JPH0733516A - Mgo-sio2 porcelain and its production - Google Patents

Mgo-sio2 porcelain and its production

Info

Publication number
JPH0733516A
JPH0733516A JP15555993A JP15555993A JPH0733516A JP H0733516 A JPH0733516 A JP H0733516A JP 15555993 A JP15555993 A JP 15555993A JP 15555993 A JP15555993 A JP 15555993A JP H0733516 A JPH0733516 A JP H0733516A
Authority
JP
Japan
Prior art keywords
mgo
sio
less
porcelain
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15555993A
Other languages
Japanese (ja)
Other versions
JP3083681B2 (en
Inventor
Hirotane Sugiura
裕胤 杉浦
Takehisa Fukui
武久 福井
Yutaka Higashida
豊 東田
Tsutomu Kadooka
勉 角岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Aisin Corp
Niterra Co Ltd
Original Assignee
FINE CERAMICS CENTER
Aisin Seiki Co Ltd
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER, Aisin Seiki Co Ltd, NGK Spark Plug Co Ltd filed Critical FINE CERAMICS CENTER
Priority to JP05155559A priority Critical patent/JP3083681B2/en
Publication of JPH0733516A publication Critical patent/JPH0733516A/en
Application granted granted Critical
Publication of JP3083681B2 publication Critical patent/JP3083681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Hard Magnetic Materials (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To produce an/MgO-SiO2 porecelain having excellent electric properties by obtaining the mixed sintered product of a forsterite phase and/or an enstatite phase. CONSTITUTION:This MgO-SiO2 porcelain comprises a dense mixed sintered product having a forsterite phase and/or an enstatite phase and having an MgO/ SiO2 molar ratio of 2.5/1 to 2/1.7, a dielectric constant of 6.4-7.5 and a dielectric dissipation factor of <=1X10<-4>.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、フォルステライト相
及び/又はエンスタタイト相の混成焼結体に関し、詳し
くはMgOとSiO2 のモル比を2.5対1から2対
1.7までの範囲で変えた高純度なMgO−SiO2
磁器及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed sintered body of forsterite phase and / or enstatite phase, and more specifically, it has a molar ratio of MgO and SiO 2 of 2.5: 1 to 2: 1. high purity MgO-SiO 2 systems for porcelain and a manufacturing method thereof was varied range.

【0002】[0002]

【従来の技術】従来、MgO−SiO2 系磁器の代表的
なものとしては、フォルステライト(2MgO・SiO
2 )磁器、ステアタイト(MgO・SiO2 )磁器があ
るが、いずれも低い誘電正接を有し、低損失誘電体材料
として高周波領域の絶縁材、基板材として用いられてい
る。このうちフォルステライト磁器に関しては、高純度
な原料を用いて高純度のフォルテライト磁器を得ること
により、さらにその電気的特性を高め得ることが本発明
者らにより確認されている。
2. Description of the Related Art Conventionally, forsterite (2MgO.SiO) has been known as a typical MgO-SiO 2 porcelain.
2 ) There are porcelain and steatite (MgO.SiO 2 ) porcelain, both of which have a low dielectric loss tangent and are used as insulating materials in the high frequency range as low loss dielectric materials and substrate materials. Among these, for the forsterite porcelain, it has been confirmed by the present inventors that the electrical characteristics can be further enhanced by obtaining a high-purity forterite porcelain using a high-purity raw material.

【0003】[0003]

【発明が解決しようとする課題】しかし、ステアタイト
磁器に関しては、難焼結性で高純度で緻密な焼結体を得
ることができないため、より電気的特性を高めたステア
タイト磁器を得ることが困難であった。また、ステアタ
イト磁器とフォルステライト磁器は共に電気的性質に優
れるものである一方、またそれぞれに特徴を持った焼結
体であり、双方の電気的性質を生かしてより電気的に優
れる磁器を得ることが望まれる。さらに、高純度な磁器
にあっても、磁器の用途に応じて適切な電気的特性を得
ることが必要である。
With respect to steatite porcelain, however, since it is not possible to obtain a sintered body which is difficult to sinter, has high purity, and is dense, it is possible to obtain steatite porcelain with further improved electrical characteristics. Was difficult. Also, while steatite porcelain and forsterite porcelain are both excellent in electrical properties, they are also sintered bodies with their respective characteristics, and by taking advantage of the electrical properties of both, we obtain more electrically superior porcelain. Is desired. Furthermore, even in high-purity porcelain, it is necessary to obtain appropriate electrical characteristics according to the application of the porcelain.

【0004】そこで、本発明は、フォルステライト相及
び/又はエンスタタイト相との混成焼結体を得ることに
より、優れた電気的性質を有するMgO−SiO2 系磁
器を提供することを目的とする。また、本発明は、電気
的性質に優れるとともに用途に応じた適切な電気的性質
を得ることができるMgO−SiO2 系磁器の製造方法
を提供することを目的とする。
Therefore, it is an object of the present invention to provide a MgO-SiO 2 system porcelain having excellent electrical properties by obtaining a hybrid sintered body with a forsterite phase and / or an enstatite phase. . The present invention also aims to provide a method for manufacturing a MgO-SiO 2 based ceramic capable of obtaining a proper electrical properties according to the application which is excellent in electrical properties.

【0005】[0005]

【課題を解決するための手段】本発明者らは、上記した
課題を解決するためにフォルステライト(2MgO・S
iO2 )組成周辺のMgO−SiO2 組成の合成磁器粉
末の合成条件及びこれらの合成磁器粉末成形品の焼結条
件を探索した結果、焼結性を低下させることなく電気的
性質に優れる緻密な焼結体を製造しうることを見いだし
たのである。すなわち、前記した課題を解決するための
手段として、本発明者らは、フォルステライト相及び/
又はエンスタタイト相を有する緻密な混成焼結体であっ
て、MgOとSiO2 のモル比の範囲が2.5対1から
2対1.7、比誘電率が6.4〜7.5、誘電正接が1
×10-4以下であることを特徴とするMgO−SiO2
系磁器を創作した。
In order to solve the above-mentioned problems, the present inventors have forsterite (2MgO.S)
As a result of searching synthetic conditions of synthetic porcelain powder of MgO—SiO 2 composition around the iO 2 ) composition and sintering conditions of these synthetic porcelain powder molded products, it is possible to obtain a dense and excellent electrical property without lowering sinterability. They have found that a sintered body can be manufactured. That is, as a means for solving the above-mentioned problems, the present inventors have found that the forsterite phase and / or
Alternatively, it is a dense hybrid sintered body having an enstatite phase, the molar ratio range of MgO and SiO 2 is 2.5: 1 to 2: 1.7, and the relative dielectric constant is 6.4 to 7.5. Dielectric loss tangent is 1
MgO—SiO 2 characterized by having a value of × 10 −4 or less
I created a series of porcelain.

【0006】さらに、前記混成焼結体中に含まれる不純
物が、Al2 3 0.50%(重量%を意味するものと
する。以下同じ。)以下、CaO 0.50%以下、
Fe 2 3 0.50%以下、Na2 O 0.50%以
下、ZrO2 0.50%以下であることを特徴とする
MgO−SiO2 系磁器を創作した。
Further, the impurities contained in the hybrid sintered body
Thing is Al2O30.50% (meaning% by weight
To do. same as below. ) Or less, CaO 0.50% or less,
Fe 2O30.50% or less, Na2O 0.50% or less
Below, ZrO2 Characterized by being 0.50% or less
MgO-SiO2I created a series of porcelain.

【0007】また、前記した他の課題を解決するための
手段として、(1)MgO粉末とSiO2 粉末又はSi
2 コロイド溶液とをMgOとSiO2 のモル比が2.
5対1から2対1.7の範囲で混合しか焼する工程と、
(2)前記工程で得たか焼粉を平均粒径3μm以下に粉
砕してMgO−SiO 2 系合成粉末とする工程と、
(3)このMgO−SiO2 系合成粉末を加圧成形して
なる成形品を焼成してフォルステライト及び/又はエン
スタタイト組成のMgO−SiO2 系磁器とする工程、
とからなることを特徴とするMgO−SiO2 系磁器の
製造方法を創作した。さらに、このMgO−SiO2
磁器の製造方法において、MgO−SiO2系磁器に含
まれる不純物を、Al2 3 0.50%以下、CaO
0.50%以下、Fe2 3 0.50%以下、Na2
O 0.50%以下、ZrO2 0.50%以下に制御
することを特徴とするMgO−SiO2 系磁器の製造方
法を創作した。
In order to solve the above-mentioned other problems,
As means, (1) MgO powder and SiO2Powder or Si
O2The colloidal solution is MgO and SiO2Has a molar ratio of 2.
Mixing and baking in the range of 5: 1 to 2: 1.7;
(2) The calcined powder obtained in the above step is powdered to have an average particle size of 3 μm or less.
Crush and MgO-SiO 2A step of making a system synthetic powder,
(3) This MgO-SiO2Pressure-forming synthetic powder
Forsterite and / or en
MgO-SiO with statite composition2Process to make system porcelain,
MgO-SiO characterized by comprising2Porcelain
Created a manufacturing method. Furthermore, this MgO-SiO2system
In the method of manufacturing a porcelain, MgO-SiO2Included in system porcelain
The impurities2O30.50% or less, CaO
 0.50% or less, Fe2O30.50% or less, Na2
O 0.50% or less, ZrO2 Controlled below 0.50%
MgO-SiO characterized by2How to make porcelain
Created the law.

【0008】前記MgO粉末及び前記SiO2 粉末と
は、天然に存在する原料でなく、適宜手段により不純物
が排除され精製されたものをいう。ここに、不純物とし
てはAl、Ca、Fe、Na等が挙げられ、これらの不
純物が制御されたMgO粉末あるいはSiO2 粉末であ
ることが好ましい。また、前記SiO2 コロイド溶液と
は、前記不純物が制御されたコロイド溶液であることが
好ましい。
The MgO powder and the SiO 2 powder do not mean naturally occurring raw materials but those purified by removing impurities by appropriate means. Examples of the impurities include Al, Ca, Fe, Na and the like, and MgO powder or SiO 2 powder in which these impurities are controlled is preferable. Further, the SiO 2 colloidal solution is preferably a colloidal solution in which the impurities are controlled.

【0009】前記か焼は、成形品の焼結時における焼成
収縮率を低減するとともに成分の均一化に伴う特性の安
定化のために行われる。か焼は、たとえば1200〜1
400℃で2〜4時間行われ、か焼後のか焼粉の組成中
にはフォルステライト相あるいはエンスタタイト相の
他、MgO相、SiO2 相が形成される。
The above-mentioned calcination is carried out in order to reduce the firing shrinkage rate during the sintering of the molded product and to stabilize the characteristics accompanying the homogenization of the components. Calcination is, for example, 1200-1
It is carried out at 400 ° C. for 2 to 4 hours, and MgO phase and SiO 2 phase are formed in the composition of the calcined powder after calcination, in addition to the forsterite phase or the enstatite phase.

【0010】か焼した各組成のか焼粉の粉砕は、例えば
ジルコニアボールを用いたボールミルにて行うことがで
きる。粉砕は、か焼粉の平均粒径を平均3μm以下にす
ることを主体として行われる。MgO−SiO2 系磁器
粉末の粒径が大きいと、焼結時の焼結性が悪く、緻密な
焼結体を得ることができないからである。粉砕の工程に
おいては、必要に応じてバインダとしてポリビニルアル
コールやメチルセルロース等の所定量が同時に混合さ
れ、粉砕されMgO−SiO2 系合成粉末とされる。な
お、バインダ等の配合物も前記原料粉末等と同様に高純
度のものを用いる。
The calcinated powder of each calcined composition can be pulverized by, for example, a ball mill using zirconia balls. The pulverization is mainly performed by setting the average particle size of the calcined powder to an average of 3 μm or less. This is because if the particle size of the MgO-SiO 2 based porcelain powder is large, the sinterability during sintering is poor and a dense sintered body cannot be obtained. In the pulverizing step, if necessary, a predetermined amount of polyvinyl alcohol, methyl cellulose or the like as a binder is simultaneously mixed and pulverized to obtain a MgO—SiO 2 based synthetic powder. It should be noted that a compound such as a binder is also of high purity like the raw material powder.

【0011】前記成形品は適当な加圧成形手段により用
途に応じた所定形状に成形される。成形品は、脱脂処理
においてバインダ等の有機質の配合物が除去される。脱
脂温度は有機質の配合物を焼失して除去しうる温度とさ
れ、例えば300〜500℃で4〜7時間である。脱脂
後は、続いて焼結される。焼成は、例えば、1400〜
1600℃で2時間で行われる。
The above-mentioned molded product is molded into a predetermined shape according to the application by an appropriate pressure molding means. The molded product is degreased to remove the organic compound such as the binder. The degreasing temperature is set to a temperature at which the organic compound can be burned and removed, and is, for example, 300 to 500 ° C. and 4 to 7 hours. After degreasing, it is subsequently sintered. The firing is, for example, 1400 to
It is carried out at 1600 ° C. for 2 hours.

【0012】本発明においては、原料粉末の秤量から、
混合、か焼、粉砕、焼成の各工程において、混合物、か
焼粉、合成粉末等に不純物が混入しないような材質や手
段が用いられ、全工程を通じて常に純度について十分に
配慮される。不純物は、Al 2 3 、CaO、Fe2
3 、ZrO2 を主体とする。
In the present invention, from the weighing of the raw material powder,
In each step of mixing, calcination, crushing and firing,
Materials and hands that prevent impurities from mixing into the baked powder, synthetic powder, etc.
Stages are used to ensure full purity throughout the entire process
Be considered. Impurities are Al 2O3, CaO, Fe2O
3, ZrO2Mainly.

【0013】[0013]

【作用】低誘電率でしかも誘電損失の少ない緻密なMg
O−SiO2 系磁器であるため、信号の高速伝播が可能
である。また、SiO2 原料及びMgO原料からMgO
−SiO2 系の混合物が形成される。かかる混合物はか
焼され、フォルステライト相、エンスタタイト相、Si
2相、MgO相が形成され、これら各相のうち少なく
とも常に2以上の相が混在する組成のか焼粉となる。か
焼され粉砕された合成粉末は、不純物が規制されている
ことから、高純度のMgO−SiO2 系合成粉末となっ
ており、高純度のMgO−SiO2 系磁器を得ることが
できるものとなっている。
[Function] Dense Mg with low dielectric constant and low dielectric loss
Since it is an O—SiO 2 system porcelain, high speed signal propagation is possible. In addition, from the SiO 2 raw material and the MgO raw material, MgO
Mixtures -SiO 2 system is formed. Such a mixture is calcined, forsterite phase, enstatite phase, Si
The O 2 phase and the MgO phase are formed, and the calcined powder has a composition in which at least two phases are always mixed among these phases. The calcined and crushed synthetic powder is a high-purity MgO-SiO 2 -based synthetic powder because impurities are regulated, and a high-purity MgO-SiO 2 -based porcelain can be obtained. Has become.

【0014】また、MgO−SiO2 系合成粉末の平均
粒子径を3μm以下に規制すること等により焼結助剤を
不要とすることができ、焼結助剤によるガラス相の生成
を排除して緻密かつ電気的特性に優れる磁器となる。さ
らに、フォルステライト組成及びそれよりもSiO2
ッチな組成にあっては、SiO2 の過剰添加による液相
生成などにより焼結温度が低下しているものと思われ
る。
Further, by controlling the average particle size of the MgO-SiO 2 -based synthetic powder to 3 μm or less, the sintering aid can be made unnecessary, and the generation of the glass phase by the sintering aid can be eliminated. It becomes a porcelain that is dense and has excellent electrical characteristics. Further, in the forsterite composition and the composition richer in SiO 2 than that, it is considered that the sintering temperature is lowered due to the liquid phase formation due to excessive addition of SiO 2 .

【0015】[0015]

【実施例】以下に本発明を具現化した一実施例について
図1ないし図3並びに表1ないし表6に基づいて説明す
る。なお、本例は本発明の一例であり、本発明はこれに
限定されるものではない。 〔実施例1〕まず、原料として高純度MgO粉末と高純
度SiO2 粉末を用意する。本例では、MgO粉末とし
て平均粒径0.08〜0.10μm、比表面積26.0
3m2 /gのものを用い、SiO2 粉末として、0.8
2μm、比表面積1.78m2 /gのものを用いた。な
お、用いる原料粉末の粒度は、か焼において十分に反応
する程度のものでよい。本例に用いたMgO粉末及びS
iO2 粉末の純度についての分析結果は表1に示す通り
である。なお、表1において、各成分の数値単位は重量
%であり、−印は0.001%以下であることを示す。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3 and Tables 1 to 6. This example is an example of the present invention, and the present invention is not limited to this. Example 1 First, high-purity MgO powder and high-purity SiO 2 powder are prepared as raw materials. In this example, the MgO powder has an average particle diameter of 0.08 to 0.10 μm and a specific surface area of 26.0.
Using SiO 2 powder of 3 m 2 / g, 0.8
The one having a specific surface area of 2 μm and the specific surface area of 1.78 m 2 / g was used. The particle size of the raw material powder used may be such that it reacts sufficiently during calcination. MgO powder and S used in this example
The results of analysis of the purity of the iO 2 powder are shown in Table 1. In Table 1, the numerical unit of each component is% by weight, and the-mark indicates 0.001% or less.

【0016】[0016]

【表1】 [Table 1]

【0017】次に、図1にしたがって本例のMgO−S
iO2 系磁器を作製する工程を説明する。MgOとSi
2 のモル比が2.5:1、2.3:1、2.1:1、
2:1(フォルステライト組成)、2:1.1、2:
1.3、2:1.5、2:1.7、2:1.8、2:
1.9、2:2(エンスタタイト組成)(計11種類)
となるように前記高純度MgO粉末及び高純度SiO2
粉末を秤量し、蒸留水を加えた後、ウレタンボールを用
いてボールミルで24時間混合し均一な混合物a〜kと
した。この各混合物a〜kにつき、所定条件下で乾燥
後、それぞれI:1200℃、II:1300℃及びIII
:1400℃の3種の温度で、それぞれ3時間か焼
し、各温度につきか焼粉Ia〜Ik、IIa〜IIk、III
a〜III kを得た。これらか焼粉Ia〜III kにつき、
X線回折にてMgO−SiO2 組成を確認した結果を表
2に示す。
Next, according to FIG. 1, the MgO-S of this example is used.
A process of manufacturing an iO 2 -based porcelain will be described. MgO and Si
The molar ratio of O 2 is 2.5: 1, 2.3: 1, 2.1: 1,
2: 1 (forsterite composition) 2: 1.1, 2:
1.3, 2: 1.5, 2: 1.7, 2: 1.8, 2:
1.9, 2: 2 (enstatite composition) (11 types in total)
To obtain the high-purity MgO powder and high-purity SiO 2
The powder was weighed, distilled water was added, and the mixture was mixed in a ball mill for 24 hours using urethane balls to obtain uniform mixtures a to k. For each of the mixtures a to k, after drying under predetermined conditions, I: 1200 ° C., II: 1300 ° C. and III, respectively.
Calcination powders Ia to Ik, IIa to IIk and III are calcined at three temperatures of 1400 ° C. for 3 hours each.
a to IIIk were obtained. For these calcined powders Ia to IIIk,
Table 2 shows the results of confirming the MgO-SiO 2 composition by X-ray diffraction.

【0018】[0018]

【表2】 P1:メインとなるピーク P2:明らかに存在が認められるピーク(メインピーク
の10%以上) P3:わずかに存在が認められるピーク F:フォルステライト E:エンスタタイト M:MgO S:SiO2 ↓↑:矢印の配合方向にピークが増大することを示す
[Table 2] P1: Main peak P2: Clearly present peak (10% or more of main peak) P3: Slightly present peak F: Forsterite E: Enstatite M: MgOS: SiO 2 ↓ ↑: Shows that the peak increases in the direction of the arrow

【0019】表2から明らかなように、各か焼粉Ia〜
III kのMgO−SiO2 の組成は、SiO2 リッチな
か焼粉であるか焼粉Ig〜Ik及びIII g〜III k以外
のいずれのか焼粉についてもフォルステライト相を主体
としていた。また、いずれのか焼粉Ia〜III kでも、
フォルステライト組成からMgOリッチになるほどMg
O相が多く、SiO2 リッチになるほどSiO2 相ある
いはエンスタタイト相が増える傾向があった。さらに、
フォルステライト組成のか焼粉Id〜III dであっても
フォルステライトの単一相は形成されなかった。
As is clear from Table 2, each calcined powder Ia-
The composition of MgO-SiO 2 of III k had mainly of forsterite phase for any of the calcined powder other than the calcined powder Ig~Ik and III g~III k is a SiO 2 rich calcination powder. In addition, in any of the calcined powders Ia to IIIk,
From forsterite composition to MgO richer Mg
There was a tendency that the more O 2 phase and the more SiO 2 rich, the more SiO 2 phase or enstatite phase. further,
A single phase of forsterite was not formed even with the calcined powders Id to IIId having the forsterite composition.

【0020】このようにフォルステライト単一相でない
か焼粉Ia〜III kを、ボールミルを用いて平均粒径が
3μm以下になるように粉砕するとともに、バインダと
してポリビニルアルコールを1重量%加えてさらに粉砕
混合し、合計24時間粉砕処理してMgO−SiO2
合成粉末Ia〜III kを得た。各合成粉末Ia〜III k
の粉砕後の平均粒子径及び粒度分布をレーザ回折散乱法
を用いて測定した。そのうち、平均粒子径を表3に示
す。測定された平均粒子径はIII dを除きいずれも1μ
m以下であった。粒度分布の一例として、合成粉末IId
の粒度分布を図2に示す。なお、この図において、右の
たて目盛りは棒グラフの尺度を示し、左のたて目盛りは
線グラフの尺度を示す。
As described above, the calcined powders Ia to IIIk which are not forsterite single phase are pulverized by a ball mill so that the average particle diameter becomes 3 μm or less, and 1% by weight of polyvinyl alcohol as a binder is further added. ground mixture was a total of 24 hours grinding treatment to obtain a MgO-SiO 2 based synthetic powder Ia~III k. Synthetic powders Ia to III k
The average particle diameter and particle size distribution of the powder after pulverization were measured using a laser diffraction scattering method. The average particle size is shown in Table 3. The measured average particle size is 1 μm except III d.
It was m or less. As an example of particle size distribution, synthetic powder IId
The particle size distribution of is shown in FIG. In this figure, the vertical scale on the right shows the scale of the bar graph, and the vertical scale on the left shows the scale of the line graph.

【0021】[0021]

【表3】 [Table 3]

【0022】このMgO−SiO2 系合成粉末Ia〜I
kを、それぞれ直径20mm、厚さ8〜9mmの円柱形
に成形した。成形は、まず 500kg/cm2 の一軸
成形(仮成形)し、次いで3000kg/cm2 でCI
P成形(本成形)して成形品とした 各成形品は加熱炉に入れ、室温から6時間で400℃と
し、400℃で6時間加熱して脱脂後、続いて200℃
/時間で昇温し、成形品が緻密化する焼成温度で2時間
焼成した。ここにいう緻密化とは、焼成品の吸水率が
0.1%以下で、気孔率が1%以下になった時をいうも
のとする。各焼結体の緻密化温度、両端短絡型誘電体円
柱共振器法にて測定した比誘電率及び誘電正接を表4及
び図3に示す。なお、電気的測定には、前記焼成品を加
工して、直径10mm、厚さ5mmの円柱形としたもの
を用い、測定周波数は16GHz 近辺で測定した。また、
従来のフォルステライト磁器イ〜ハについての比誘電率
及び誘電正接を表5に示す。ここに、従来のフォルステ
ライト磁器とは、高純度でなく、また、平均粒径が考慮
されていない市販品である。なお、表5の測定値は、市
販されている数社のフォルテライト磁器を直径10m
m、厚さ5mmの円柱形に加工し、前記焼結体と同様の
測定法で16GHz 近辺の周波数で測定したものである。
The MgO--SiO 2 synthetic powders Ia to I
k was formed into a cylindrical shape having a diameter of 20 mm and a thickness of 8 to 9 mm. The molding was first carried out by uniaxial molding (temporary molding) of 500 kg / cm 2 and then CI at 3000 kg / cm 2 .
P-molding (main molding) into molded products Each molded product was placed in a heating furnace, heated from room temperature to 400 ° C for 6 hours, heated at 400 ° C for 6 hours to degrease, and then 200 ° C.
The temperature was raised at a heating rate of / hour, and firing was performed for 2 hours at a firing temperature at which the molded product became dense. The densification referred to here means when the water absorption of the fired product is 0.1% or less and the porosity is 1% or less. Table 4 and FIG. 3 show the densification temperature of each sintered body, the relative permittivity and the dielectric loss tangent measured by a dielectric cylinder resonator method with both ends short-circuited. For electrical measurement, the fired product was processed into a cylindrical shape having a diameter of 10 mm and a thickness of 5 mm, and the measurement frequency was measured at around 16 GHz. Also,
Table 5 shows the relative permittivity and dielectric loss tangent of the conventional forsterite porcelains a to c. Here, the conventional forsterite porcelain is a commercial product which is not of high purity and whose average particle size is not taken into consideration. In addition, the measured values in Table 5 are obtained by using commercially available fortelite porcelain of several companies with a diameter of 10 m.
It was processed into a cylindrical shape having a thickness of 5 mm and a thickness of 5 mm, and was measured at a frequency around 16 GHz by the same measurement method as that for the sintered body.

【0023】[0023]

【表4】 [Table 4]

【0024】[0024]

【表5】 [Table 5]

【0025】表4及び図3より、合成粉末Ia〜Ihを
用いた焼結体は、1450℃から1600℃の範囲で緻
密化することができる。すなわち、150℃範囲という
広い温度範囲で緻密な焼結体が得られている。特に、合
成粉末IaからIhの焼結体にあっては、1450℃で
緻密化することができる。なお、合成粉末Ii〜Ikに
ついては、いずれも緻密な焼結体を得られなかった。こ
れは、これらの合成粉末の分解溶融が生じるためと思わ
れる。
From Table 4 and FIG. 3, the sintered bodies using the synthetic powders Ia to Ih can be densified in the range of 1450 ° C to 1600 ° C. That is, a dense sintered body is obtained in a wide temperature range of 150 ° C. In particular, the sintered bodies of synthetic powders Ia to Ih can be densified at 1450 ° C. In addition, a dense sintered body could not be obtained for any of the synthetic powders Ii to Ik. This is probably due to decomposition and melting of these synthetic powders.

【0026】また、合成粉末Ia〜Ihに由来する焼結
体において、合成粉末Ia〜IIcの焼結体にあっては、
6〜7×10-5の誘電正接を有し、また合成粉末Id〜
Ihの焼結体にあっては、7〜8×10-5の誘電正接と
なっており、いずれも1×10-4以下の低い誘電正接の
磁器となっている。これは、従来のフォルステライト磁
器の誘電正接と比較すると、ほぼ1オーダの低減となっ
ている(表5参照)。
In the sintered bodies derived from the synthetic powders Ia to Ih, the sintered bodies of the synthetic powders Ia to IIc are as follows:
Having a dielectric loss tangent of 6 to 7 × 10 −5 and synthetic powder Id to
The sintered body of Ih has a dielectric loss tangent of 7 to 8 × 10 −5 , and each has a low dielectric loss tangent of 1 × 10 −4 or less. This is on the order of 1 order of magnitude less than the dielectric loss tangent of the conventional forsterite porcelain (see Table 5).

【0027】さらに、合成粉末Ia〜Ihに由来する焼
結体は、フォルステライト組成の合成粉末Idの焼結体
の比誘電率6.8に対して、SiO2 リッチな組成の合
成粉末Ie〜Ihの焼結体にあっては、6.9〜6.7
の比誘電率が得られ、MgOリッチの合成粉末Ia〜I
cの焼結体にあっては、7.3〜7.0の比誘電率が得
られている。
Furthermore, the sintered body derived from the synthetic powder Ia~Ih, relative dielectric constant 6.8 of the sintered body of the composite powder Id forsterite composition, synthesis of SiO 2 rich composition powder Ie~ For the Ih sintered body, 6.9 to 6.7.
And a relative dielectric constant of MgO-rich synthetic powders Ia to I
In the sintered body of c, the relative dielectric constant of 7.3 to 7.0 is obtained.

【0028】すなわち、合成粉末Ia〜Igの焼結体に
あっては、焼成温度が1450℃から1600℃の範囲
で成形品を緻密化することができ、いずれの焼結体によ
っても、誘電正接を1×10-4以下に規制することがで
きる。特に、合成粉末Id〜Ihの焼結体にあっては、
1450℃付近の焼成温度で緻密化し、比誘電率を6.
5〜7.0で、かつ誘電正接を7〜8×10-5とするこ
とができる。また、合成粉末Ia〜Icの焼結体にあっ
ては、1600℃で焼結して緻密化すれば、誘電正接を
6〜7×10-5としつつも比誘電率を7.5前後まで高
めることができるものとなっている。
That is, in the sintered body of the synthetic powders Ia to Ig, the molded product can be densified in the firing temperature range of 1450 ° C. to 1600 ° C., and the dielectric loss tangent can be obtained by any of the sintered bodies. Can be regulated to 1 × 10 −4 or less. In particular, in the sintered body of synthetic powders Id to Ih,
Densification was performed at a firing temperature near 1450 ° C. and a relative dielectric constant of 6.
The dielectric loss tangent can be set to 5 to 7.0 and the dielectric loss tangent to 7 to 8 × 10 −5 . Further, in the sintered body of the synthetic powders Ia to Ic, if it is sintered at 1600 ° C. to be densified, the dielectric loss tangent is 6 to 7 × 10 −5 and the relative dielectric constant is up to about 7.5. It can be raised.

【0029】なお、他の合成粉末IIa〜IIh,III a〜
III hについてもIa〜Igの焼成において観察された
緻密化温度、比誘電率及び誘電正接の傾向と同様の結果
が得られている。合成粉末Ia〜Igの焼結体表面の電
子顕微鏡写真をそれぞれ図4〜図6に示す。図4〜図6
から明らかなように、いずれの合成粉末にあっても緻密
な焼結体となっている。また、フォルステライト組成か
らMgOリッチあるいはSiO2リッチになるほど焼結
体の粒成長が抑えらえている。
Other synthetic powders IIa-IIh, IIIa-
With respect to IIIh, the same results as those of the densification temperature, relative permittivity and dielectric loss tangent tendencies observed in firing of Ia to Ig are obtained. Electron micrographs of the surfaces of the sintered bodies of the synthetic powders Ia to Ig are shown in FIGS. 4 to 6, respectively. 4 to 6
As is apparent from the above, any of the synthetic powders is a dense sintered body. Further, as the forsterite composition becomes MgO rich or SiO 2 rich, the grain growth of the sintered body is suppressed.

【0030】さらに、得られた焼結体のX線回折の結果
から、MgOとSiO2 のモル比が2:1.1から2:
1.7の間の組成比の焼結体にあっては、フォルステラ
イト相とエンスタタイト相の2相のみが観察され、Si
2 リッチになるほどエンスタタイト相の量が増加して
いた。すなわち、エンスタタイトは難焼結性で従来より
ガラス相を生成させることにより緻密な焼結と転移によ
る劣化防止を行っていたが、本実施例においては、高純
度下でしかもガラス相の生成なくして緻密な焼結体とす
ることができた。
Further, from the result of X-ray diffraction of the obtained sintered body, the molar ratio of MgO and SiO 2 was 2: 1.1 to 2: 2.
In the sintered body having a composition ratio of 1.7, only two phases, a forsterite phase and an enstatite phase, are observed.
The amount of enstatite phase increased as the O 2 richer. That is, since enstatite is difficult to sinter and has conventionally formed a glass phase to prevent dense sintering and deterioration due to transition, in the present example, high purity and no formation of a glass phase were performed. And a dense sintered body could be obtained.

【0031】表6に、本実施例の焼結体における不純物
含有量の化学分析結果を示す。本実施例においては、不
純物が制御された原料を用い、工程においても不純物の
混入が制御されているために、焼結体中の不純物量はほ
ぼ使用する原料中に含まれる不純物量により決まること
になるし、ほぼその通りの結果が表6に示されているよ
うに得られている。ただし、か焼粉の粉砕工程におい
て、ZrO2 ボールを用いているためジルコニア(Zr
2 )については、粉砕の際の摩滅による混入量が含ま
れている。
Table 6 shows the results of chemical analysis of the content of impurities in the sintered body of this example. In this embodiment, since the raw material in which the impurities are controlled is used and the mixing of the impurities is controlled also in the process, the amount of impurities in the sintered body is almost determined by the amount of impurities contained in the raw materials used. And almost the same result is obtained as shown in Table 6. However, since ZrO 2 balls are used in the calcination powder crushing process, zirconia (Zr
Regarding O 2 ), the amount of contamination due to abrasion during pulverization is included.

【0032】[0032]

【表6】 [Table 6]

【0033】〔実施例2〕次に、SiO2 原料としてS
iO2 粉末でなくSiO2 コロイド溶液を用いてMgO
−SiO2 磁器を製造する方法について説明する。Mg
O粉末としては、実施例1と同様のものを用い、SiO
2 コロイド溶液として、溶媒が水で、SiO2 含量が、
20〜21重量%、粒子径10〜20nm,pH2〜4
のものを用いた。このSiO2 コロイド溶液の純度試験
結果を表7に示す。
Example 2 Next, S was used as a SiO 2 raw material.
MgO using SiO 2 colloidal solution instead of iO 2 powder
A method of manufacturing —SiO 2 porcelain will be described. Mg
As the O powder, the same one as in Example 1 was used, and SiO
2 As a colloidal solution, the solvent is water and the SiO 2 content is
20-21% by weight, particle size 10-20 nm, pH 2-4
I used the one. Table 7 shows the purity test results of this SiO 2 colloid solution.

【0034】[0034]

【表7】 [Table 7]

【0035】MgO粉末及びSiO2 コロイド溶液をM
gOとSiO2 のモル比が2.5:1及び2:1.7と
なるようにそれぞれ秤量、混合して混合物p及びqと
し、以下、実施例1と同様の工程に従い、1200℃及
び1300℃でか焼し、か焼粉Ip及びIq、IIp及び
IIqを得た。これらのか焼粉のX線回折の結果は、実施
例1における同様の組成のか焼粉に対応していた。ま
た、これらのか焼粉を粉砕して得たMgO−SiO2
成粉末の平均粒径を表8に示す。いずれも平均粒径1μ
m以下であった。
The MgO powder and the SiO 2 colloidal solution were mixed with M
Mixtures p and q were weighed and mixed so that the molar ratio of gO and SiO 2 was 2.5: 1 and 2: 1.7, respectively, and the same steps as in Example 1 were followed at 1200 ° C. and 1300. Calcined at ℃, calcined powder Ip and Iq, IIp and
IIq was obtained. The X-ray diffraction results of these calcined powders corresponded to calcined powders of similar composition in Example 1. Also shows the average particle diameter of MgO-SiO 2 synthesized powder obtained by pulverizing these calcined powders in Table 8. All have an average particle size of 1μ
It was m or less.

【0036】[0036]

【表8】 [Table 8]

【0037】さらに、か焼粉Ip及びIqを実施例1と
同様に成形して、同じ昇温条件で成形品が緻密化する焼
成温度で2時間焼成した。各焼結体の緻密化温度、及び
直径10mm、厚さ5mmの円柱形に加工し、実施例1
と同様の測定法による16GHz 近辺での比誘電率及び誘
電正接を表9に示す。
Further, the calcined powders Ip and Iq were molded in the same manner as in Example 1 and baked for 2 hours at the baking temperature at which the molded product was densified under the same temperature rising conditions. The densification temperature of each sintered body and processing into a cylindrical shape having a diameter of 10 mm and a thickness of 5 mm were carried out, and Example 1
Table 9 shows the relative permittivity and dielectric loss tangent in the vicinity of 16 GHz by the same measurement method as in.

【0038】[0038]

【表9】 [Table 9]

【0039】表9から明らかなように、SiO2 リッチ
な合成粉末Iqに由来する焼結体にあっては、低い焼結
温度で比誘電率の低い磁器を得られ、MgOリッチな合
成粉末Ipに由来する焼結体にあっては、誘電正接の小
さい磁器を得ることができた。すなわち、SiO2 コロ
イド溶液をSiO2 原料として用いた場合であっても、
MgOとSiO2 のモル比が2.5:1から2:1.7
の範囲で実施例1とほぼ同様に電気的性質の優れたMg
O−SiO2 磁器を得られ、また比誘電率を7.1〜
6.4の範囲で変え得ることが確認できた。
As is clear from Table 9, in the sintered body derived from the SiO 2 -rich synthetic powder Iq, a porcelain having a low relative dielectric constant can be obtained at a low sintering temperature, and the MgO-rich synthetic powder Ip can be obtained. In the sintered body derived from, it was possible to obtain a porcelain having a small dielectric loss tangent. That is, even when the SiO 2 colloidal solution is used as the SiO 2 raw material,
The molar ratio of MgO to SiO 2 is 2.5: 1 to 2: 1.7.
Of Mg having excellent electrical properties almost in the same range as in Example 1
O-SiO 2 porcelain can be obtained, and the relative dielectric constant is 7.1 to
It was confirmed that it could be changed within the range of 6.4.

【0040】また、実施例1と同様に、MgO粉末及び
SiO2 コロイド溶液よりなる焼結体における不純物含
有量を化学分析により求めた結果を表10に示す。
As in Example 1, the results of chemical analysis for the content of impurities in the sintered body composed of the MgO powder and the SiO 2 colloidal solution are shown in Table 10.

【0041】[0041]

【表10】 [Table 10]

【0042】[0042]

【発明の効果】以上詳述したように、本発明のMgO−
SiO2 系磁器によれば、不純物が高度に制御されたM
gO−SiO2 系磁器であるため、低誘電損失でしかも
低誘電率であり、信号の高速伝播を可能にする優れた回
路基板など高周波絶縁体基板に適した材料となってい
る。本発明のMgO−SiO2 系磁器の製造方法によれ
ば、MgO粉末、SiO2粉末あるいはSiO2 コロイ
ド溶液を原料として用い、さらには工程において不純物
の混入を制御してMgOとSiO2 のモル比が2.5対
1から2対1.7の範囲で混合し、か焼して平均粒径を
制御した合成粉末を得ることにより焼結性を低下させる
ことなく従来のフォルステライトに比べほぼ一桁以上低
損失の電気的性質(誘電正接が1×10-4以下)を有す
る緻密な磁器を得ることができる。さらに、上記範囲の
MgO−SiO2 系磁器組成により、誘電正接(低損失
性が1×10-4以下)を維持しつつ比誘電率を6.4〜
7.5の範囲で調整することができる。
As described in detail above, the MgO-
According to the SiO 2 porcelain, M with highly controlled impurities
Since it is a gO-SiO 2 porcelain, it has a low dielectric loss and a low dielectric constant, and is a material suitable for a high-frequency insulator substrate such as an excellent circuit substrate that enables high-speed propagation of signals. According to the method for producing a MgO-SiO 2 porcelain of the present invention, MgO powder, SiO 2 powder or SiO 2 colloidal solution is used as a raw material, and the mixing of impurities is controlled in the process to obtain a molar ratio of MgO and SiO 2 . Are mixed in the range of 2.5: 1 to 2: 1.7, and calcined to obtain a synthetic powder having a controlled average particle size, which does not decrease the sinterability and is almost equal to that of conventional forsterite. It is possible to obtain a dense porcelain having electrical properties with a loss of one digit or more (dielectric loss tangent is 1 × 10 −4 or less). Further, the MgO-SiO 2 based ceramic composition within the above range, the dielectric constant while maintaining the dielectric dissipation factor (low loss property 1 × 10 -4 or less) 6.4
It can be adjusted in the range of 7.5.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のMgO−SiO2 系磁器を得る工程
図。
FIG. 1 is a process drawing for obtaining a MgO—SiO 2 based porcelain of the present invention.

【図2】MgO−SiO2 系合成粉末の粒度分布図。FIG. 2 is a particle size distribution diagram of MgO—SiO 2 based synthetic powder.

【図3】焼結体の緻密化温度、比誘電率及び誘電正接を
それぞれ表す図。
FIG. 3 is a diagram showing a densification temperature, a relative dielectric constant and a dielectric loss tangent of a sintered body, respectively.

【図4】合成粉末Ia〜Icの焼結体表面の電子顕微鏡
写真(a)〜(c)の図。
FIG. 4 is a view of electron microscope photographs (a) to (c) of surfaces of sintered bodies of synthetic powders Ia to Ic.

【図5】合成粉末Idの焼結体表面の電子顕微鏡写真
(d)の図。
FIG. 5 is an electron micrograph (d) of the surface of a sintered body of synthetic powder Id.

【図6】合成粉末Ie〜Igの焼結体表面の電子顕微鏡
写真(e)〜(g)の図。
FIG. 6 is a view of electron microscope photographs (e) to (g) of surfaces of sintered bodies of synthetic powders Ie to Ig.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福井 武久 愛知県大府市共和町六丁目28番地の3 (72)発明者 東田 豊 愛知県小牧市光ケ丘二丁目18番地の3 (72)発明者 角岡 勉 愛知県刈谷市野田町段留25番地8 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takehisa Fukui 3 from 6-28, Kyowa-cho, Obu City, Aichi Prefecture (72) Inventor Yutaka Higashida 3 from 2--18, Mitsugaoka, Komaki City, Aichi Prefecture (72) Inventor Kaku Tsutomu Oka 25 No. 8 Dandome, Kariya city, Aichi prefecture 8

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】フォルステライト相及び/又はエンスタタ
イト相を有する緻密な混成焼結体であって、 MgOとSiO2 のモル比の範囲が2.5対1から2対
1.7、比誘電率が6.4〜7.5、誘電正接が1×1
-4以下であることを特徴とするMgO−SiO2 系磁
器。
1. A dense hybrid sintered body having a forsterite phase and / or an enstatite phase, wherein the molar ratio of MgO and SiO 2 is in the range of 2.5: 1 to 2: 1.7 and the relative dielectric constant. Index 6.4 to 7.5, dielectric loss tangent 1 × 1
0 -4 in MgO-SiO 2 based ceramic, characterized in that.
【請求項2】請求項1において、混成焼結体中に含まれ
る不純物が、Al2 3 0.50%以下、CaO
0.50%以下、Fe2 3 0.50%以下、Na2
0.50%以下、ZrO2 0.50%以下であるこ
とを特徴とするMgO−SiO2 系磁器。
2. The impurity according to claim 1, wherein the impurities contained in the hybrid sintered body are Al 2 O 3 0.50% or less and CaO.
0.50% or less, Fe 2 O 3 0.50% or less, Na 2 O
0.50% or less, ZrO 2 0.50% or less, MgO-SiO 2 based porcelain.
【請求項3】(1)MgO粉末とSiO2 粉末又はSi
2 コロイド溶液とをMgOとSiO2 のモル比が2.
5対1から2対1.7の範囲で混合しか焼する工程と、 (2)前記工程で得たか焼粉を平均粒径3μm以下に粉
砕してMgO−SiO 2 系合成粉末とする工程と、 (3)このMgO−SiO2 系合成粉末を加圧成形して
なる成形品を焼成してフォルステライト及び/又はエン
スタタイト組成のMgO−SiO2 系磁器とする工程、
とからなることを特徴とするMgO−SiO2 系磁器の
製造方法。
3. (1) MgO powder and SiO2Powder or Si
O2The colloidal solution is MgO and SiO2Has a molar ratio of 2.
A step of mixing and firing only in the range of 5: 1 to 2: 1.7, and (2) the calcined powder obtained in the above step to have an average particle size of 3 μm or less.
Crush and MgO-SiO 2(3) This MgO-SiO2Pressure-forming synthetic powder
Forsterite and / or en
MgO-SiO with statite composition2Process to make system porcelain,
MgO-SiO characterized by comprising2Porcelain
Production method.
【請求項4】請求項3において、MgO−SiO2 系磁
器に含まれる不純物を、Al2 3 0.50%以下、C
aO 0.50%以下、Fe2 3 0.50%以下、
Na2 O 0.50%以下、ZrO2 0.50%以下
に制御することを特徴とするMgO−SiO2 系磁器の
製造方法。
4. The impurity contained in the MgO—SiO 2 porcelain according to claim 3, wherein Al 2 O 3 is 0.50% or less, C
aO 0.50% or less, Fe 2 O 3 0.50% or less,
A method for producing a MgO—SiO 2 porcelain, characterized by controlling Na 2 O to 0.50% or less and ZrO 2 to 0.50% or less.
JP05155559A 1993-06-25 1993-06-25 MgO-SiO2-based porcelain and method of manufacturing the same Expired - Lifetime JP3083681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05155559A JP3083681B2 (en) 1993-06-25 1993-06-25 MgO-SiO2-based porcelain and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05155559A JP3083681B2 (en) 1993-06-25 1993-06-25 MgO-SiO2-based porcelain and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0733516A true JPH0733516A (en) 1995-02-03
JP3083681B2 JP3083681B2 (en) 2000-09-04

Family

ID=15608706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05155559A Expired - Lifetime JP3083681B2 (en) 1993-06-25 1993-06-25 MgO-SiO2-based porcelain and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3083681B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344423B2 (en) 1998-02-26 2002-02-05 Kabushiki Kaisha Ohara High rigidity glass-ceramic substrate for a magnetic information storage medium
WO2004060829A1 (en) * 2002-12-27 2004-07-22 Nikko Company Low temperature sintering ceramic composition for use in high frequency, method of fabricating the same and electronic component
JP2006089357A (en) * 2004-09-27 2006-04-06 Nippon Carbide Ind Co Inc Method of manufacturing ceramic substrate
US7201544B2 (en) 2003-03-05 2007-04-10 Honda Motor Co., Ltd. Deep hole boring drill
JP2018083746A (en) * 2016-11-25 2018-05-31 京セラ株式会社 Ceramic porcelain, wiring board and electronic component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677349U (en) * 1993-03-30 1994-10-28 株式会社シコー技研 Transducer in calling device, etc.

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344423B2 (en) 1998-02-26 2002-02-05 Kabushiki Kaisha Ohara High rigidity glass-ceramic substrate for a magnetic information storage medium
WO2004060829A1 (en) * 2002-12-27 2004-07-22 Nikko Company Low temperature sintering ceramic composition for use in high frequency, method of fabricating the same and electronic component
US7276460B2 (en) 2002-12-27 2007-10-02 Nikko Company Low temperature sintering ceramic composition for use in high frequency, method of fabricating the same and electronic component
US7201544B2 (en) 2003-03-05 2007-04-10 Honda Motor Co., Ltd. Deep hole boring drill
JP2006089357A (en) * 2004-09-27 2006-04-06 Nippon Carbide Ind Co Inc Method of manufacturing ceramic substrate
JP2018083746A (en) * 2016-11-25 2018-05-31 京セラ株式会社 Ceramic porcelain, wiring board and electronic component

Also Published As

Publication number Publication date
JP3083681B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
CN1117708C (en) Low temp. sinterable and low loss dielectric ceramic compositions and method thereof
US4179301A (en) Si3 N4 containing intergranular phase nucleating agent and method
US9885109B2 (en) ITO ceramic sputtering targets with reduced In2O3 contents and method of producing it
JP3083645B2 (en) How to make forsterite porcelain
JP4524411B2 (en) Dielectric porcelain composition
JP3865970B2 (en) Porcelain composition
JP3083681B2 (en) MgO-SiO2-based porcelain and method of manufacturing the same
Longtu et al. Low temperature sintering of PZT ceramics
JPH03122045A (en) Production of machinable ceramics
SU695988A1 (en) Charge for producing ceramic material
JPH08319162A (en) Dielectric ceramic and its production
JP3083638B2 (en) How to make forsterite porcelain
JPH0570222A (en) Bao-xtio2-based dielectric ceramics
JPH02164765A (en) Production of high-strength porcelain product
JP2002068829A (en) Porcelain and its manufacturing method
JP2002502350A (en) Molding compounds based on aluminum oxide
Kaviraj et al. Differences in phase, microstructural, and electrical characteristics of quartz-substituted alumina porcelain insulator
JPH06100359A (en) Production of ceramic sintering auxiliary and production of mullite ceramic using the same
JP2005239446A (en) Porcelain composition and its manufacturing method
JP3112286B2 (en) Manufacturing method of dense machinable ceramics
KR100409171B1 (en) Electrically Conductive Ceramics and Their Use in Fiber Charging Apparatus
JPH08175864A (en) Production of low-temperature sintered anorthite-gehlenite ceramic
JPH07247169A (en) Production of ceramic capacitor raw material powder
JPH06131915A (en) High-frequency dielectric ceramic and its manufacture
JP3243832B2 (en) Manufacturing method of oxide dielectric porcelain

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120630

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20120630

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20130630

EXPY Cancellation because of completion of term