applied Phy
sics 1975 年 46 巻 600頁)が知られている。
The gettering method is a method of performing phosphorus diffusion on the back surface during the semiconductor integrated circuit manufacturing process (Journal of E).
lectrochemical Society 1975 Vol. 122, p. 786), Method of introducing mechanical strain on the back surface (Japanese Journal of Ap
plied Physics, Vol. 23, 1984, p. 959), a method of depositing a polycrystalline silicon film on the back surface, (Journal of Electrochemic
al Society 1982 Vol. 129, p. 1294), Method of implanting ions such as argon on the back surface (Journal of Applied Phy
sics 1975 46: 600) is known.

【0004】このようなゲッタリング処理基板を用い
て、半導体デバイスを製造している。通常のデバイス工
程において、ゲッタリング処理として、デバイス製造の
ための薄膜形成処理を含めた熱処理後、炉からの引き出
し温度として600℃以上の温度で50mm/分以上の
引き出し速度でウェハを炉から引き出し、引き出し温度
から室温までの冷却中にゲッタリングを行っている。
Semiconductor devices are manufactured using such gettering-treated substrates. In a normal device process, as a gettering process, a heat treatment including a thin film forming process for manufacturing a device is performed, and then a wafer is pulled out of the furnace at a drawing temperature of 600 ° C. or more and a drawing speed of 50 mm / min or more. , Gettering is performed during cooling from the drawing temperature to room temperature.

【0005】[0005]

【発明が解決しようとする課題】ゲッタリングの対象と
する重金属不純物は、銅、ニッケル、コバルト、鉄、マ
ンガン、クロムなどである。通常のデバイス工程の熱処
理条件である熱処理後、炉からの引き出し温度が600
℃以上の温度で50mm/以上の引き出し速度では、炉
から引き出され室温まで空冷にて冷却される場合、その
間の熱履歴は、拡散距離として換算した場合600℃で
10分間保持した場合の拡散距離を越えないものであ
る。銅、ニッケル、コバルトなどのシリコン中の拡散の
速い金属では、その熱履歴で十分にゲッタリングでき
る。しかし、鉄、マンガン、クロムなどの拡散の遅い元
素では冷却中の拡散が律速しゲッタリングできない。本
発明は鉄に代表される拡散の遅い元素に対してゲッタリ
ング効果を進める熱処理方法の提供を目的とする。
The heavy metal impurities to be gettered are copper, nickel, cobalt, iron, manganese, chromium and the like. After the heat treatment, which is the heat treatment condition in the normal device process, the temperature of drawing out from the furnace is 600.
When drawn out from the furnace and cooled to room temperature by air cooling at a drawing speed of 50 mm / or more at a temperature of ℃ or more, the thermal history during that time is the diffusion distance when converted to a diffusion distance and held at 600 ° C. for 10 minutes. It does not exceed. Metals such as copper, nickel, and cobalt, which diffuse rapidly in silicon, can be sufficiently gettered by their thermal history. However, with slow-diffusing elements such as iron, manganese, and chromium, diffusion during cooling is rate-determining and gettering cannot be performed. It is an object of the present invention to provide a heat treatment method for promoting a gettering effect on a slow diffusion element represented by iron.

【0006】[0006]

【課題を解決するための手段】本発明は鉄に代表される
拡散の遅い元素に対してゲッタリング効果を高める熱処
理方法を提供する。本発明は、半導体デバイス製造工程
において、800℃以上の熱処理後、800℃から75
0℃超790℃以下までの温度域を0.1℃/分から
1.0℃/分の冷却速度で冷却する熱処理、800℃か
ら700℃超750℃以下の温度域までを0.1℃/分
から2.0℃/分の冷却速度で冷却する熱処理、または
800℃から600℃以上700℃以下の温度域までを
0.1℃/分から3.0℃/分の冷却速度で冷却する熱
処理方法である。
The present invention provides a heat treatment method for enhancing the gettering effect for slow-diffusing elements represented by iron. The present invention, in the semiconductor device manufacturing process, after the heat treatment at 800 ℃ or more, from 800 ℃ to 75
Heat treatment for cooling a temperature range from 0 ° C to 790 ° C or lower at a cooling rate of 0.1 ° C / min to 1.0 ° C / min, and 0.1 ° C / 800 ° C to 700 ° C to 750 ° C or lower Min to 2.0 ° C./min cooling rate or 800 ° C. to 600 ° C. to 700 ° C. cooling range 0.1 ° C./min to 3.0 ° C./min cooling rate Is.

【0007】[0007]

【作用】800℃を超える温度領域では、鉄、マンガ
ン、クロムに代表される重金属においてもシリコン中に
十分に拡散できるが、ゲッタリングサイトの捕獲エネル
ギーが弱いため、ゲッタリングサイトにおいて十分に不
純物を捕獲できない。ゲッタリングサイトの重金属に対
する捕獲エネルギーは、低温になるほどゲッタリングサ
イトでの捕獲が進むため、800℃以下の温度領域では
ゲッタリングサイトにおいて十分にゲッタリングでき
る。捕獲エネルギーは元素の種類により、大きく依存し
ないためすべての重金属に対してこの温度依存性に従
う。裏面にゲッタリングサイトを形成させた場合、60
0℃に満たない低温領域では拡散が遅く、実際上ゲッタ
リングサイトへの拡散が不十分であるため有効なゲッタ
リング効果が期待できない。半導体デバイス製造工程に
おいて、800℃以上の熱処理後、800℃から750
℃を超えて790℃以下までの温度域を0.1℃/分か
ら1.0℃/分の冷却速度で冷却する熱処理、800℃
から700℃を超えて750℃以下の温度域までを0.
1℃/分から2.0℃/分、好ましくは0.2℃/分か
ら1.0℃/分の冷却速度で冷却する熱処理、または8
00℃から600℃以上700℃以下の温度域までを
0.1℃/分から3.0℃/分、好ましくは0.1℃/
分から0.5℃/分の冷却速度で冷却する熱処理を行う
ことにより、鉄、マンガン、クロム、に代表される拡散
の遅い元素に対しても十分にゲッタリングできる。徐冷
速度として0.1℃/分で十分ゲッタリングでき0.1
℃/分より遅い冷却条件ではゲッタリング効果の改善は
期待できない。
In the temperature range over 800 ° C., even heavy metals represented by iron, manganese, and chromium can sufficiently diffuse into silicon, but the capture energy of the gettering site is weak, so that the gettering site contains sufficient impurities. I can't capture. As for the trapping energy of the gettering site for the heavy metal, the trapping at the gettering site progresses as the temperature gets lower, so that the gettering site can sufficiently getter in the temperature range of 800 ° C. or lower. The trapping energy does not largely depend on the type of element, and therefore this temperature dependency is followed for all heavy metals. If a gettering site is formed on the back side, 60
In a low temperature region of less than 0 ° C., the diffusion is slow, and in fact the diffusion to the gettering site is insufficient, so an effective gettering effect cannot be expected. In the semiconductor device manufacturing process, after heat treatment at 800 ° C or higher, 800 ° C to 750 ° C
Heat treatment for cooling the temperature range from ℃ to 790 ℃ or less at a cooling rate of 0.1 ℃ / min to 1.0 ℃ / min, 800 ℃
To a temperature range of 700 ° C to 750 ° C.
Heat treatment for cooling at a cooling rate of 1 ° C./min to 2.0 ° C./min, preferably 0.2 ° C./min to 1.0 ° C./min, or 8
The temperature range of 00 ° C to 600 ° C to 700 ° C is 0.1 ° C / min to 3.0 ° C / min, preferably 0.1 ° C / min.
By performing the heat treatment of cooling at a cooling rate of 0.5 to 0.5 ° C./minute, gettering can be sufficiently performed even for elements with slow diffusion represented by iron, manganese, and chromium. Slow cooling rate of 0.1 ° C / min is sufficient for gettering 0.1
Improvement in gettering effect cannot be expected under cooling conditions slower than ° C / min.

【0008】なお、この熱処理時の圧力条件、雰囲気条
件としては、特に限定はない。圧力は常圧であってもあ
るいは減圧もしくは加圧条件にしても効果に差はみられ
ない。また、雰囲気は、例えば、窒素でも、酸素でも、
アルゴンでもあるいは水素でも効果に差はみられない。
There are no particular restrictions on the pressure conditions and atmosphere conditions during this heat treatment. Even if the pressure is normal pressure, or even if the pressure is reduced or increased, the effect is not different. Also, the atmosphere is, for example, nitrogen or oxygen,
There is no difference in the effect between argon and hydrogen.

【0009】本ゲッタリング処理条件は、半導体デバイ
ス製造工程において用いられる窒化珪素膜堆積処理、熱
酸化膜形成処理、ポリシリコン膜堆積処理、シリコン酸
化膜堆積処理、ドーパントの拡散および活性化処理にお
いて同時に行うことができる。
The present gettering processing conditions are the same in the silicon nitride film deposition processing, thermal oxide film formation processing, polysilicon film deposition processing, silicon oxide film deposition processing, dopant diffusion and activation processing used in the semiconductor device manufacturing process. It can be carried out.

【0010】[0010]

【実施例】用いたウェハはポリシリコン膜が裏面に1μ
m堆積されたポリシリコンゲッタリングウェハである。
基板はP型10Ωcmで酸素濃度は7×1017/cm3
である。汚染元素としてFeをスピンコート法により表
面汚染量1×1012/cm2 で汚染した。以下の条件に
て汚染拡散処理、ゲート酸化処理、ゲッタリング処理、
水素アニール処理を行い、Al電極MOSダイオードを
実装しMOS.C−t法により発生ライフタイムにより
ゲッタリング能力を評価した。まず、鉄拡散とゲート酸
化条件は、1000℃1時間窒素雰囲気で拡散処理を行
い、連続して1000℃25分ドライ酸化である。形成
されたゲート酸化膜厚は30nmである。ゲッタリング
処理として、ゲート酸化後の冷却を1000℃から80
0℃まで3.0℃/分で行い800℃から600℃まで
を0.05℃/分から4.0℃/分で行った。なお、ゲ
ッタリング処理時の圧力は1気圧、雰囲気はN2 雰囲気
とした。水素アニール条件として、400℃1時間20
%H2 /N2 雰囲気で処理を行なった。
[Example] The wafer used had a polysilicon film of 1 μm on the back surface.
m is a polysilicon gettering wafer deposited.
The substrate is P type 10 Ωcm and the oxygen concentration is 7 × 10 17 / cm 3.
Is. Fe was used as a pollutant element by spin coating to contaminate the surface with an amount of 1 × 10 12 / cm 2 . Contamination diffusion treatment, gate oxidation treatment, gettering treatment,
After hydrogen annealing, the Al electrode MOS diode is mounted and the MOS. The gettering ability was evaluated by the occurrence lifetime by the Ct method. First, the iron diffusion and gate oxidation conditions are dry oxidation at 1000 ° C. for 25 minutes, followed by diffusion treatment at 1000 ° C. for 1 hour in a nitrogen atmosphere. The formed gate oxide film thickness is 30 nm. As gettering treatment, cooling after gate oxidation is performed at 1000 ° C. to 80 ° C.
It was performed at 0 ° C. at 3.0 ° C./min, and at 800 ° C. to 600 ° C. at 0.05 ° C./min to 4.0 ° C./min. The pressure during gettering was 1 atm and the atmosphere was N 2 atmosphere. As hydrogen annealing conditions, 400 ° C for 1 hour 20
It was performed treated with% H 2 / N 2 atmosphere.

【0011】ゲッタリング処理を条件1から条件33に
わたり行なった。条件1は、800℃にてそのまま炉か
ら引き出した場合である。
The gettering process was performed under the conditions 1 to 33. Condition 1 is a case where the material is pulled out of the furnace as it is at 800 ° C.

【0012】条件2は、800℃から790℃までの温
度を1.0℃/分で冷却し790℃にて炉から引き出し
た。条件3は、800℃から775℃までの温度を1.
0℃/分で冷却し775℃にて炉から引き出した。条件
4は、800℃から760℃までの温度を1.0℃/分
で冷却し760℃にて炉から引き出した。条件5は、8
00℃から750℃までの温度を2.0℃/分で冷却し
750℃にて炉から引き出した。条件6は、800℃か
ら730℃までの温度を2.0℃/分で冷却し730℃
にて炉から引き出した。条件7は、800℃から710
℃までの温度を2.0℃/分で冷却し710℃にて炉か
ら引き出した。条件8は、800℃から700℃までの
温度を3.0℃/分で冷却し700℃にて炉から引き出
した。条件9は、800℃から650℃までの温度を
3.0℃/分で冷却し650℃にて炉から引き出した。
条件10は、800℃から600℃までの温度を3.0
℃/分で冷却し600℃にて炉から引き出した。条件1
1は、800℃から790℃までの温度を0.1℃/分
で冷却し790℃にて炉から引き出した。条件12は、
800℃から760℃までの温度を0.1℃/分で冷却
し760℃にて炉から引き出した。条件13は、800
℃から750℃までの温度を0.1℃/分で冷却し75
0℃にて炉から引き出した。条件14は、800℃から
710℃までの温度を0.1℃/分で冷却し750℃に
て炉から引き出した。条件15は、800℃から700
℃までの温度を0.1℃/分で冷却し700℃にて炉か
ら引き出した。条件16は、800℃から650℃まで
の温度を0.1℃/分で冷却し650℃にて炉から引き
出した。条件17は、800℃から600℃までの温度
を0.1℃/分で冷却し600℃にて炉から引き出し
た。
The condition 2 was that the temperature from 800 ° C. to 790 ° C. was cooled at 1.0 ° C./min and the sample was taken out from the furnace at 790 ° C. Condition 3 is that the temperature from 800 ° C. to 775 ° C. is 1.
It was cooled at 0 ° C / min and withdrawn from the furnace at 775 ° C. In the condition 4, the temperature from 800 ° C. to 760 ° C. was cooled at 1.0 ° C./min, and the sample was taken out from the furnace at 760 ° C. Condition 5 is 8
The temperature from 00 ° C. to 750 ° C. was cooled at 2.0 ° C./min, and the sample was taken out from the furnace at 750 ° C. Condition 6 is that the temperature from 800 ° C to 730 ° C is cooled at 2.0 ° C / min to 730 ° C.
I pulled it out of the furnace. Condition 7 is 800 ° C to 710
The temperature up to ℃ was cooled at 2.0 ℃ / min, and the furnace was pulled out at 710 ℃. The condition 8 was that the temperature from 800 ° C. to 700 ° C. was cooled at 3.0 ° C./min and then pulled out from the furnace at 700 ° C. The condition 9 was that the temperature from 800 ° C. to 650 ° C. was cooled at 3.0 ° C./min and then pulled out from the furnace at 650 ° C.
Condition 10 is that the temperature from 800 ° C to 600 ° C is 3.0.
It was cooled at 0 ° C / min and pulled out of the furnace at 600 ° C. Condition 1
In No. 1, the temperature from 800 ° C. to 790 ° C. was cooled at 0.1 ° C./min and pulled out from the furnace at 790 ° C. Condition 12 is
The temperature from 800 ° C. to 760 ° C. was cooled at 0.1 ° C./min and the product was pulled out from the furnace at 760 ° C. Condition 13 is 800
The temperature from ℃ to 750 ℃ is cooled at 0.1 ℃ / min.
Pulled out of furnace at 0 ° C. The condition 14 was to cool the temperature from 800 ° C. to 710 ° C. at 0.1 ° C./min, and pull out from the furnace at 750 ° C. Condition 15 is 800 ° C to 700
The temperature up to 0 ° C was cooled at 0.1 ° C / min, and it was pulled out of the furnace at 700 ° C. The condition 16 was that the temperature from 800 ° C. to 650 ° C. was cooled at 0.1 ° C./min, and was withdrawn from the furnace at 650 ° C. The condition 17 was to cool the temperature from 800 ° C. to 600 ° C. at 0.1 ° C./min and draw it from the furnace at 600 ° C.

【0013】条件18は、800℃から790℃までの
温度を2.0℃/分で冷却し790℃にて炉から引き出
した。条件19は、800℃から775℃までの温度を
2.0℃/分で冷却し775℃にて炉から引き出した。
条件20は、800℃から760℃までの温度を2.0
℃/分で冷却し760℃にて炉から引き出した。条件2
1は、800℃から750℃までの温度を3.0℃/分
で冷却し750℃にて炉から引き出した。条件22は、
800℃から730℃までの温度を3.0℃/分で冷却
し730℃にて炉から引き出した。条件23は、800
℃から710℃までの温度を3.0℃/分で冷却し71
0℃にて炉から引き出した。条件24は、800℃から
700℃までの温度を4.0℃/分で冷却し700℃に
て炉から引き出した。条件25は、800℃から650
℃までの温度を4.0℃/分で冷却し650℃にて炉か
ら引き出した。条件26は、800℃から600℃まで
の温度を4.0℃/分で冷却し600℃にて炉から引き
出した。
The condition 18 was that the temperature from 800 ° C. to 790 ° C. was cooled at 2.0 ° C./min, and the sample was taken out from the furnace at 790 ° C. The condition 19 was to cool the temperature from 800 ° C. to 775 ° C. at 2.0 ° C./min, and pull out from the furnace at 775 ° C.
Condition 20 is that the temperature from 800 ° C to 760 ° C is 2.0.
It was cooled at 0 ° C / min and pulled out of the furnace at 760 ° C. Condition 2
In No. 1, the temperature from 800 ° C. to 750 ° C. was cooled at 3.0 ° C./min and pulled out from the furnace at 750 ° C. Condition 22 is
The temperature from 800 ° C. to 730 ° C. was cooled at 3.0 ° C./min and the product was taken out from the furnace at 730 ° C. Condition 23 is 800
Cooling the temperature from ℃ to 710 ℃ at 3.0 ℃ / 71
Pulled out of furnace at 0 ° C. The condition 24 was that the temperature from 800 ° C. to 700 ° C. was cooled at 4.0 ° C./min and then pulled out from the furnace at 700 ° C. Condition 25 is 800 ° C to 650
The temperature was lowered to 4.0 ° C / min at 4.0 ° C / min, and the furnace was withdrawn at 650 ° C. The condition 26 was that the temperature from 800 ° C. to 600 ° C. was cooled at 4.0 ° C./min, and the sample was pulled out from the furnace at 600 ° C.

【0014】条件27は、800℃から790℃までの
温度を0.05℃/分で冷却し790℃にて炉から引き
出した。条件28は、800℃から760℃までの温度
を0.05℃/分で冷却し760℃にて炉から引き出し
た。条件29は、800℃から750℃までの温度を
0.05℃/分で冷却し750℃にて炉から引き出し
た。条件30は、800℃から710℃までの温度を
0.05℃/分で冷却し710℃にて炉から引き出し
た。条件31は、800℃から700℃までの温度を
0.05℃/分で冷却し700℃にて炉から引き出し
た。条件32は、800℃から650℃までの温度を
0.05℃/分で冷却し650℃にて炉から引き出し
た。条件33は、800℃から600℃までの温度を
0.05℃/分で冷却し600℃にて炉から引き出し
た。表1に発生ライフタイムの測定結果を示す。
The condition 27 was that the temperature from 800 ° C. to 790 ° C. was cooled at 0.05 ° C./min and the sample was taken out from the furnace at 790 ° C. The condition 28 was that the temperature from 800 ° C. to 760 ° C. was cooled at 0.05 ° C./min, and the sample was taken out from the furnace at 760 ° C. The condition 29 was that the temperature from 800 ° C. to 750 ° C. was cooled at 0.05 ° C./min and then pulled out from the furnace at 750 ° C. The condition 30 was that the temperature from 800 ° C. to 710 ° C. was cooled at 0.05 ° C./min, and the sample was taken out from the furnace at 710 ° C. The condition 31 was that the temperature from 800 ° C. to 700 ° C. was cooled at 0.05 ° C./min, and the temperature was pulled out from the furnace at 700 ° C. The condition 32 was that the temperature from 800 ° C. to 650 ° C. was cooled at 0.05 ° C./min, and the sample was taken out from the furnace at 650 ° C. The condition 33 was to cool the temperature from 800 ° C. to 600 ° C. at 0.05 ° C./min, and pull out from the furnace at 600 ° C. Table 1 shows the measurement results of the occurrence lifetime.

【0015】[0015]

【表1】 [Table 1]

【0016】条件2、条件3、条件4、条件5、条件
6、条件7、条件8、条件9、条件10、条件11、条
件12、条件13、条件14、条件15、条件16、条
件17では発生ライフタイムが500μsec以上にな
り十分なゲッタリング効果が認められる。
Condition 2, Condition 3, Condition 4, Condition 5, Condition 6, Condition 7, Condition 8, Condition 9, Condition 10, Condition 11, Condition 12, Condition 13, Condition 14, Condition 15, Condition 16, Condition 17 Then, the occurrence lifetime becomes 500 μsec or more, and a sufficient gettering effect is recognized.

【0017】[0017]

【発明の効果】本発明は、半導体デバイス製造工程にお
いて、800℃以上の熱処理後、800℃から750℃
超790℃以下までの温度域を0.1℃/分から1.0
℃/分の冷却速度で冷却する熱処理、800℃から70
0℃超750℃以下の温度域までを0.1℃/分から
2.0℃/分の冷却速度で冷却する熱処理、800℃か
ら600℃以上700℃以下の温度域までを0.1℃/
分から3.0℃/分の冷却速度で冷却する熱処理によ
り、拡散の遅い鉄、マンガン、クロムなどに代表される
元素を有効にゲッタリングすることができる。
According to the present invention, in a semiconductor device manufacturing process, after heat treatment at 800 ° C. or higher, 800 ° C. to 750 ° C.
Temperature range up to less than 790 ° C from 0.1 ° C / min to 1.0
Heat treatment for cooling at a cooling rate of ℃ / min, 800 ℃ to 70
Heat treatment for cooling a temperature range of more than 0 ° C and less than 750 ° C at a cooling rate of 0.1 ° C / min to 2.0 ° C / min, and a temperature range of 800 ° C to 600 ° C or more and 700 ° C or less at 0.1 ° C / min.
By heat treatment for cooling at a cooling rate of 3.0 to 3.0 ° C./min, elements such as iron, manganese, and chromium that have slow diffusion can be effectively gettered.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】半導体デバイス製造工程において、800
℃以上の熱処理後、800℃から750℃超790℃以
下までの温度域を0.1℃/分から1.0℃/分の冷却
速度で冷却するゲッタリング処理方法。
1. In a semiconductor device manufacturing process, 800
A gettering treatment method in which a temperature range from 800 ° C. to more than 750 ° C. and less than 790 ° C. is cooled at a cooling rate of 0.1 ° C./min to 1.0 ° C./min after heat treatment at a temperature of ≧ ° C.
【請求項2】半導体デバイス製造工程において、800
℃以上の熱処理後、800℃から700℃超750℃以
下の温度域までをを0.1℃/分から2.0℃/分の冷
却速度で冷却するゲッタリング処理方法。
2. In the semiconductor device manufacturing process, 800
A gettering treatment method of cooling from 800 ° C. to a temperature range of more than 700 ° C. and less than 750 ° C. at a cooling rate of 0.1 ° C./min to 2.0 ° C./min after heat treatment at a temperature of ≧ ° C.
【請求項3】半導体デバイス製造工程において、800
℃以上の熱処理後、800℃から600℃以上700℃
以下の温度域までをを0.1℃/分から3.0℃/分の
冷却速度で冷却するゲッタリング処理方法。
3. In a semiconductor device manufacturing process, 800
After heat treatment at ℃ or more, 800 ℃ to 600 ℃ to 700 ℃
A gettering method in which the following temperature range is cooled at a cooling rate of 0.1 ° C./min to 3.0 ° C./min.
JP12534894A 1994-06-07 1994-06-07 Gettering method Withdrawn JPH07335656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12534894A JPH07335656A (en) 1994-06-07 1994-06-07 Gettering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12534894A JPH07335656A (en) 1994-06-07 1994-06-07 Gettering method

Publications (1)

Publication Number Publication Date
JPH07335656A true JPH07335656A (en) 1995-12-22

Family

ID=14907902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12534894A Withdrawn JPH07335656A (en) 1994-06-07 1994-06-07 Gettering method

Country Status (1)

Country Link
JP (1) JPH07335656A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562733B2 (en) 1997-09-30 2003-05-13 Nec Corporation Semiconductor device manufacturing method
JP2007067366A (en) * 2005-08-05 2007-03-15 Elpida Memory Inc Method for manufacturing semiconductor device
JP2008546212A (en) * 2005-06-07 2008-12-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Internal gettering by alloy clusters

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6562733B2 (en) 1997-09-30 2003-05-13 Nec Corporation Semiconductor device manufacturing method
JP2008546212A (en) * 2005-06-07 2008-12-18 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Internal gettering by alloy clusters
US7763095B2 (en) * 2005-06-07 2010-07-27 The Regents Of The University Of California Internal gettering by metal alloy clusters
JP2007067366A (en) * 2005-08-05 2007-03-15 Elpida Memory Inc Method for manufacturing semiconductor device
US7763500B2 (en) * 2005-08-05 2010-07-27 Elpida Memory, Inc. Method for manufacturing semiconductor storage device comprising a slow cooling step

Similar Documents

Publication Publication Date Title
US4376657A (en) Method of making fault-free surface zone in semiconductor devices by step-wise heat treating
JP3204855B2 (en) Semiconductor substrate manufacturing method
JP3381816B2 (en) Semiconductor substrate manufacturing method
US8003494B2 (en) Method for producing a bonded wafer
JPH11168106A (en) Treatment method of semiconductor substrate
JPH11111723A (en) Manufacture of semiconductor device
JPH07335656A (en) Gettering method
JP4035886B2 (en) Silicon epitaxial wafer and manufacturing method thereof
JP4151876B2 (en) Silicon wafer manufacturing method
JPH07335655A (en) Gettering method
JP3292545B2 (en) Heat treatment method for semiconductor substrate
JPH11135511A (en) Silicon semiconductor substrate and manufacture thereof
JP2002343800A (en) Silicon semiconductor device and its manufacturing method
JP3890819B2 (en) Heat treatment method for silicon wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JP2774855B2 (en) Gettering effect enhanced silicon substrate and method of manufacturing the same
JP3238957B2 (en) Silicon wafer
JP3565068B2 (en) Heat treatment method for silicon wafer and silicon wafer
JP3188810B2 (en) Silicon wafer manufacturing method
JP4305800B2 (en) Method for evaluating nitride on silicon wafer surface
JPH03280471A (en) Manufacture of semiconductor device
JPH0964051A (en) Silicon wafer and manufacture thereof
JPH04207036A (en) Intrinsic gettering method
JPH1192300A (en) Production of semiconductor substrate
JPH11243093A (en) Manufacture of silicon epitaxial wafer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010904