JPH07335504A - Electrolytic capacitor - Google Patents

Electrolytic capacitor

Info

Publication number
JPH07335504A
JPH07335504A JP15799495A JP15799495A JPH07335504A JP H07335504 A JPH07335504 A JP H07335504A JP 15799495 A JP15799495 A JP 15799495A JP 15799495 A JP15799495 A JP 15799495A JP H07335504 A JPH07335504 A JP H07335504A
Authority
JP
Japan
Prior art keywords
magnesia
sealing body
parts
capacitor
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15799495A
Other languages
Japanese (ja)
Other versions
JP2804006B2 (en
Inventor
Akira Nakayama
昭 中山
Yoshiki Makino
芳樹 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rubycon Corp
Original Assignee
Rubycon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rubycon Corp filed Critical Rubycon Corp
Priority to JP7157994A priority Critical patent/JP2804006B2/en
Publication of JPH07335504A publication Critical patent/JPH07335504A/en
Application granted granted Critical
Publication of JP2804006B2 publication Critical patent/JP2804006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a highly reliable electrolytic capacitor which is capable of realizing a long service life at high temperatures. CONSTITUTION:In an electrolytic capacitor having a capacitor element 1 impregnated with an electrolyte solution housed in a metallic casing 3 and sealed by an elastic sealing body 2, the elastic sealing body 2 is made of a material prepared by mixing at least magnesia with three-component copolymer of isobutylene, isoprene and divinylbenzene as main polymer and then peroxide- vulcanizing the mixture.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は封口体を改良した高信頼
性電解コンデンサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable electrolytic capacitor having an improved sealing body.

【0002】[0002]

【従来の技術】電解コンデンサは、陽極箔と陰極箔をセ
パレータ紙を介在させて巻回したコンデンサ素子に電解
液を含浸し、この電解液を含浸させたコンデンサ素子を
金属ケースに収納し、金属ケースを弾性封口体により密
封して形成されている。従来、電解コンデンサの電解液
としてはエチレングリコールを主溶媒としたものが広く
使われており、弾性封口体としては、天然ゴム(N
R)、スチレンブタジエン(SBR)、エチレンプロピ
レンターポリマー(EPT)等の素材のものが用いられ
てきた。
2. Description of the Related Art An electrolytic capacitor is formed by impregnating a capacitor element in which an anode foil and a cathode foil are wound with a separator paper in between and impregnating the electrolytic solution with the electrolytic solution impregnated in a metal case. The case is formed by sealing it with an elastic sealing body. Conventionally, as the electrolytic solution of the electrolytic capacitor, the one using ethylene glycol as the main solvent has been widely used, and the elastic sealing body is made of natural rubber (N
R), styrene butadiene (SBR), ethylene propylene terpolymer (EPT) and the like have been used.

【0003】近年では、広温度範囲における信頼性が要
求されるようになり、電解液の溶媒も N,N−ジメチルホ
ルムアミド(DMF)やγ−ブチロラクトン(GBL)
が使用されるようになってきている。ところが、DMF
やGBLは揮発性が高く、従来の弾性封口体では電解液
が蒸気として透過してしまうため、信頼性を維持できな
かった。そこで、より気密性の高いイソブチレン・イソ
プレンゴム(IIR)が使用されるようになった。しか
しIIRは耐熱性に問題がある。IIRの加硫方法とし
ては、イオウ加硫、キノイド加硫、樹脂加硫等があり、
このうちでは樹脂加硫のものが耐熱性において優れてい
るが、樹脂加硫IIRにおいても長時間高温中に放置す
ると軟化してきてしまうという問題点があった。
In recent years, reliability is required in a wide temperature range, and the solvent of the electrolytic solution is also N, N-dimethylformamide (DMF) or γ-butyrolactone (GBL).
Are being used. However, DMF
Since GBL and GBL have high volatility and the electrolytic solution permeates as vapor in the conventional elastic sealing body, the reliability cannot be maintained. Therefore, isobutylene-isoprene rubber (IIR) having higher airtightness has come to be used. However, IIR has a problem in heat resistance. Examples of IIR vulcanization methods include sulfur vulcanization, quinoid vulcanization, and resin vulcanization.
Among them, the resin vulcanized ones are excellent in heat resistance, but the resin vulcanized IIR also has a problem that it is softened when left in a high temperature for a long time.

【0004】[0004]

【発明が解決しようとする課題】最近ではIIRの耐熱
性を改善するために特開昭55−15862号公報に示
されているように、イソブチレン、イソプレン、ジビニ
ルベンゼンの3成分共重合体をポリマーとして過酸化物
加硫した架橋化IIRが提案されている。この架橋化I
IRは樹脂加硫のものに比べて耐熱性は良好である。し
かし、逆に最も重要な気密特性において劣るため、高温
長時間のコンデンサ試験を行うと電解液の透過散逸によ
る特性変化が大きくなってしまうという問題点があっ
た。また、高温長寿命用のコンデンサには電解液も高信
頼性のものを用いる必要があり、γ−ブチロラクトンと
有機酸の4級アンモニウム塩との組合せによる低比抵抗
電解液が使用されるようになってきている。しかし、こ
の4級アンモニウム塩を用いた電解液と、架橋化IIR
による封口体を組合せた電解コンデンサについては、高
温での寿命試験を行うと、封口体のリード線貫通孔付近
から電解液が漏出してきてしまうという新たな問題点が
みつかった。
Recently, in order to improve the heat resistance of IIR, a three-component copolymer of isobutylene, isoprene and divinylbenzene is used as a polymer as disclosed in JP-A-55-15862. A peroxide-vulcanized crosslinked IIR has been proposed as the above. This cross-linking I
IR has better heat resistance than that of resin vulcanization. However, on the contrary, since the most important airtightness is inferior, there is a problem that when the capacitor test is performed at a high temperature for a long time, the characteristics change due to the permeation and dissipation of the electrolytic solution becomes large. In addition, it is necessary to use a highly reliable electrolytic solution for the capacitor for high temperature and long life, so that a low specific resistance electrolytic solution that is a combination of γ-butyrolactone and a quaternary ammonium salt of an organic acid is used. It has become to. However, an electrolytic solution using this quaternary ammonium salt and a crosslinked IIR
With respect to the electrolytic capacitor combined with the sealing body according to the above, when a life test was conducted at high temperature, a new problem was found that the electrolytic solution leaked out from the vicinity of the lead wire through hole of the sealing body.

【0005】本発明は上記の問題点に鑑みてなされたも
のであり、耐熱性、気密性および耐薬品性に優れた弾性
封口体を使用することにより、高温長寿命を達成しうる
高信頼性電解コンデンサを提供することを目的とする。
The present invention has been made in view of the above problems, and by using an elastic sealing body having excellent heat resistance, airtightness and chemical resistance, high reliability which can achieve high temperature and long life is obtained. It is intended to provide an electrolytic capacitor.

【0006】[0006]

【課題を解決するための手段】上記目的による本発明で
は、電解液を含浸したコンデンサ素子を金属ケースに収
納し、弾性封口体により密封した電解コンデンサにおい
て、前記弾性封口体が、イソブチレン、イソプレンおよ
びジビニルベンゼンの3成分共重合体を主ポリマーと
し、それに少なくともマグネシアを配合して過酸化物加
硫した素材のものであることを特徴とする。マグネシア
の配合量は、前記主ポリマーに対して1〜50部である
ことが好ましい。上記弾性封口体は、γ−ブチロラクト
ンを主溶媒とし有機酸の4級アンモニウム塩を溶質とし
た電解液等に対しても耐薬品性がある。また、弾性封口
体のポリマーとしては、前記3成分共重合体だけでもも
ちろん良いが、同じく過酸化物加硫が可能なエチレンプ
ロピレンターポリマー(EPDM)等とブレンドしたも
のを使用しても同様の効果を得ることができる。
According to the present invention according to the above object, in an electrolytic capacitor in which a capacitor element impregnated with an electrolytic solution is housed in a metal case and sealed by an elastic sealing body, the elastic sealing body is isobutylene, isoprene or It is characterized in that it is a material obtained by peroxide-vulcanizing a three-component copolymer of divinylbenzene as a main polymer and at least magnesia being blended therein. The compounding amount of magnesia is preferably 1 to 50 parts with respect to the main polymer. The elastic sealing body has chemical resistance to an electrolytic solution containing γ-butyrolactone as a main solvent and a quaternary ammonium salt of an organic acid as a solute. Further, as the polymer for the elastic sealing body, the above-mentioned three-component copolymer may be used, of course, but the same polymer may be used by blending with ethylene propylene terpolymer (EPDM) which is also capable of peroxide vulcanization. The effect can be obtained.

【0007】[0007]

【作用】イソブチレン、イソプレン、ジビニルベンゼン
の3成分共重合体をポリマーとして過酸化物加硫する
と、ジビニルベンゼンの二重結合が解けてC−Cボンド
の架橋を形成するので従来の単なるIIRよりも耐熱性
が向上する。この架橋化IIRにマグネシア(MgO)
を配合すると、加硫促進助剤として作用し、架橋密度が
上がるので気密性を改良することができる。また、マグ
ネシアの量が多くなると充填剤的な働きをするので、ゴ
ム硬度を上昇させることができる。
When a ternary copolymer of isobutylene, isoprene and divinylbenzene is used as a polymer for peroxide vulcanization, the double bond of divinylbenzene is dissolved to form a C—C bond crosslink, which is more than conventional IIR. Heat resistance is improved. Magnesia (MgO) is added to this crosslinked IIR
When blended with, the compound acts as a vulcanization accelerating aid and increases the crosslink density, so that the airtightness can be improved. Further, when the amount of magnesia increases, it acts like a filler, so that the rubber hardness can be increased.

【0008】4級アンモニウム塩を使った電解液と接す
ると架橋化IIRであっても膨潤して気密性が低下し、
長時間のコンデンサ寿命試験を行うとリード線貫通孔付
近から電解液が漏出することがあった。この防止対策と
して発明者らは封口体をアルカリ性にすると良いことを
発見した。マグネシアの配合は前述の作用の他に架橋化
IIRをアルカリ性にする作用も奏するので、本発明に
よれば耐熱性、気密性および耐薬品性の良好な弾性封口
体を提供することができる。実際に2gのゴムを粉末に
し100gの純水に浸漬して30分沸騰水抽出した後の
pHを測定すると、マグネシア未配合のものが6.78
に対して、ポリマー100部に対してマグネシア10部
配合したものは9.99であった。
When contacted with an electrolytic solution containing a quaternary ammonium salt, even the crosslinked IIR swells to lower the airtightness.
When a long-term capacitor life test was performed, the electrolytic solution sometimes leaked from the vicinity of the lead wire through hole. As a countermeasure for this, the inventors have found that it is good to make the sealing body alkaline. Since the compounding of magnesia has an effect of making the crosslinked IIR alkaline, in addition to the above-mentioned effect, the present invention can provide an elastic sealing body having excellent heat resistance, airtightness and chemical resistance. Actually, 2 g of rubber was made into a powder, immersed in 100 g of pure water, extracted with boiling water for 30 minutes, and the pH was measured.
On the other hand, the compounding amount of 10 parts of magnesia to 100 parts of the polymer was 9.99.

【0009】[0009]

【実施例】以下、実施例に基づいて本発明を詳細に説明
する。 〔実施例1〕イソブチレン、イソプレン、ジビニルベン
ゼンの3成分共重合体からなるポリマー100部に対
し、マグネシアを2部配合し、ジクミルパーオキサイド
により過酸化物加硫してIIRゴムを作製した。 〔実施例2〕実施例1と同様にして、ポリマー100部
に対してマグネシア5部を配合しIIRゴムを作製し
た。
EXAMPLES The present invention will be described in detail below based on examples. [Example 1] 2 parts of magnesia were mixed with 100 parts of a polymer consisting of a three-component copolymer of isobutylene, isoprene and divinylbenzene, and peroxide vulcanized with dicumyl peroxide to prepare an IIR rubber. Example 2 In the same manner as in Example 1, 100 parts of the polymer and 5 parts of magnesia were blended to prepare an IIR rubber.

【0010】〔実施例3〕実施例1と同様にして、ポリ
マー100部に対してマグネシア10部を配合しIIR
ゴムを作製した。 〔実施例4〕実施例1と同様にして、ポリマー100部
に対してマグネシア20部を配合しIIRゴムを作製し
た。 〔実施例5〕実施例1と同様にして、ポリマー100部
に対してマグネシア30部を配合しIIRゴムを作製し
た。
Example 3 In the same manner as in Example 1, 100 parts of polymer was mixed with 10 parts of magnesia to prepare IIR.
A rubber was produced. Example 4 In the same manner as in Example 1, 20 parts of magnesia was mixed with 100 parts of the polymer to prepare an IIR rubber. Example 5 In the same manner as in Example 1, 30 parts of magnesia was mixed with 100 parts of the polymer to prepare an IIR rubber.

【0011】〔実施例6〕実施例1と同様にして、ポリ
マー100部に対してマグネシア40部を配合しIIR
ゴムを作製した。 〔実施例7〕実施例1と同様にして、ポリマー100部
に対してマグネシア50部を配合しIIRゴムを作製し
た。 〔従来例1〕イソブチレン、イソプレン、ジビニルベン
ゼンの3成分共重合体からなるポリマーをジクミルパー
オキサイドにより過酸化物加硫してIIRを作製した。 〔従来例2〕イソブチレン、イソプレンポリマーをアル
キルフェノールホルムアルデヒド樹脂により加硫してI
IRゴムを作製した。
Example 6 In the same manner as in Example 1, 100 parts of polymer was mixed with 40 parts of magnesia to prepare IIR.
A rubber was produced. Example 7 In the same manner as in Example 1, 100 parts of polymer was mixed with 50 parts of magnesia to prepare an IIR rubber. [Conventional Example 1] A polymer composed of a three-component copolymer of isobutylene, isoprene and divinylbenzene was peroxide vulcanized with dicumyl peroxide to prepare IIR. [Conventional Example 2] I was obtained by vulcanizing an isobutylene or isoprene polymer with an alkylphenol formaldehyde resin.
An IR rubber was produced.

【0012】[0012]

【表1】 [Table 1]

【0013】表1に作製したIIRゴムの配合および物
性を示した。硬度はJIS K6301のスプリング式
硬さ試験A形により測定し、圧縮永久歪はJIS K6
301の圧縮永久歪試験に準ずる試験片を25%圧縮し
た後、100℃の恒温槽中に70時間放置し、次式によ
り計算した。
Table 1 shows the compounding and physical properties of the IIR rubber prepared. Hardness is measured by JIS K6301 spring type hardness test type A, and compression set is JIS K6301.
A test piece according to the 301 compression set test was compressed by 25% and then left in a constant temperature bath at 100 ° C. for 70 hours and calculated by the following formula.

【0014】[0014]

【数1】 [Equation 1]

【0015】ここでtθは試験片の原厚、t1 は試験片
の試験後の厚さ、t2 はスペーサの厚さである。表1に
よるとマグネシア配合量を増加させることによって、硬
度が上昇することがわかる。硬度が低いとコンデンサ製
造時でのリード線のゴム通し工程で不具合が生じたり、
組立の際自動機によるゴムの搬送に不具合を生じたりす
る。本発明によれば、マグネシアを配合することにより
硬度を高くできるのでコンデンサ製造時の作業性を改善
することができる。
Here, tθ is the original thickness of the test piece, t 1 is the thickness of the test piece after the test, and t 2 is the thickness of the spacer. According to Table 1, it is understood that the hardness increases as the magnesia compounding amount is increased. If the hardness is low, problems may occur in the rubber threading process of the lead wire during capacitor manufacturing,
When assembling, problems may occur in rubber conveyance by an automatic machine. According to the present invention, the hardness can be increased by adding magnesia, so that the workability at the time of manufacturing a capacitor can be improved.

【0016】また、圧縮永久歪については、樹脂加硫の
従来例2に比べ過酸化物加硫の従来例1および本発明実
施例は値が低くなっている。この値が高いと、コンデン
サ製造時に封口した際、横絞りによる圧力が内側に伝わ
りにくく封口不良になる恐れがあるので値は小さいほう
がよい。本発明実施例はマグネシア配合量を変化させて
も、従来例1と同等の値を維持できることがわかる。次
に実施例1〜7および従来例1、2で作製したゴムを封
口体に用いて、25V10μF(φ5mm×11mm
L)のコンデンサを作製した。
Regarding the compression set, the value is lower in the conventional example 1 of the peroxide vulcanization and the embodiment of the present invention than in the conventional example 2 of the resin vulcanization. If this value is high, it is difficult to transmit the pressure from the horizontal diaphragm to the inside when the capacitor is sealed at the time of manufacturing, so that the sealing may be defective. It can be seen that the example of the present invention can maintain the same value as the conventional example 1 even if the magnesia compounding amount is changed. Next, using the rubbers produced in Examples 1 to 7 and Conventional Examples 1 and 2 as the sealing body, 25V 10 μF (φ5 mm × 11 mm
The capacitor of L) was produced.

【0017】[0017]

【表2】 [Table 2]

【0018】この電解コンデンサでの105℃5000
時間の寿命試験を実施した。使用した電解液はγ−ブチ
ロラクトン100部に対し、フタル酸テトラメチルアン
モニウムを15部溶解したものであり、比抵抗100Ω
cmのものである。図1には作製したコンデンサの構造を
示す断面図を示した。1はコンデンサ素子、2は弾性封
口体、3は金属ケース、4はリード線である。表2には
5000時間後のコンデンサの重量減少量と電解液の漏
出状況を示し、図2には寿命試験中の重量変化を示し
た。過酸化物加硫の従来例1は樹脂加硫の従来例2より
重量減少が大きい。すなわち、ガス透過量が多くて気密
性が悪いが、実施例1〜5までマグネシアの配合量を増
加させるに従って重量減少が改善される。しかし、30
重量部を超えると若干重量減少が大きくなる傾向がみら
れる。
105 ° C. 5000 with this electrolytic capacitor
A time life test was conducted. The electrolyte used was a solution of 15 parts of tetramethylammonium phthalate dissolved in 100 parts of γ-butyrolactone and a specific resistance of 100Ω.
cm. FIG. 1 shows a sectional view showing the structure of the produced capacitor. Reference numeral 1 is a capacitor element, 2 is an elastic sealing body, 3 is a metal case, and 4 is a lead wire. Table 2 shows the amount of weight loss of the capacitor after 5000 hours and the state of electrolyte leakage, and FIG. 2 shows the weight change during the life test. The conventional example 1 of peroxide vulcanization has a larger weight reduction than the conventional example 2 of resin vulcanization. That is, the gas permeation amount is large and the airtightness is poor, but the weight reduction is improved as the compounding amount of magnesia is increased in Examples 1 to 5. But 30
When it exceeds the weight part, the weight loss tends to increase a little.

【0019】また、電解液の漏出(液漏れ)について
は、従来例1および2では約半数が液漏れしたのに対
し、実施例1〜7では液漏れは発生しなかった。尚、表
2には示していないが、マグネシア配合量が一部より少
ないと、液漏れに対する効果が低下してしまうので、マ
グネシア配合量は1部以上であることが望ましい。図3
には寿命試験におけるtanδと容量変化(ΔC)を示
した。図2において重量減少の少ないものほど特性変化
が小さいことがわかる。尚、マグネシアの配合量はゴム
ポリマー100部に対し、50部を超えるとゴム製造時
の加工性が悪くなり、気密性も低下してくるので、50
部以下が望ましい。
Regarding leakage of electrolyte (liquid leakage), about half of the electrolyte leaked in Conventional Examples 1 and 2, whereas no liquid leak occurred in Examples 1-7. Although not shown in Table 2, if the magnesia blending amount is less than a part, the effect on liquid leakage is reduced, so the magnesia blending amount is preferably 1 part or more. Figure 3
Shows the tan δ and the capacity change (ΔC) in the life test. It can be seen from FIG. 2 that the smaller the weight loss, the smaller the characteristic change. If the amount of magnesia is more than 50 parts with respect to 100 parts of the rubber polymer, the processability during rubber production will be poor and the airtightness will also decrease.
Less than or equal to part is desirable.

【0020】[0020]

【発明の効果】以上述べたように、本発明によれば、耐
熱性、気密性および耐薬品性を大幅に改善できるので、
高温においても長寿命で信頼性の高い電解コンデンサを
提供できる。
As described above, according to the present invention, heat resistance, airtightness and chemical resistance can be greatly improved.
It is possible to provide an electrolytic capacitor having a long life and high reliability even at high temperatures.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例によるコンデンサの断面図。FIG. 1 is a sectional view of a capacitor according to an embodiment of the present invention.

【図2】105℃5000時間寿命試験におけるコンデ
ンサ重量変化を示す図。
FIG. 2 is a diagram showing changes in capacitor weight in a 105 ° C. 5000-hour life test.

【図3】105℃5000時間寿命試験におけるコンデ
ンサの特性変化を示す図。
FIG. 3 is a graph showing changes in the characteristics of capacitors in a 105 ° C. 5000-hour life test.

【符号の説明】[Explanation of symbols]

1 コンデンサ素子 2 弾性封口体 3 金属ケース 1 Capacitor element 2 Elastic sealing body 3 Metal case

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電解液を含浸したコンデンサ素子を金属
ケースに収納し、弾性封口体により密封した電解コンデ
ンサにおいて、前記弾性封口体が、イソブチレン、イソ
プレンおよびジビニルベンゼンの3成分共重合体を主ポ
リマーとし、それに少なくともマグネシアを配合して過
酸化物加硫した素材のものであることを特徴とする電解
コンデンサ。
1. An electrolytic capacitor in which a capacitor element impregnated with an electrolytic solution is housed in a metal case and sealed with an elastic sealing body, wherein the elastic sealing body is a main component of a ternary copolymer of isobutylene, isoprene and divinylbenzene. An electrolytic capacitor characterized in that it is made of a material obtained by mixing at least magnesia with it and vulcanizing it with peroxide.
【請求項2】 前記マグネシアの配合量が、前記主ポリ
マー100部に対し、1〜50部であることを特徴とす
る請求項1記載の電解コンデンサ。
2. The electrolytic capacitor according to claim 1, wherein the compounding amount of the magnesia is 1 to 50 parts with respect to 100 parts of the main polymer.
JP7157994A 1995-06-23 1995-06-23 Electrolytic capacitor Expired - Lifetime JP2804006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7157994A JP2804006B2 (en) 1995-06-23 1995-06-23 Electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7157994A JP2804006B2 (en) 1995-06-23 1995-06-23 Electrolytic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2133624A Division JPH0821527B2 (en) 1990-05-23 1990-05-23 Electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH07335504A true JPH07335504A (en) 1995-12-22
JP2804006B2 JP2804006B2 (en) 1998-09-24

Family

ID=15661925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7157994A Expired - Lifetime JP2804006B2 (en) 1995-06-23 1995-06-23 Electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2804006B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952594A2 (en) * 1998-03-23 1999-10-27 Matsushita Electric Industrial Co., Ltd. Aluminium electrolytic capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158621A (en) * 1979-05-30 1980-12-10 Matsushita Electric Ind Co Ltd Electrolytic condenser
JPS6236377A (en) * 1985-07-03 1987-02-17 Kyorin Pharmaceut Co Ltd Quinolonecarboxylic acid derivative
JPH01114030A (en) * 1987-10-28 1989-05-02 Matsushita Electric Ind Co Ltd Electrolytic capacitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55158621A (en) * 1979-05-30 1980-12-10 Matsushita Electric Ind Co Ltd Electrolytic condenser
JPS6236377A (en) * 1985-07-03 1987-02-17 Kyorin Pharmaceut Co Ltd Quinolonecarboxylic acid derivative
JPH01114030A (en) * 1987-10-28 1989-05-02 Matsushita Electric Ind Co Ltd Electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0952594A2 (en) * 1998-03-23 1999-10-27 Matsushita Electric Industrial Co., Ltd. Aluminium electrolytic capacitor
EP0952594A3 (en) * 1998-03-23 2004-01-14 Matsushita Electric Industrial Co., Ltd. Aluminium electrolytic capacitor
CN100378881C (en) * 1998-03-23 2008-04-02 松下电器产业株式会社 Aluminium electrolysis capacitor

Also Published As

Publication number Publication date
JP2804006B2 (en) 1998-09-24

Similar Documents

Publication Publication Date Title
JPH11274011A (en) Aluminum electrolytic capacitor
TWI399771B (en) Electrolytic capacitor
KR102248232B1 (en) Separator, lithium secondary battery comprising the seperator and manufacturing method thereof
EP1145344B1 (en) Impact modified polystyrene seals for electrochemical cells
JP4615863B2 (en) Electrochemical battery seal
CN100378882C (en) Electron component
WO2007046259A1 (en) Electrolytic capacitor
JP3198068B2 (en) Electrolytic capacitor
JPH07335504A (en) Electrolytic capacitor
JP4201255B2 (en) Porous film
JPH0821527B2 (en) Electrolytic capacitor
JP3542157B2 (en) Elastic sealing body for electrolytic capacitor and electrolytic capacitor
EP2747172A1 (en) Rubber valve body for sealed battery, safety valve device and alkaline storage battery
JP2002069254A (en) Peroxide crosslinkable rubber composition
US3892593A (en) Alkaline cells
JPH1070051A (en) Electrochemical element
JP3739222B2 (en) Aluminum electrolytic capacitor
JP2006190507A (en) Lithium secondary battery
EP0843369A1 (en) Barrel type non-aqueous electrolyte cell
JP4030142B2 (en) Thin film electrolyte for lithium ion battery
CN114758897B (en) Electrolytic capacitor with high sealing performance
JP2002289482A (en) Electronic component
JP2873846B2 (en) Electrolytic capacitor
JP2873845B2 (en) Electrolytic capacitor
JP2003109879A (en) Sealing material for electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20080717

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100717

EXPY Cancellation because of completion of term