JPH0733554B2 - Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same - Google Patents

Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same

Info

Publication number
JPH0733554B2
JPH0733554B2 JP8601592A JP8601592A JPH0733554B2 JP H0733554 B2 JPH0733554 B2 JP H0733554B2 JP 8601592 A JP8601592 A JP 8601592A JP 8601592 A JP8601592 A JP 8601592A JP H0733554 B2 JPH0733554 B2 JP H0733554B2
Authority
JP
Japan
Prior art keywords
less
stress corrosion
corrosion cracking
cracking resistance
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8601592A
Other languages
Japanese (ja)
Other versions
JPH05255792A (en
Inventor
守 松尾
俊雄 小松原
俊樹 村松
Original Assignee
スカイアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカイアルミニウム株式会社 filed Critical スカイアルミニウム株式会社
Priority to JP8601592A priority Critical patent/JPH0733554B2/en
Publication of JPH05255792A publication Critical patent/JPH05255792A/en
Publication of JPH0733554B2 publication Critical patent/JPH0733554B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は耐応力腐食割れ性に優
れた成形加工用のアルミニウム合金圧延板およびその製
造方法に関し、特に高成形性と高強度が要求される用
途、例えば自動車ボディシートを始めとし、各種成形加
工部品、電気機器のシャーシ、その他電気部品、器物等
に適した成形加工用アルミニウム合金圧延板およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled aluminum alloy sheet for forming which is excellent in stress corrosion cracking resistance and a method for producing the same, and particularly to applications requiring high formability and high strength, such as automobile body sheets. The present invention relates to a rolled aluminum alloy plate for forming, which is suitable for various molded parts, chassis of electric equipment, other electric parts, articles, etc., and a manufacturing method thereof.

【0002】[0002]

【従来の技術】自動車のボディシートには、従来は主と
して冷延鋼板が用いられることが多かったが、最近では
車体軽量化の要求から、アルミニウム合金圧延板を使用
する検討が進められている。自動車のボディシートは、
プレス成形を施して使用されることから成形加工性が優
れていること、特に伸び、張出し性が優れていることが
要求され、しかも高強度を有することも必須であり、さ
らには耐食性、特に耐応力腐食割れ性に優れていること
も重要である。
2. Description of the Related Art In the past, cold-rolled steel sheets were mainly used as the body sheets of automobiles, but recently, due to the demand for weight reduction of vehicle bodies, the use of rolled aluminum alloy sheets has been studied. Car body seats
Since it is used after being press-molded, it is required to have excellent moldability, in particular to have excellent elongation and bulging properties, and it is also essential to have high strength. It is also important to have excellent stress corrosion cracking resistance.

【0003】ところで強度が要求される成形加工品の用
途に使用されるアルミニウム合金板としては従来から種
々のものがあるが、その主要なものは合金成分系によっ
て次のように分けられる。
By the way, there are various aluminum alloy sheets used for the purpose of molded products requiring strength, and the main ones are classified as follows depending on the alloy component system.

【0004】(イ) 非熱処理型Al−Mg系合金であ
る5052合金(Mg2.2〜2.8%、Cr0.15
〜0.35%、残部Alおよび不可避的不純物)のO材
あるいは同じく5182合金(Mn0.20〜0.50
%、Mg1.0〜5.0%、残部Alおよび不可避的不
純物)のO材。
(A) 5052 alloy (Mg 2.2 to 2.8%, Cr 0.15) which is a non-heat treatment type Al-Mg alloy.
˜0.35%, balance Al and unavoidable impurities) O material or 5182 alloy (Mn 0.20 to 0.50)
%, Mg 1.0 to 5.0%, balance Al and unavoidable impurities) O material.

【0005】(ロ) 熱処理型Al−Mg−Zn−Cu
系合金のT4処理材。この系のアルミニウム合金として
は、例えば特開昭52−141409号の合金、特開昭
53−103914号の合金、あるいは特開昭57−9
8648号の合金などがある。さらには、日経ニューマ
テリアル1986年4月7日号(No.8)の63〜72
頁、特に64頁で紹介されているAl−4.5%Mg−
0.38%Cu−1.46%Zn−0.18%Fe−
0.09%Si合金もある。
(B) Heat treatment type Al-Mg-Zn-Cu
T4 treated material of system alloy. Examples of aluminum alloys of this type include those disclosed in JP-A-52-141409, JP-A-53-103914, and JP-A-57-9.
There are alloys such as 8648. Furthermore, 63-72 of April 7, 1986 issue of Nikkei New Material (No. 8).
Al-4.5% Mg-introduced on page 64, especially on page 64
0.38% Cu-1.46% Zn-0.18% Fe-
There is also a 0.09% Si alloy.

【0006】(ハ) 熱処理型Al−Mg−Si系合金
である6009合金(Mg0.4〜0.8%、Si0.
6〜1.0%、Cu0.15〜0.6%、Mn0.2〜
0.8%、残部Alおよび不可避的不純物)のT4処理
材や同じく6010合金(Mg0.6〜1.0%、Si
0.8〜1.2%、Cu0.15〜0.6%、Mn0.
2〜0.8%、残部Alおよび不可避的不純物)のT4
処理材。これらについては、特公昭59−39499号
に詳細に示されており、またこのほか特公昭61−15
148号で提案されているAC120合金T4処理材が
ある。
(C) 6009 alloy (Mg 0.4 to 0.8%, Si0.
6-1.0%, Cu 0.15-0.6%, Mn 0.2-
T4 treated material with 0.8%, balance Al and unavoidable impurities, and the same 6010 alloy (Mg 0.6 to 1.0%, Si)
0.8-1.2%, Cu 0.15-0.6%, Mn0.
2-0.8%, balance Al and unavoidable impurities) T4
Processing material. These are described in detail in Japanese Examined Patent Publication No. 59-39499, and in addition to these, Japanese Examined Patent Publication No. 61-15
There is an AC120 alloy T4 treated material proposed in No. 148.

【0007】(ニ) Al−Mg合金にCuを添加し、
急速冷却によるT4処理を施したAl−Mg−Cu系合
金(特開昭62−27544号あるいは特開昭63−6
9952号)。
(D) Cu is added to the Al-Mg alloy,
Al-Mg-Cu based alloy which has been subjected to T4 treatment by rapid cooling (JP-A-62-27544 or JP-A-63-6).
9952).

【0008】[0008]

【発明が解決しようとする課題】前述のように高強度が
要求される成形加工用のアルミニウム合金としては従来
から種々のものが用いられているが、この種の用途のう
ちでも、自動車用ボディシートとしては、特に成形性の
点から、(イ)のAl−Mg系合金、(ニ)のAl−M
g−Cu系合金、あるいは(ロ)のAl−Mg−Zn−
Cu系合金が用いられることが多い。しかしながら、こ
れらの合金では、強度および成形性向上のためにMg量
を3〜4%程度以上とすれば、耐応力腐食割れ性が低下
してしまう問題がある。
As described above, various aluminum alloys have been conventionally used for molding which require high strength. Among these applications, the body for automobiles is also used. As the sheet, from the viewpoint of formability, (a) Al-Mg based alloy and (d) Al-M.
g-Cu based alloy, or (b) Al-Mg-Zn-
Cu-based alloys are often used. However, these alloys have a problem that the stress corrosion cracking resistance is lowered if the Mg content is set to about 3 to 4% or more in order to improve strength and formability.

【0009】なおAl−Mg−Cu系合金は、これらの
うちでも比較的耐応力腐食割れ性が良好であるが、Mg
が4%を越えればやはり耐応力腐食割れ性が低下してし
まう。またAl−Mg系合金にZnを添加した場合に
は、最終の焼鈍を連続焼鈍などによって急速冷却で行な
えば、強度、成形性は得られるが、耐応力腐食割れ性が
著しく低下してしまう。またAl−Mg系合金にZnを
添加して、最終焼鈍を急冷で行ない、さらに析出処理を
行なえば、母材の耐応力腐食割れ性は向上するが、溶接
を施して使用する場合は溶接部は熱影響部が急冷となる
ため、その溶接部の耐応力腐食割れ性が低下してしまう
という問題が生じる。
Although Al-Mg-Cu alloys have relatively good resistance to stress corrosion cracking among these alloys,
If it exceeds 4%, the stress corrosion cracking resistance is also deteriorated. Further, when Zn is added to the Al-Mg-based alloy, if the final annealing is performed by rapid cooling such as continuous annealing, the strength and formability can be obtained, but the stress corrosion cracking resistance is significantly reduced. If Zn is added to the Al-Mg-based alloy, the final annealing is performed by quenching, and the precipitation treatment is further performed, the stress corrosion cracking resistance of the base material is improved, but when used by welding, the welded part is used. Since the heat-affected zone is rapidly cooled, there arises a problem that the stress corrosion cracking resistance of the welded zone deteriorates.

【0010】このように、従来の成形加工用アルミニウ
ム合金では、優れた成形性および強度を有すると同時
に、母材部分のみならず溶接部を含めて優れた耐応力腐
食割れ性を有する材料を提供することが困難であった。
As described above, the conventional aluminum alloy for forming process provides a material having excellent formability and strength, and at the same time, excellent stress corrosion cracking resistance not only in the base metal portion but also in the welded portion. It was difficult to do.

【0011】この発明は以上の事情を背景としてなされ
たもので、自動車ボディシートなどに使用される高強度
成形加工用アルミニウム合金圧延板として、強度および
成形性を損なうことなく、母材部分および溶接部の耐応
力腐食割れ性を著しく向上させたアルミニウム合金圧延
板を提供することを目的とするものである。
The present invention has been made in view of the above circumstances. As an aluminum alloy rolled plate for high-strength forming used for an automobile body sheet or the like, a base material portion and a welded portion can be obtained without impairing strength and formability. It is an object of the present invention to provide an aluminum alloy rolled sheet having markedly improved stress corrosion cracking resistance of a portion.

【0012】[0012]

【課題を解決するための手段】前述のような課題を解決
するため、この発明の成形加工用アルミニウム合金圧延
板では、基本的には合金の成分組成を適切に規定すると
同時に、圧延板の粒界の析出物、特にMg,Znに起因
する析出物のサイズを適切に調整し、これによって成形
性および強度と同時に、優れた耐応力腐食割れ性を得て
いる。またこの発明の製造方法では、前述のように粒界
析出物のサイズが適切に調整されるように、プロセス条
件を定めている。
In order to solve the above-mentioned problems, in the aluminum alloy rolled sheet for forming according to the present invention, basically, the composition of the alloy components is appropriately specified, and at the same time, the grain of the rolled sheet is The size of the precipitates in the boundary, in particular the precipitates derived from Mg and Zn, is appropriately adjusted, and thereby excellent moldability and strength as well as excellent stress corrosion cracking resistance are obtained. Further, in the manufacturing method of the present invention, the process conditions are set so that the size of the grain boundary precipitate is appropriately adjusted as described above.

【0013】具体的には、請求項1の発明の成形加工用
アルミニウム合金圧延板は、Mg3.0〜7.0%、Z
n0.1〜1.0%を含有し、かつCu0.1%以下、
Fe0.4%以下、Si0.2%以下にそれぞれ規制さ
れ、残部がAlおよび不可避的不純物よりなり、Mgも
しくはZnに起因する粒界上の析出物の平均サイズが
0.2〜4.0μmの範囲内にあることを特徴とするも
のである。
Specifically, the rolled aluminum alloy sheet for forming according to the invention of claim 1 has a Mg content of 3.0 to 7.0%, Z
n 0.1 to 1.0% and Cu 0.1% or less,
Fe 0.4% or less and Si 0.2% or less, respectively, the balance consisting of Al and unavoidable impurities, and the average size of precipitates on the grain boundaries due to Mg or Zn is 0.2 to 4.0 μm. It is characterized by being within the range.

【0014】また請求項2の発明の成形加工用アルミニ
ウム合金圧延板は、請求項1の発明のアルミニウム合金
圧延板において、前記各成分のほか、さらにMn0.0
3%以上0.8%以下、Cr0.03%以上0.3%以
下、Zr0.03%以上0.2%以下、V0.03%以
上0.2%以下のうちの1種または2種以上を含有する
ものである。
The rolled aluminum alloy plate for forming according to the invention of claim 2 is the rolled aluminum alloy plate of claim 1 in which, in addition to the above respective components, Mn0.0
1% or more of 3% or more and 0.8% or less, Cr 0.03% or more and 0.3% or less, Zr 0.03% or more and 0.2% or less, and V0.03% or more and 0.2% or less Is included.

【0015】さらに請求項3の発明の成形加工用アルミ
ニウム合金圧延板は、請求項1もしくは請求項2のアル
ミニウム合金板において、Cu量を0.01%以下に規
制したことを特徴とするものである。
Further, the rolled aluminum alloy plate for forming according to the invention of claim 3 is characterized in that, in the aluminum alloy plate of claim 1 or 2, the Cu content is restricted to 0.01% or less. is there.

【0016】さらに請求項4の発明の成形加工用アルミ
ニウム合金圧延板は、請求項1〜請求項4のいずれかの
アルミニウム合金板において、Zn量を0.1〜0.5
%の範囲内としたものである。
Further, the rolled aluminum alloy plate for forming according to the invention of claim 4 is the aluminum alloy plate according to any one of claims 1 to 4, wherein the Zn content is 0.1 to 0.5.
It is within the range of%.

【0017】一方、請求項5の発明の成形加工用アルミ
ニウム合金圧延板の製造方法は、Mg3.0〜7.0
%、Zn0.1〜1.0%を含有し、かつCu0.1%
以下、Fe0.4%以下、Si0.2%以下にそれぞれ
規制され、さらに必要に応じてMn0.03%以上0.
8%以下、Cr0.03%以上0.3%以下、Zr0.
03%以上0.2%以下、V0.03%以上0.2%以
下のうちの1種または2種以上を含有し、残部がAlお
よび不可避的不純物よりなる合金を鋳造した後、所定の
板厚まで圧延し、その後溶体化焼鈍として、280〜5
80℃の範囲内の温度に24時間以内加熱して冷却し、
その溶体化焼鈍の冷却速度が1℃/分以下の場合はその
溶体化焼鈍のままで、また1℃/分を越える場合はその
後180〜280℃の範囲内の温度に30分〜24時間
加熱する最終焼鈍を行ない、MgもしくはZnに起因す
る粒界上の析出物の平均サイズが0.2〜4.0μmの
範囲内の圧延板を得ることを特徴とするものである。
On the other hand, the manufacturing method of the rolled aluminum alloy plate for forming according to the fifth aspect of the present invention is Mg 3.0 to 7.0.
%, Zn 0.1-1.0%, and Cu 0.1%
Below, Fe is controlled to 0.4% or less and Si to 0.2% or less, respectively, and Mn 0.03% or more to 0.
8% or less, Cr 0.03% or more and 0.3% or less, Zr0.
After casting an alloy containing one or two or more of 03% or more and 0.2% or less and V0.03% or more and 0.2% or less, and the balance of Al and unavoidable impurities, a predetermined plate Rolled to a thickness and then as solution annealing, 280-5
Heat to a temperature in the range of 80 ° C within 24 hours and cool,
When the cooling rate of the solution annealing is 1 ° C./minute or less, the solution annealing remains as it is, and when it exceeds 1 ° C./minute, it is heated to a temperature in the range of 180 to 280 ° C. for 30 minutes to 24 hours. The final annealing is performed to obtain a rolled sheet having an average size of precipitates on the grain boundaries due to Mg or Zn in the range of 0.2 to 4.0 μm.

【0018】また請求項6の発明の成形加工用アルミニ
ウム合金圧延板の製造方法は、請求項5の製造方法にお
いて、前記溶体化焼鈍として、連続焼鈍炉を用いて、4
00〜580℃の範囲内の温度に加熱して保持なしもし
くは5分以内の保持後、1℃/秒以上の冷却速度で冷却
し、その後前記最終焼鈍として、180〜280℃の範
囲内の温度に30分〜24時間加熱することを特徴とす
るものである。
According to a sixth aspect of the present invention, there is provided a method for producing a rolled aluminum alloy sheet for forming according to the fifth aspect, wherein the solution annealing is performed by using a continuous annealing furnace.
After heating to a temperature in the range of 00 to 580 ° C. without holding or holding for 5 minutes or less, it is cooled at a cooling rate of 1 ° C./sec or more, and then as the final annealing, a temperature in the range of 180 to 280 ° C. It is characterized by heating for 30 minutes to 24 hours.

【0019】さらに請求項7の発明の成形加工用アルミ
ニウム合金圧延板の製造方法は、請求項5の発明の製造
方法において、前記溶体化焼鈍として、バッチ式の溶体
化焼入れ炉を用いて、300〜500℃の範囲内の温度
に加熱して30分以上24時間以内の保持後、1℃/分
以下の冷却速度で冷却することを特徴とするものであ
る。
Further, the manufacturing method of the aluminum alloy rolled plate for forming according to the invention of claim 7 is the method of manufacturing according to claim 5, wherein the solution annealing is performed by using a batch type solution hardening quenching furnace. It is characterized by heating to a temperature in the range of up to 500 ° C., holding for 30 minutes or more and within 24 hours, and then cooling at a cooling rate of 1 ° C./minute or less.

【0020】そしてまた請求項8の発明の成形加工用ア
ルミニウム合金圧延板の製造方法は、請求項5〜請求項
7のいずれかに記載の製造方法において、前記合金のC
u量を0.01%以下に規制することを特徴とするもの
である。
The method of manufacturing an aluminum alloy rolled sheet for forming according to the invention of claim 8 is the method of manufacturing according to any one of claims 5 to 7, wherein C of the alloy is C.
It is characterized in that the amount of u is regulated to 0.01% or less.

【0021】さらに請求項9の発明の成形加工用アルミ
ニウム合金圧延板の製造方法は、請求項5〜請求項8の
いずれかの製造方法において、Zn量を0.1〜0.5
%の範囲内としたことを特徴とするものである。
Furthermore, the manufacturing method of the aluminum alloy rolled sheet for forming according to the invention of claim 9 is the manufacturing method according to any one of claims 5 to 8, wherein the Zn content is 0.1 to 0.5.
It is characterized by being set within the range of%.

【0022】[0022]

【作用】先ずこの発明における成分組成の限定理由を説
明する。
First, the reasons for limiting the component composition in the present invention will be explained.

【0023】Mg:Mgはこの発明で基本となる合金成
分であって、強度の向上と、成形性、特に伸びおよび張
出性の向上に寄与する。Mg量が3.0%未満では、強
度が低く、自動車用ボディシートの如き構造用には不適
当となり、一方7.0%を越えれば圧延性が悪化して製
造が困難となる。したがってMg量は3.0〜7.0%
の範囲内とした。なおここで、Mg量が3.0%以上で
は、従来一般のアルミニウム合金の場合は、β相(Mg
Al)を主体とする析出物が粒界に析出して応力腐
食割れの原因となるが、この発明では後に改めて説明す
るように、粒界析出物のサイズの適切な調整によって、
Mg量が3.0〜7.0%でも優れた耐応力腐食割れ性
が得られる。
Mg: Mg is an alloy component which is the basis of the present invention, and contributes to improvement of strength and formability, particularly elongation and bulging property. If the amount of Mg is less than 3.0%, the strength is low and it is unsuitable for structural purposes such as automobile body sheets. On the other hand, if it exceeds 7.0%, the rolling property deteriorates and the production becomes difficult. Therefore, the amount of Mg is 3.0 to 7.0%
Within the range of. Here, when the amount of Mg is 3.0% or more, the β phase (Mg
The precipitate mainly composed of 2 Al 3 ) precipitates at the grain boundary and causes stress corrosion cracking. However, in the present invention, as will be described later, by appropriately adjusting the size of the grain boundary precipitate,
Excellent stress corrosion cracking resistance can be obtained even when the amount of Mg is 3.0 to 7.0%.

【0024】Zn:Znは、耐応力腐食割れ性に大きな
影響を与える。すなわち、一般にZnはZn系析出物お
よびβ相の析出を促進し、成形加工後の成形品の使用温
度下でZn系析出物やβ相が結晶粒界に連続的に析出さ
れたり、Znが粒界に濃縮されたりすれば、応力腐食割
れの危険が加速される。一方、予め圧延板の段階での析
出状態を適切に制御しておくことによって、成形加工後
の成形品の使用温度下においてZn系析出物やβ相が結
晶粒界に連続的に析出することを抑制すれば、耐応力腐
食割れ性は逆に向上する。しかしながら溶接部において
は、溶接時の熱影響があるため、前述のように圧延板の
段階で析出状態を適切に制御しただけでは、Zn量によ
っては耐応力腐食割れ性を向上させることが困難となる
場合がある。すなわちZnを添加した合金においては、
前述のように圧延板の段階で析出状態を適切に調整して
おいても、溶接時にその熱影響部でZnが再固溶されて
しまって溶接後の急冷により溶体化され、その結果、Z
n量によってはその後の使用温度下での析出が促進さ
れ、耐応力腐食割れ性が低下してしまうおそれがある。
Zn量が0.1%未満では、析出物の制御によって耐応
力腐食割れ性を向上させる効果が不充分であり、Zn量
が1.0%を越えれば、前述のように圧延板の段階で析
出状態を適切に制御しておいても、溶接時の熱影響によ
って溶接部の耐応力腐食割れ性が低下してしまう。した
がってZnは0.1〜1.0%の範囲内とした。なお溶
接部の耐応力腐食割れ性をより一層良好にするために
は、Znを0.5%以下(0.1%以上)とすることが
望ましい。
Zn: Zn has a great influence on the stress corrosion cracking resistance. That is, in general, Zn promotes precipitation of Zn-based precipitates and β-phases, and Zn-based precipitates and β-phases are continuously precipitated at grain boundaries at the operating temperature of the molded product after molding, and Zn Concentration at grain boundaries accelerates the risk of stress corrosion cracking. On the other hand, by appropriately controlling the precipitation state at the stage of the rolled plate beforehand, Zn-based precipitates and β phase can be continuously precipitated at the grain boundaries at the operating temperature of the molded product after molding. If it suppresses, stress corrosion cracking resistance will improve conversely. However, since there is a thermal effect at the time of welding in the welded portion, it is difficult to improve the stress corrosion cracking resistance depending on the Zn content only by appropriately controlling the precipitation state in the stage of the rolled plate as described above. May be. That is, in the alloy containing Zn,
As described above, even if the precipitation state is properly adjusted at the rolling plate stage, Zn is re-dissolved in the heat-affected zone during welding and is solidified by rapid cooling after welding.
Depending on the amount of n, subsequent precipitation at a use temperature may be promoted, and the stress corrosion cracking resistance may be deteriorated.
If the Zn content is less than 0.1%, the effect of improving the stress corrosion cracking resistance by controlling the precipitates is insufficient, and if the Zn content exceeds 1.0%, it may occur in the rolling plate stage as described above. Even if the precipitation state is properly controlled, the stress corrosion cracking resistance of the welded portion will decrease due to the thermal effect during welding. Therefore, Zn is set within the range of 0.1 to 1.0%. In order to further improve the stress corrosion cracking resistance of the welded portion, Zn is preferably 0.5% or less (0.1% or more).

【0025】Cu:Cuは強度向上には有効な元素であ
るが、この発明においては有害元素としてその上限を規
制している。すなわち、この発明の製造方法において
は、溶体化焼鈍後の冷却を1℃/分以下の徐冷とする
か、またはさらに180〜280℃の温度で最終焼鈍
(析出処理)を行ない、これによって析出状態を適切に
制御しているが、Al−Mg−Zn系の合金にCuが混
入していれば、溶体化焼鈍後の徐冷時もしくは最終焼鈍
時にCuMgAl(S相)もしくはAlCuMgZn
相が析出して、時効硬化が生じ、そのため強度が高くな
って成形性が低下してしまう。したがってこの発明にお
いて、適切な組織制御によって優れた耐応力腐食割れ性
を得ると同時に、良好な成形性を確保するためには、C
u量を可及的に少なくする必要がある。Cu量が0.1
%以下であれば上記の目的を達成できるから、Cu量は
0.1%以下に規制することとした。なおCu量を0.
01%以下に規制すれば、より良好な成形性を得ること
ができる。
Cu: Cu is an element effective for improving strength, but in the present invention, its upper limit is regulated as a harmful element. That is, in the manufacturing method of the present invention, the cooling after solution annealing is performed at a slow cooling rate of 1 ° C./minute or less, or the final annealing (precipitation treatment) is further performed at a temperature of 180 to 280 ° C. While properly controlled conditions, if Cu is mixed into Al-Mg-Zn based alloy, CuMgAl 2 (S-phase) at the time of annealing time or final annealing after solution annealing or AlCuMgZn
Phases precipitate and age hardening occurs, which increases strength and reduces moldability. Therefore, in the present invention, in order to obtain excellent stress corrosion cracking resistance by appropriate structure control and to secure good formability, C
It is necessary to reduce the u amount as much as possible. Cu amount is 0.1
If the content is less than 0.1%, the above object can be achieved, so the Cu content is limited to 0.1% or less. In addition, the Cu amount was set to 0.
If the content is regulated to 01% or less, better moldability can be obtained.

【0026】Fe:Feは結晶粒の微細化に寄与し、強
度の向上に寄与するが、0.4%を越えれば成形性を低
下させるから、Fe量は0.4%以下とした。
Fe: Fe contributes to the refinement of crystal grains and to the improvement of strength, but if it exceeds 0.4%, the formability deteriorates, so the Fe content was made 0.4% or less.

【0027】Si:Siは成形性に悪影響を与える元素
であるが、0.2%以下ではその影響がほとんどないか
ら、Siは0.2%以下とした。
Si: Si is an element that adversely affects the formability, but if it is 0.2% or less, it has almost no effect, so Si is set to 0.2% or less.

【0028】Mn,Cr,Zr,V:これらの元素は結
晶粒の微細化を通じて強度向上に効果があり、必要に応
じて1種または2種以上が添加される。Mnが0.03
%以下、Crが0.03%以下、Zrが0.03%以
下、Vが0.03%以下では上記の効果が得られず、一
方Mnが0.8%を、Crが0.3%を、Zrが0.2
%を、Vが0.2%を越えれば、粗大な金属間化合物が
生成されて成形性を害するから、これらの元素を添加す
る場合の添加量は、Mnは0.03〜0.8%、Crは
0.03〜0.3%、Zrは0.03〜0.2%、Vは
0.03〜0.2%の範囲内とする。
Mn, Cr, Zr, V: These elements have the effect of improving the strength through the refinement of crystal grains, and one or more of them are added if necessary. Mn is 0.03
% Or less, Cr is 0.03% or less, Zr is 0.03% or less, and V is 0.03% or less, the above effect cannot be obtained, while Mn is 0.8% and Cr is 0.3%. Zr is 0.2
%, If V exceeds 0.2%, a coarse intermetallic compound is generated and the formability is impaired. Therefore, when these elements are added, the addition amount of Mn is 0.03 to 0.8%. , Cr is 0.03 to 0.3%, Zr is 0.03 to 0.2%, and V is 0.03 to 0.2%.

【0029】以上の各元素のほかは、基本的にはAlお
よび不可避的不純物とすれば良い。但し、通常のアルミ
ニウム合金では、鋳塊組織の微細化のためにTi、ある
いはTiおよびBを微量添加することもあり、この発明
のアルミニウム合金圧延板においても微量のTi、また
はTiおよびBが含有されていても良い。その場合、T
iが0.15%を越えれば初晶TiAlが晶出して成
形性を害するから、Tiは0.15%以下とすることが
好ましい。またTiとともにBを添加する場合、Bが5
00ppm を越えればTiBの粗大粒子が混入して成形
性を害するから、B量は500ppm 以下とすることが好
ましい。さらに、一般にMgを含有するアルミニウム合
金では微量のBeを添加することがあるが、この発明の
アルミニウム合金でも微量のBeが添加含有されても良
い。Beは、特にMgを含有する合金を溶解する場合に
溶湯の酸化を抑制して、材料中に不純物として酸化物粒
子が含有されることを防止するに寄与する。但し500
ppm を越えるBeを添加してもその効果は飽和し、経済
性を損なうだけであるから、Beは500ppm 以下とす
ることが好ましい。
In addition to the above elements, basically Al and inevitable impurities may be used. However, in an ordinary aluminum alloy, a minute amount of Ti, or Ti and B may be added for refining the ingot structure, and the rolled aluminum alloy sheet of the present invention also contains a small amount of Ti, or Ti and B. It may be done. In that case, T
If i exceeds 0.15%, primary TiAl 3 crystallizes and impairs formability. Therefore, Ti is preferably 0.15% or less. When B is added together with Ti, B is 5
If it exceeds 00 ppm, coarse particles of TiB 2 are mixed and impair the formability, so the amount of B is preferably 500 ppm or less. Further, in general, a small amount of Be may be added to an aluminum alloy containing Mg, but the aluminum alloy of the present invention may also contain a small amount of Be. Be suppresses the oxidation of the molten metal particularly when melting an alloy containing Mg, and contributes to prevent oxide particles from being contained as impurities in the material. However, 500
Even if Be is added in excess of ppm, the effect is saturated and the economy is impaired. Therefore, Be is preferably set to 500 ppm or less.

【0030】この発明のアルミニウム合金圧延板では、
成分組成を前述のように定めるだけではなく、圧延板の
組織状態、すなわちプレス加工等の成形加工の前の段階
での組織、特に析出物の析出状態が重要である。すなわ
ち、成形加工後の成形品の使用温度下で耐応力腐食割れ
性に悪影響を及ぼすような新たな析出物の析出ができる
だけ生じないように、予め予備的に析出させた状態とし
ておき、しかも使用温度下で新たな析出が生じたとして
も、それが耐応力腐食割れ性に悪影響を及ぼすような形
態、すなわち結晶粒界上で連続するような形態とならな
いように、予め析出物の析出状態を制御しておく必要が
ある。具体的には、MgもしくはZnに起因する結晶粒
界上の析出物サイズが平均で0.2μm以上4.0μm
以下となっている必要がある。なおこの発明で対象とす
る成分組成の合金におけるMgもしくはZnに起因する
粒界上の析出物としては、T相(MgZn
)、β相(MgAl)が代表的であり、このほ
かにも種々考えられるが、T相、β相以外の析出物の析
出量はわずかである。またMgもしくはZnに起因する
析出物のほか、他の析出物も若干析出することが考えら
れるが、それらは応力腐食割れに大きな影響を与えな
い。
In the rolled aluminum alloy plate of the present invention,
Not only the composition of the components is determined as described above, but also the microstructure state of the rolled plate, that is, the microstructure in the stage before the forming process such as press working, particularly the precipitation state of precipitates is important. In other words, in order to prevent the formation of new precipitates that may adversely affect the stress corrosion cracking resistance at the operating temperature of the molded product after molding, preliminarily precipitate them in a pre-deposited state and use them. Even if new precipitation occurs at temperature, the precipitation state of the precipitate should be adjusted in advance so that it does not form a form that adversely affects the stress corrosion cracking resistance, that is, a form that continues on the grain boundaries. It needs to be controlled. Specifically, the average size of precipitates on the crystal grain boundaries due to Mg or Zn is 0.2 μm or more and 4.0 μm.
Must be: In addition, as the precipitate on the grain boundary due to Mg or Zn in the alloy of the composition targeted by the present invention, the T phase (Mg 3 Zn 3 A
l 2 ) and β phase (Mg 2 Al 3 ) are typical, and various other types are possible, but the amount of precipitates other than the T phase and β phase is small. In addition to the precipitates caused by Mg or Zn, other precipitates may be slightly precipitated, but they do not significantly affect the stress corrosion cracking.

【0031】ここで、MgもしくはZnに起因する粒界
上の析出物のサイズが平均で0.2μm未満では、M
g,Znの析出が不充分であるため、成形加工後の成形
品の使用温度下で新たな析出が生じやすく、また圧延板
の段階から存在している析出物のサイズが小さいため析
出物の周囲の無析出領域も少なく、結局使用温度下での
新たな析出は、もとの析出物を基点とはせず、新たな微
細な析出物が連続的に生じる。このような連続的な析出
物は、耐応力腐食割れ性に著しい悪影響を与える。一方
MgもしくはZnに起因する粒界上の析出物のサイズが
平均で0.2μm以上になれば、Mg,Znが既にかな
りの量だけ析出されているため、成形加工後の成形品の
使用温度下での新たな析出が少なく、しかもその使用温
度下での新たな析出は、主に既存の析出物の成長という
形態をとるため、周辺に無析出領域が生じ、この無析出
領域が析出物の成長とともに大きくなるから、新たに析
出した微細析出部分もこの無析出領域に阻まれて、孤立
化、非連続化することになる。このように非連続で析出
していれば、応力腐食割れが発生してもその割れが非連
続部分(無析出部分)で途切れることになり、割れの進
展が阻止され、耐応力腐食割れ性が著しく良好となる。
なお粒界上の析出物のサイズが4.0μmを越えれば成
形性が低下してしまう。したがって良好な成形性を確保
しつつ、耐応力腐食割れ性を向上させるためには、圧延
板の段階において、Mg,Znに起因する粒界上の析出
物の平均サイズを0.2〜4.0μmの範囲内に設定し
ておく必要がある。
Here, when the average size of precipitates on the grain boundaries due to Mg or Zn is less than 0.2 μm, M
Since precipitation of g and Zn is insufficient, new precipitation is likely to occur at the operating temperature of the molded product after the molding process, and the size of the precipitate existing from the stage of the rolled plate is small, There are few surrounding non-precipitation regions, and in the end, new precipitation at the operating temperature does not use the original precipitate as a starting point, and new fine precipitates are continuously formed. Such continuous precipitates have a significant adverse effect on stress corrosion cracking resistance. On the other hand, if the average size of the precipitates on the grain boundaries due to Mg or Zn is 0.2 μm or more, Mg and Zn have already been precipitated in a considerable amount, so the operating temperature of the molded product after molding is There is little new precipitation below, and the new precipitation at the operating temperature mainly takes the form of growth of existing precipitates, so there is a precipitate-free region in the periphery, and this precipitate-free region is the precipitate. , The size of the newly-deposited fine-precipitated portion is also blocked by this non-precipitated region, so that it becomes isolated and discontinuous. If the precipitation is discontinuous in this way, even if stress corrosion cracking occurs, the crack will be interrupted at the discontinuous part (non-precipitated part), the progress of the crack will be prevented, and the stress corrosion cracking resistance will be improved. Remarkably good.
If the size of the precipitates on the grain boundaries exceeds 4.0 μm, the formability will deteriorate. Therefore, in order to improve the stress corrosion cracking resistance while ensuring good formability, the average size of precipitates on the grain boundaries due to Mg and Zn in the rolling plate stage is 0.2 to 4. It is necessary to set it within the range of 0 μm.

【0032】次にこの発明の成形加工用アルミニウム合
金圧延板の製造方法について説明する。
Next, a method for manufacturing the rolled aluminum alloy plate for forming according to the present invention will be described.

【0033】この発明の製造方法において重要な点は、
所定の板厚まで圧延した後の溶体化焼鈍、あるいはさら
にその後の最終焼鈍(析出処理)であり、鋳造および圧
延の工程は従来の一般的な方法と同様であれば良いが、
その望ましいプロセスについて先ず説明する。
An important point in the manufacturing method of the present invention is that
Solution annealing after rolling to a predetermined plate thickness, or further subsequent annealing (precipitation treatment), the casting and rolling steps may be similar to the conventional general method,
The preferred process will be described first.

【0034】先ず前述のような合金組成からなる溶湯
を、矩形の断面を有する鋳塊に半連続鋳造(DC鋳造)
する。この場合の鋳造速度は特に定めないが、通常は2
5mm/min 〜250mm/min の範囲内の速度で鋳造され
ることが多い。得られた鋳塊は、熱間圧延に先立って4
00〜560℃の範囲内の温度に1〜48時間加熱す
る。この鋳塊加熱は、鋳塊の不均一を解消して成形性を
向上させることを目的としており、加熱温度が400℃
未満、または加熱時間が1時間以内では均質化の程度が
不充分であり、一方加熱温度が560℃を越えれば共晶
融解が生じ、加熱時間が48時間を越えれば経済性が低
下する。なお半連続鋳造の代りに、一対の冷却ロール間
に連続的に溶湯を供給して薄板を連続的に鋳造する薄板
連続鋳造法(連続鋳造圧延法)を適用しても良い。この
場合には、鋳造速度の制限がなく、また通常は熱間圧延
せずに冷間圧延のみで製造されるが、冷間圧延に先立
ち、均質化を促進して成形加工性を向上させる目的で、
300〜560℃×1〜48時間予備加熱することが望
ましい。
First, the molten metal having the alloy composition as described above is semi-continuously cast (DC casting) into an ingot having a rectangular cross section.
To do. The casting speed in this case is not specified, but is usually 2
Often cast at speeds in the range of 5 mm / min to 250 mm / min. The resulting ingot is 4 prior to hot rolling.
Heat to a temperature in the range of 00-560 ° C. for 1-48 hours. The purpose of this ingot heating is to eliminate the unevenness of the ingot and improve the formability, and the heating temperature is 400 ° C.
If the heating temperature is less than 1 hour, or if the heating time is less than 1 hour, the degree of homogenization is insufficient. On the other hand, if the heating temperature exceeds 560 ° C., eutectic melting will occur, and if the heating time exceeds 48 hours, the economy will decrease. Instead of the semi-continuous casting, a thin plate continuous casting method (continuous casting rolling method) in which a molten metal is continuously supplied between a pair of cooling rolls to continuously cast a thin plate may be applied. In this case, there is no limitation on the casting speed, and normally, it is produced only by cold rolling without hot rolling, but before cold rolling, the purpose is to promote homogenization and improve moldability. so,
Preheating at 300 to 560 ° C. for 1 to 48 hours is desirable.

【0035】前述のようにして熱間圧延されたアルミニ
ウム合金板に対しては、必要に応じ、熱間圧延に引続い
て冷間圧延を行ない、板厚6〜0.5mm程度とする。こ
の場合、冷間圧延の中途もしくは熱間圧延と冷間圧延と
の間において中間焼鈍を行なえば、成形性の向上に一層
効果がある。すなわち、熱間圧延時に粗大な結晶粒が発
生した場合、これをそのまま冷間圧延に供すれば、成形
加工時にリジングもしくはフローラインと称するうねり
が発生し、成形品の外観を損ねるおそれがある。これを
解消するためには、中間焼鈍を行なって一度再結晶を生
ぜしめれば良い。この中間焼鈍をバッチ式の焼鈍炉で行
なう場合は、中間焼鈍温度が250℃未満では再結晶が
起こらず、一方中間焼鈍温度が450℃を越えれば結晶
粒の粗大化が生じやすくなる。中間焼鈍の時間は1〜4
8時間が適当であり、それより短時間では中間焼鈍の効
果が不充分となり、それより長時間では効果が飽和し、
経済性を損なう。また中間焼鈍には、コイルを連続的に
巻戻しながら行なう連続焼鈍炉を用いても良い。このよ
うに連続焼鈍炉を用いる場合、焼鈍温度は400〜58
0℃が適当であり、また焼鈍時間は上記の温度に到達
後、保持なしから、長くても5分で充分である。
If necessary, the aluminum alloy sheet hot-rolled as described above is subjected to hot-rolling and then cold-rolling to a sheet thickness of about 6 to 0.5 mm. In this case, if intermediate annealing is performed during the cold rolling or between the hot rolling and the cold rolling, the formability is further improved. That is, when coarse crystal grains are generated during hot rolling, if they are subjected to cold rolling as they are, waviness called ridging or a flow line is generated during the molding process, which may impair the appearance of the molded product. In order to solve this, intermediate annealing may be performed to cause recrystallization once. When this intermediate annealing is performed in a batch-type annealing furnace, recrystallization does not occur at an intermediate annealing temperature of less than 250 ° C, while coarsening of crystal grains tends to occur if the intermediate annealing temperature exceeds 450 ° C. Intermediate annealing time is 1 to 4
8 hours is appropriate, and if it is shorter than that, the effect of intermediate annealing becomes insufficient, and if it is longer than that, the effect saturates.
Impair economics. Further, a continuous annealing furnace may be used for the intermediate annealing while continuously rewinding the coil. When the continuous annealing furnace is used as described above, the annealing temperature is 400 to 58.
A temperature of 0 ° C. is suitable, and an annealing time of 5 minutes at the longest is sufficient since there is no holding after reaching the above temperature.

【0036】以上のようにして所定の板厚まで圧延した
後、溶体化焼鈍を行なう。すなわち、熱間圧延の後の段
階、または熱間圧延してからさらに冷間圧延を行なった
後の段階、あるいは中間焼鈍を施す場合には中間焼鈍の
後の最終の冷間圧延の後の段階で、溶体化焼鈍を施す。
この溶体化焼鈍は、再結晶を生ぜしめると同時に、可溶
元素の溶体化を目的としたものであり、280℃以上5
80℃以下の範囲内の温度に最大24時間保持して冷却
すれば良い。ここで、溶体化焼鈍の温度が280℃未満
では再結晶が生じず、一方580℃を越える高温では結
晶粒が粗大化して成形性が低下してしまう。また保持時
間が24時間を越えても溶体化焼鈍の効果は飽和し、経
済的に無駄となるだけである。またこの溶体化焼鈍の冷
却速度は、析出状態に大きな影響を与えるから、その冷
却速度によってその後の最終焼鈍(析出処理)の要否が
決定される。
After rolling to a predetermined plate thickness as described above, solution annealing is performed. That is, the stage after the hot rolling, or the stage after the hot rolling and then the cold rolling, or the stage after the final cold rolling after the intermediate annealing when performing the intermediate annealing. Then, solution annealing is performed.
This solution annealing is intended to cause recrystallization, and at the same time, to solution-solubilize the soluble element.
It suffices to maintain the temperature within the range of 80 ° C. or less for a maximum of 24 hours for cooling. Here, if the solution annealing temperature is lower than 280 ° C, recrystallization does not occur, whereas if the temperature is higher than 580 ° C, the crystal grains become coarse and the formability deteriorates. Moreover, even if the holding time exceeds 24 hours, the effect of solution annealing is saturated and is economically wasted. Further, since the cooling rate of this solution annealing has a great influence on the precipitation state, the necessity of the subsequent final annealing (precipitation treatment) is determined by the cooling rate.

【0037】すなわち、溶体化焼鈍後の冷却速度が1℃
/分以下の場合は、冷却中にZn系析出物やβ相が前述
のような0.2〜4.0μmの適切なサイズで結晶粒界
に析出されるため、そのままで良好な耐応力腐食割れ性
が得られる。このような1℃/分以下の冷却速度の溶体
化焼鈍は、空気炉もしくはソルトバス等のバッチ式の焼
鈍炉を用いた焼鈍に相当する。バッチ式の溶体化焼鈍の
場合、保持温度は300〜500℃が適当であり、また
保持時間は30分〜24時間とすれば良い。
That is, the cooling rate after solution annealing is 1 ° C.
In the case of less than 1 minute / minute, Zn-based precipitates and β-phase are precipitated at the grain boundaries with an appropriate size of 0.2 to 4.0 μm as described above during cooling, so that good stress corrosion resistance is maintained. Crackability is obtained. Such solution annealing at a cooling rate of 1 ° C./min or less corresponds to annealing using a batch type annealing furnace such as an air furnace or a salt bath. In the case of batch type solution annealing, a holding temperature of 300 to 500 ° C. is appropriate, and a holding time of 30 minutes to 24 hours may be used.

【0038】一方溶体化焼鈍後の冷却速度が1℃/分を
越える場合には、加熱によって固溶されたZnは、その
冷却過程でほとんど析出せず、溶体化された状態の圧延
板が得られる。そのため、そのままではプレス加工等の
成形加工後の使用温度下で析出物が連続的に析出され
て、耐応力腐食割れ性が低下してしまう。そこで溶体化
焼鈍後の冷却速度を1℃/分を越える速度とした場合に
は、その後に改めて析出処理としての最終焼鈍を施す。
前述のような1℃/分を越える冷却速度の溶体化焼鈍
は、連続焼鈍炉を用いた焼鈍で達成できる。連続焼鈍炉
を用いた溶体化焼鈍は、400〜580℃で保持なしも
しくは5分以下の保持をすることが適当であり、この場
合強制空冷、ミスト冷却、水冷等によって通常は1℃/
秒以上の冷却速度を容易に得ることができる。
On the other hand, when the cooling rate after solution annealing exceeds 1 ° C./min, Zn solid-dissolved by heating hardly precipitates during the cooling process, and a solution-rolled sheet is obtained. To be Therefore, if it is left as it is, precipitates are continuously deposited at a use temperature after forming such as press working, and the stress corrosion cracking resistance is lowered. Therefore, when the cooling rate after solution annealing is set to a rate exceeding 1 ° C./minute, a final annealing as a precipitation treatment is performed again thereafter.
The solution annealing at a cooling rate exceeding 1 ° C./minute as described above can be achieved by annealing using a continuous annealing furnace. For solution annealing using a continuous annealing furnace, it is suitable to hold at 400 to 580 ° C. or not to hold it for 5 minutes or less. In this case, it is usually 1 ° C./force by forced air cooling, mist cooling, water cooling, etc.
A cooling rate of more than a second can be easily obtained.

【0039】前述のようにして溶体化焼鈍を1℃/分を
越える冷却速度で行なった後には、その後に、Znを結
晶粒界に適切に析出させるための析出処理として最終焼
鈍を行なう。この最終焼鈍は、180〜280℃の範囲
内の温度に30分〜24時間加熱する。この温度が18
0℃未満では、結晶粒界上のMgもしくはZnに起因す
る析出物、すなちわ代表的にはβ相あるいはT相からな
る析出物のサイズが平均で0.2μm未満となってしま
い、耐応力腐食割れ性の改善が不充分となる。一方28
0℃を越えれば、結晶粒界上のこれらの析出物が再固溶
してしまい、最終焼鈍を行なう意味がなくなって、耐応
力腐食割れ性が低下してしまう。また加熱時間が30分
未満では充分に析出されず、また24時間以上では効果
が飽和し、経済性を損なうだけである。
After the solution annealing has been performed at a cooling rate exceeding 1 ° C./minute as described above, a final annealing is then performed as a precipitation treatment for appropriately precipitating Zn at the grain boundaries. This final anneal heats to a temperature in the range of 180-280 ° C for 30 minutes to 24 hours. This temperature is 18
If the temperature is lower than 0 ° C., the size of the precipitates due to Mg or Zn on the crystal grain boundaries, that is, the size of the precipitates typically composed of β phase or T phase is less than 0.2 μm on average, Insufficient improvement in stress corrosion cracking resistance. 28 on the other hand
If the temperature exceeds 0 ° C., these precipitates on the crystal grain boundaries are redissolved, which makes the purpose of the final annealing meaningless and the stress corrosion cracking resistance deteriorates. Further, if the heating time is less than 30 minutes, precipitation will not be sufficient, and if the heating time is 24 hours or more, the effect will be saturated and the economy will be impaired.

【0040】以上のように、合金の成分組成、特にZn
量を適切に調整するとともに、最終板(成形加工に供す
る前の段階の圧延板)の状態でMgもしくはZnに起因
する結晶粒界上の析出物のサイズを平均0.2〜4.0
μmとなるように調整することによって、成形性および
強度を損なうことなく、母材部および溶接部の耐応力腐
食割れ性に著しく優れた板を得ることができる。
As described above, the component composition of the alloy, especially Zn
The amount of the precipitates on the crystal grain boundaries due to Mg or Zn in the state of the final plate (rolled plate in a stage before being subjected to forming) is 0.2 to 4.0 on average while appropriately adjusting the amount.
By adjusting the thickness to be μm, it is possible to obtain a plate having excellent resistance to stress corrosion cracking in the base material portion and the welded portion without impairing formability and strength.

【0041】[0041]

【実施例】【Example】

実施例1:表1に示すNo.1〜No.7の合金を半連続鋳
造法によって鋳造した。鋳塊サイズは500mm×120
0mm×300mmであり、また鋳造速度は65mm/min で
あった。なおここでNo.7の合金は、Mg量が3.0%
未満の耐応力腐食割れ性が良好な参考合金であり、ここ
ではこのNo.7の参考合金を耐応力腐食割れ性評価の基
準として用いることとしている。前述のようにして得ら
れた各鋳塊を面削した後、均質化処理として500℃で
2時間加熱し、そのまま熱間圧延を開始した。この熱間
圧延で板厚5mmとし、続いて冷間圧延を施して板厚1mm
とした。その後、表2の製造プロセス番号No.1〜No.
9に示す各条件にて、溶体化焼鈍を行ないさらに場合に
よっては最終焼鈍(析出処理)を施した。なお各焼鈍は
ソルトバスを用いて実施した。
Example 1: Nos. Shown in Table 1 1-No. Alloy 7 was cast by the semi-continuous casting method. Ingot size is 500 mm x 120
It was 0 mm × 300 mm, and the casting speed was 65 mm / min. Here, No. Alloy 7 has a Mg content of 3.0%
It is a reference alloy with good stress corrosion cracking resistance of less than less than this. The reference alloy of No. 7 is used as a standard for stress corrosion cracking resistance evaluation. After each of the ingots obtained as described above was chamfered, it was heated at 500 ° C. for 2 hours as a homogenizing treatment, and hot rolling was started as it was. This hot rolling gives a plate thickness of 5 mm, followed by cold rolling to give a plate thickness of 1 mm.
And After that, the manufacturing process number No. 1-No.
Under each of the conditions shown in FIG. 9, solution annealing was performed, and in some cases final annealing (precipitation treatment) was performed. In addition, each annealing was implemented using the salt bath.

【0042】最終焼鈍後の各板について、引張試験を行
なって機械的諸特性を調べるとともに、成形性を調べ、
さらに耐応力腐食割れ試験を母材部分および溶接部につ
いて行なった。成形性としてはエリクセン値および球頭
張出試験値を調べた。なおエリクセン試験は、JIS−
B法によって行ない、また球頭張出試験としては、10
0mmφの球頭ポンチを用い、試験片に塩化ビニルフィル
ムを貼着した状態で行なった。一方母材部に対する耐応
力腐食割れ試験の前には予め増感処理として、30%の
冷間加工を施した後、120℃×1週間焼鈍する処理を
行なった。この増感処理は、室温で10〜20年の経時
変化に相当すると言われている。また溶接部分の耐応力
腐食試験のために、30%冷間加工後にビードオン溶接
を行ない、さらに120℃×1時間焼鈍する増感処理を
行なった。このような増感処理後、電流付加による腐食
促進法による耐応力腐食割れ試験行なった。具体的に
は、付加応力として13kg/mm2 を付加するとともに、
5mA/cm2 の付加電流を加え、25℃の3.5%NaC
l水溶液で耐応力腐食割れ試験を行なった。このような
電流付加による促進腐食試験は、実際の自然環境下での
応力腐食割れ傾向を良く反映するとされている。なお付
加応力13kg/mm2 の値は、母材部の耐力の約50%、
溶接部の耐力の約90%に相当する。これらの試験結果
を表3に示す。
For each plate after the final annealing, a tensile test was conducted to examine various mechanical properties and formability.
Further, a stress corrosion cracking test was conducted on the base metal part and the welded part. For moldability, the Erichsen value and the ball head overhang test value were examined. The Erichsen test is based on JIS-
It is performed by method B, and the ball bulge test is 10
Using a 0 mmφ ball head punch, the test piece was attached with a vinyl chloride film. On the other hand, before the stress corrosion cracking test for the base material, as a sensitizing treatment, 30% cold working was performed in advance, and then 120 ° C. × 1 week annealing was performed. It is said that this sensitization treatment corresponds to a change with time of 10 to 20 years at room temperature. For the stress corrosion resistance test of the welded portion, bead-on welding was performed after 30% cold working, and further sensitizing treatment was performed by annealing at 120 ° C. for 1 hour. After such a sensitization treatment, a stress corrosion cracking resistance test was performed by a corrosion acceleration method by applying an electric current. Specifically, while adding 13 kg / mm 2 as additional stress,
The additional current of 5 mA / cm 2 was added, the 25 ° C. 3.5% NaC
The stress corrosion cracking resistance test was carried out in an aqueous solution. It is said that the accelerated corrosion test by applying such an electric current well reflects the tendency of stress corrosion cracking in an actual natural environment. The value of the additional stress of 13 kg / mm 2 is about 50% of the proof stress of the base metal,
It corresponds to about 90% of the yield strength of the weld. The results of these tests are shown in Table 3.

【0043】さらに、前述のような最終焼鈍後の各板に
ついて、粒界上の析出物の平均サイズを透過電子顕微鏡
を用いて調べたので、その結果を表4に示す。またこの
表4には、表3に示す各試験結果から判明した強度、成
形性および耐応力腐食割れ性の総合評価を併せて示す。
なお耐応力腐食割れ性評価は、Mg量が3.0wt%未満
の参考合金No.7を基準として、それと同等かもしくは
それより優れている場合に○印を、若干劣る場合に△印
を、格段に劣る場合に×印を付した。
Furthermore, the average size of the precipitates on the grain boundaries of each of the plates after the final annealing as described above was examined by using a transmission electron microscope. The results are shown in Table 4. In addition, Table 4 also shows comprehensive evaluations of strength, formability, and stress corrosion cracking resistance found from the test results shown in Table 3.
For the stress corrosion cracking resistance evaluation, reference alloy No. with Mg content of less than 3.0 wt% was used. On the basis of 7, the case where it is equal to or better than that is marked with a circle, the case where it is slightly inferior, the case where it is slightly inferior, and the case where it is markedly inferior are marked with x.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】[0046]

【表3】 [Table 3]

【0047】[0047]

【表4】 [Table 4]

【0048】表4から明らかなように、この発明の成分
組成範囲内の合金について、この発明の方法プロセスを
適用することによって粒界上析出物平均サイズを0.2
〜2μmの範囲内とした圧延板(製造プロセスNo.1,
No.4,No.5)は、母材部分、溶接部のいずれにおい
ても耐応力腐食割れ性が優れると同時に、強度、成形性
も優れている。一方、成分組成はこの発明で規定する範
囲内であるが、粒界上析出物の平均サイズが0.2μm
未満もしくは析出しなかった圧延板(製造プロセスNo.
2,No.3)では耐応力腐食割れ性が著しく劣ってい
た。さらに、Cu量が0.1wt%を越えた比較合金(合
金No.4)を用いた場合(製造プロセスNo.6)は、成
形性が劣っており、またZn量が0.1%未満の微量の
比較合金(合金No.5)を用いた場合(製造プロセスN
o.7)には、この発明の製造プロセスを適用しても粒
界上の析出物の平均サイズが0.2μm未満となってし
まい、充分な耐応力腐食割れ性が得られなかった。そし
てまたZn量が1.0wt%を越える比較合金(合金No.
6)を用いた場合(製造プロセスNo.8)は、成形性お
よび母材の耐応力腐食割れ性は優れていたが、溶接部の
耐応力腐食割れ性は劣っていた。なおMg量が3.0wt
%に満たない参考合金は、耐応力腐食割れ性、成形性は
良好であるが、強度が不充分であった。
As is apparent from Table 4, for alloys within the compositional range of the present invention, the average size of precipitates on grain boundaries was 0.2 by applying the process of the present invention.
Rolled plate within the range of ~ 2 μm (manufacturing process No. 1,
No. 4, No. In 5), the stress corrosion cracking resistance is excellent in both the base material portion and the welded portion, and at the same time, the strength and formability are excellent. On the other hand, the component composition is within the range specified in the present invention, but the average size of precipitates on the grain boundaries is 0.2 μm.
Less than or not precipitated (manufacturing process No.
2, No. In 3), the stress corrosion cracking resistance was extremely poor. Furthermore, when the comparative alloy (alloy No. 4) having a Cu content of more than 0.1 wt% was used (manufacturing process No. 6), the formability was poor, and the Zn content was less than 0.1%. When using a small amount of comparative alloy (alloy No. 5) (Manufacturing process N
o. In 7), even if the manufacturing process of the present invention was applied, the average size of precipitates on the grain boundaries was less than 0.2 μm, and sufficient stress corrosion cracking resistance could not be obtained. In addition, a comparative alloy having a Zn content exceeding 1.0 wt% (alloy No.
When 6) was used (manufacturing process No. 8), the formability and the stress corrosion cracking resistance of the base material were excellent, but the stress corrosion cracking resistance of the welded portion was poor. The amount of Mg is 3.0 wt
%, The reference alloy had good resistance to stress corrosion cracking and formability, but had insufficient strength.

【0049】実施例2:表5の合金符号A,Bで示す合
金を半連続鋳造によって鋳造した。鋳塊サイズは500
mm×1200mm×300mmであり、鋳造速度は65mm/
min であった。この鋳塊を面削後、500℃で2時間加
熱し、そのまま熱間圧延を開始した。この熱間圧延で板
厚5mmとし、さらに冷間圧延を施して板厚1mmとした。
得られた冷延板を2分割して、表6に示すようにそれぞ
れ異なる方法で溶体化焼鈍を施し、さらに分割して異な
る条件で最終焼鈍(析出処理)を施した。すなわち、2
分割した冷延板の一方は連続焼鈍炉を用いて500℃、
保持なしで焼鈍し、他方は340℃、6時間のバッチ焼
鈍を施した。連続焼鈍の冷却速度は、30℃/sec(1
800℃/min )、バッチ焼鈍は20℃/hr(0.33
℃/min )であった。連続焼鈍板はさらに2分割して、
その一方は最終焼鈍(析出処理)を施さず、他方につい
ては240℃×2時間の最終焼鈍(析出処理)を施し
た。バッチ焼鈍板については最終焼鈍(析出処理)を施
さなかった。
Example 2 The alloys indicated by alloy codes A and B in Table 5 were cast by semi-continuous casting. Ingot size is 500
mm × 1200mm × 300mm, casting speed is 65mm /
It was min. After this ingot was faced, it was heated at 500 ° C. for 2 hours and hot rolling was started as it was. The plate thickness was 5 mm by this hot rolling, and the plate thickness was 1 mm by further cold rolling.
The obtained cold-rolled sheet was divided into two, solution-annealed by different methods as shown in Table 6, further divided, and finally annealed (precipitation treatment) under different conditions. Ie 2
One of the divided cold-rolled sheets was 500 ° C using a continuous annealing furnace,
Annealing was performed without holding, and the other was subjected to batch annealing at 340 ° C. for 6 hours. The cooling rate of continuous annealing is 30 ° C / sec (1
800 ° C / min), batch annealing at 20 ° C / hr (0.33
C / min). The continuous annealed plate is further divided into two,
One of them was not subjected to final annealing (precipitation treatment), and the other was subjected to final annealing (precipitation treatment) at 240 ° C. for 2 hours. Final annealing (precipitation treatment) was not performed on the batch annealed plate.

【0050】次いで、各板について、引張試験を施すと
ともに、成形性と、母材部分および溶接部の耐応力腐食
割れ性を調べた。成形性は実施例1と同様にしてエリク
セン値および球頭張出値を調べた。また母材部分の耐応
力腐食割れ性は、予め実施例1と同様に増感処理とし
て、30%冷間加工後、120℃×1週間の焼鈍を施し
てから、ループ曲げ試験片を作成して、3.5%NaC
l水溶液中にn=5で3ケ月交互浸漬する応力腐食試験
を行ない、割れの発生の有無を調べた。また溶接部の耐
応力腐食割れ性も、実施例1と同様に30%冷間加工
後、ビードオン溶接し、その後増感処理として120℃
×1週間焼鈍し、溶接部を中心としてループ曲げ試験片
を作成して、3.5%NaCl水溶液中のn=5で3ケ
月交互浸漬し、割れ発生の有無を調べた。また各圧延板
について粒界上の析出物の平均サイズを透過電子顕微鏡
を用いて調べた。その結果を表7に示す。
Then, each plate was subjected to a tensile test, and the formability and the stress corrosion cracking resistance of the base material portion and the welded portion were examined. For moldability, the Erichsen value and the ball head protrusion value were examined in the same manner as in Example 1. As for the stress corrosion cracking resistance of the base metal portion, a loop bending test piece was prepared by subjecting to a sensitizing treatment in advance as in Example 1, 30% cold working, and annealing at 120 ° C. for 1 week. 3.5% NaC
A stress corrosion test was carried out in which the solution was alternately dipped in an aqueous solution of n = 5 for 3 months to examine the occurrence of cracks. As for the stress corrosion cracking resistance of the welded portion, bead-on welding was performed after 30% cold working as in Example 1, and then 120 ° C. as a sensitizing treatment.
It was annealed for 1 week, a loop bending test piece was prepared centering on the welded portion, and alternately immersed for 3 months in a 3.5% NaCl aqueous solution at n = 5 to examine whether cracking occurred. The average size of the precipitates on the grain boundaries of each rolled plate was examined using a transmission electron microscope. The results are shown in Table 7.

【0051】[0051]

【表5】 [Table 5]

【0052】[0052]

【表6】 [Table 6]

【0053】[0053]

【表7】 [Table 7]

【0054】表7から明らかなように、発明合金Aにつ
いて、溶体化焼鈍の冷却速度を30℃/sec の急速冷却
としながらも最終焼鈍を行なわない比較法イを適用した
場合は、成形性は良好であったが、母材の耐応力腐食割
れ性が劣っていた。またZn量が1.0%を越える比較
合金Bについて、比較法イを適用した場合も、成形性は
良好であったが、母材の耐応力腐食割れ性が劣ってい
た。さらに比較合金Bについて、発明法ロを適用した場
合は、成形性および母材の耐応力腐食割れ性は良好であ
ったが、溶接部の耐応力腐食割れ性が劣り、また同じく
比較合金Bについて発明法ハを適用した場合は母材の耐
応力腐食割れ性は良好であったが、成形性と溶接部の耐
応力腐食割れ性が劣っていた。
As is apparent from Table 7, when the invention alloy A is applied with the comparative method B in which the final annealing is not carried out while the rapid cooling rate of the solution annealing is 30 ° C./sec, the formability is Although good, the stress corrosion cracking resistance of the base material was poor. Further, when Comparative Method B was applied to Comparative Alloy B having a Zn content of more than 1.0%, the formability was good, but the stress corrosion cracking resistance of the base material was poor. Further, regarding Comparative Alloy B, when Invention Method B was applied, the formability and the stress corrosion cracking resistance of the base material were good, but the stress corrosion cracking resistance of the welded portion was inferior. When Inventive Method C was applied, the stress corrosion cracking resistance of the base material was good, but the formability and the stress corrosion cracking resistance of the weld were poor.

【0055】そして発明合金Aについて発明法ロもしく
は発明法ハを適用した場合にのみ、成形性、母材の耐応
力腐食割れ性、溶接部の耐応力腐食割れ性の全てが優れ
ていた。
Only when the invention method A or the invention method C was applied to the invention alloy A, the formability, the stress corrosion cracking resistance of the base material, and the stress corrosion cracking resistance of the welded portion were all excellent.

【0056】[0056]

【発明の効果】前述の実施例からも明らかなように、こ
の発明の成形加工用アルミニウム合金圧延板は、高強度
を得るべくMg量を3.0wt%以上と高Mgとしたにも
かかわらず、他の合金成分特にZn量とCu量とを適切
に調整するとともに、MgもしくはZnに起因する粒界
析出物の平均サイズを0.2〜4.0μmに調整するこ
とによって、成形性を損なうことなく、母材部分のみな
らず溶接部の耐応力腐食割れ性を著しく向上させること
ができ、したがって強度、成形性と、母材部分および溶
接部の耐応力腐食割れ性のいずれもが優れた成形加工用
アルミニウム合金圧延板として、自動車用ボディシート
その他に最適である。またこの発明の製造方法によれ
ば、前述のような粒界上の析出物の適切な析出状態を確
実かつ容易に得て、前述のように強度、成形性と母材部
分および溶接部の耐応力腐食割れ性がともに優れた成形
加工用圧延板を量産的規模で実際に製造することができ
る。
As is apparent from the above-described embodiments, the rolled aluminum alloy sheet for forming according to the present invention has a high Mg content of 3.0 wt% or more in order to obtain high strength. By properly adjusting other alloy components, especially Zn amount and Cu amount, and adjusting the average size of the grain boundary precipitates derived from Mg or Zn to 0.2 to 4.0 μm, the formability is impaired. It is possible to remarkably improve the stress corrosion cracking resistance of not only the base metal portion but also the welded portion. Therefore, both strength and formability and stress corrosion cracking resistance of the base material portion and the welded portion are excellent. As an aluminum alloy rolled plate for forming and processing, it is most suitable for automobile body sheets and others. Further, according to the manufacturing method of the present invention, it is possible to reliably and easily obtain an appropriate precipitation state of the precipitates on the grain boundaries as described above, and as described above, the strength, the formability, and the resistance of the base metal portion and the welded portion. It is possible to actually manufacture a rolled plate for forming processing, which has both excellent stress corrosion cracking properties, on a mass production scale.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 Mg3.0〜7.0%(wt%、以下同
じ)、Zn0.1〜1.0%を含有し、かつCu0.1
%以下、Fe0.4%以下、Si0.2%以下にそれぞ
れ規制され、残部がAlおよび不可避的不純物よりな
り、MgもしくはZnに起因する粒界上の析出物の平均
サイズが0.2〜4.0μmの範囲内にあることを特徴
とする、耐応力腐食割れ性に優れた成形加工用アルミニ
ウム合金圧延板。
1. Mg3.0-7.0% (wt%, the same applies hereinafter), Zn0.1-1.0%, and Cu0.1
%, Fe 0.4% or less, and Si 0.2% or less, with the balance being Al and unavoidable impurities, and the average size of precipitates on the grain boundaries due to Mg or Zn being 0.2 to 4 An aluminum alloy rolled plate for forming, which is excellent in stress corrosion cracking resistance, characterized by being in the range of 0.0 μm.
【請求項2】 前記各成分のほか、さらにMn0.03
%以上0.8%以下、Cr0.03%以上0.3%以
下、Zr0.03%以上0.2%以下、V0.03%以
上0.2%以下のうちの1種または2種以上を含有す
る、請求項1に記載の耐応力腐食割れ性に優れた成形加
工用アルミニウム合金圧延板。
2. In addition to the above respective components, Mn0.03 is further added.
% Or more and 0.8% or less, Cr 0.03% or more and 0.3% or less, Zr 0.03% or more and 0.2% or less, and V0.03% or more and 0.2% or less An aluminum alloy rolled plate for forming, which contains the excellent stress corrosion cracking resistance according to claim 1.
【請求項3】 前記各成分のうち、Cu量を0.01%
以下に規制した、請求項1もしくは請求項2に記載の耐
応力腐食割れ性に優れた成形加工用アルミニウム合金圧
延板。
3. The content of Cu in each of the components is 0.01%.
An aluminum alloy rolled sheet for forming, which is excellent in stress corrosion cracking resistance according to claim 1 or 2 and is regulated below.
【請求項4】 前記各成分のうち、Zn量を0.1〜
0.5%の範囲内とした請求項1〜請求項3のいずれか
に記載の耐応力腐食割れ性に優れた成形加工用アルミニ
ウム合金圧延板。
4. The Zn content of each of the components is 0.1 to 0.1.
The aluminum alloy rolled plate for forming, which has excellent stress corrosion cracking resistance according to any one of claims 1 to 3, with a content of 0.5%.
【請求項5】 Mg3.0〜7.0%、Zn0.1〜
1.0%を含有し、かつCu0.1%以下、Fe0.4
%以下、Si0.2%以下にそれぞれ規制され、さらに
必要に応じてMn0.03%以上0.8%以下、Cr
0.03%以上0.3%以下、Zr0.03%以上0.
2%以下、V0.03%以上0.2%以下のうちの1種
または2種以上を含有し、残部がAlおよび不可避的不
純物よりなる合金を鋳造した後、所定の板厚まで圧延
し、その後溶体化焼鈍として、280〜580℃の範囲
内の温度に24時間以内加熱して冷却し、その溶体化焼
鈍の冷却速度が1℃/分以下の場合はその溶体化焼鈍の
ままで、また1℃/分を越える場合はその後180〜2
80℃の範囲内の温度に30分〜24時間加熱する最終
焼鈍を行ない、MgもしくはZnに起因する粒界上の析
出物の平均サイズが0.2〜4.0μmの範囲内の圧延
板を得ることを特徴とする、耐応力腐食割れ性に優れた
成形加工用アルミニウム合金圧延板の製造方法。
5. Mg3.0-7.0%, Zn0.1-
Contains 1.0%, Cu 0.1% or less, Fe 0.4
%, Si 0.2% or less, and Mn 0.03% or more and 0.8% or less, Cr as required.
0.03% to 0.3%, Zr 0.03% to 0.
After casting an alloy containing 2% or less and one or two or more of V0.03% or more and 0.2% or less and the balance consisting of Al and unavoidable impurities, rolled to a predetermined plate thickness, After that, as solution annealing, it is heated to a temperature in the range of 280 to 580 ° C. within 24 hours and cooled, and when the cooling rate of the solution annealing is 1 ° C./minute or less, the solution annealing remains as it is, and 180 ~ 2 after 1 ℃ / min
Final annealing is carried out by heating to a temperature in the range of 80 ° C. for 30 minutes to 24 hours, and a rolled plate having an average size of precipitates on the grain boundaries due to Mg or Zn in the range of 0.2 to 4.0 μm is obtained. A method for producing an aluminum alloy rolled sheet for forming, which is excellent in stress corrosion cracking resistance, which is obtained.
【請求項6】 前記溶体化焼鈍として、連続焼鈍炉を用
いて、400〜580℃の範囲内の温度に加熱して保持
なしもしくは5分以内の保持後、1℃/秒以上の冷却速
度で冷却し、その後前記最終焼鈍として、180〜28
0℃の範囲内の温度に30分〜24時間加熱することを
特徴とする、請求項5に記載の耐応力腐食割れ性に優れ
た成形加工用アルミニウム合金圧延板の製造方法。
6. As the solution annealing, a continuous annealing furnace is used to heat to a temperature in the range of 400 to 580 ° C. without holding or for 5 minutes or less, and at a cooling rate of 1 ° C./second or more. After cooling, the final annealing is 180-28.
The method for producing an aluminum alloy rolled sheet for forming having excellent stress corrosion cracking resistance according to claim 5, wherein heating is performed at a temperature in the range of 0 ° C for 30 minutes to 24 hours.
【請求項7】 前記溶体化焼鈍として、バッチ式の炉を
用いて、300〜500℃の範囲内の温度に加熱して3
0分以上24時間以内保持後、1℃/分以下の冷却速度
で冷却することを特徴とする、請求項5に記載の耐応力
腐食割れ性に優れた成形加工用アルミニウム合金圧延板
の製造方法。
7. The solution annealing is carried out by heating to a temperature in the range of 300 to 500 ° C. using a batch type furnace, and
The method for producing a rolled aluminum alloy sheet for forming having excellent stress corrosion cracking resistance according to claim 5, which is characterized by cooling at a cooling rate of 1 ° C./minute or less after holding for 0 minute or more and 24 hours or less. .
【請求項8】 前記合金のCu量を0.01%以下に規
制した、請求項5〜請求項7のいずれかに記載の耐応力
腐食割れ性に優れた成形加工用アルミニウム合金圧延板
の製造方法。
8. The production of a rolled aluminum alloy plate for forming, which is excellent in stress corrosion cracking resistance according to any one of claims 5 to 7, wherein the Cu content of the alloy is regulated to 0.01% or less. Method.
【請求項9】 前記合金のZn量を0.1〜0.5%の
範囲内とした、請求項5〜請求項8のいずれかに記載の
耐応力腐食割れ性に優れた成形加工用アルミニウム合金
圧延板の製造方法。
9. The aluminum for forming having excellent stress corrosion cracking resistance according to claim 5, wherein the amount of Zn in the alloy is in the range of 0.1 to 0.5%. Method for manufacturing rolled alloy sheet.
JP8601592A 1992-03-09 1992-03-09 Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same Expired - Lifetime JPH0733554B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8601592A JPH0733554B2 (en) 1992-03-09 1992-03-09 Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8601592A JPH0733554B2 (en) 1992-03-09 1992-03-09 Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05255792A JPH05255792A (en) 1993-10-05
JPH0733554B2 true JPH0733554B2 (en) 1995-04-12

Family

ID=13874853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8601592A Expired - Lifetime JPH0733554B2 (en) 1992-03-09 1992-03-09 Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same

Country Status (1)

Country Link
JP (1) JPH0733554B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2837499B1 (en) * 2002-03-22 2004-05-21 Pechiney Rhenalu AL-Mg ALLOY PRODUCTS FOR WELDED CONSTRUCTION
CN115491553B (en) * 2021-06-17 2023-09-01 上海交通大学 Aluminum alloy plate for LNG ship and preparation method thereof

Also Published As

Publication number Publication date
JPH05255792A (en) 1993-10-05

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
EP0259700B1 (en) Production process for aluminium alloy rolled sheet
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
JP2844411B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
JPS626740B2 (en)
JP2921820B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
JP2001032031A (en) Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JPH0547615B2 (en)
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH0733554B2 (en) Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JP2000234158A (en) Production of aluminum alloy sheet for can barrel
JPH0672295B2 (en) Method for producing aluminum alloy material having fine crystal grains
JPH0469220B2 (en)
JPH0733553B2 (en) Aluminum alloy rolled sheet for forming, which has excellent resistance to stress corrosion cracking, and method for producing the same
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JP3103122B2 (en) Aluminum alloy sheet for forming process with high formability and method for producing the same
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP2648731B2 (en) Hot rolling method of Cu-added high Mg aluminum alloy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951024