JPH07333092A - Amplification rate variable device and inner pressure detection device, electromagnetic induction type displacement detector, and tire air pressure sensor of traveling body - Google Patents

Amplification rate variable device and inner pressure detection device, electromagnetic induction type displacement detector, and tire air pressure sensor of traveling body

Info

Publication number
JPH07333092A
JPH07333092A JP6124080A JP12408094A JPH07333092A JP H07333092 A JPH07333092 A JP H07333092A JP 6124080 A JP6124080 A JP 6124080A JP 12408094 A JP12408094 A JP 12408094A JP H07333092 A JPH07333092 A JP H07333092A
Authority
JP
Japan
Prior art keywords
frequency
electromagnetic induction
amplitude
signal
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6124080A
Other languages
Japanese (ja)
Other versions
JP3412258B2 (en
Inventor
Katsuharu Kosaka
克治 小坂
Tsukasa Menju
司 毛受
Norihisa Ito
徳久 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP12408094A priority Critical patent/JP3412258B2/en
Priority to DE19519854A priority patent/DE19519854B4/en
Priority to US08/467,120 priority patent/US5537867A/en
Publication of JPH07333092A publication Critical patent/JPH07333092A/en
Application granted granted Critical
Publication of JP3412258B2 publication Critical patent/JP3412258B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • B60C23/0422Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver characterised by the type of signal transmission means
    • B60C23/0425Means comprising permanent magnets, e.g. Hall-effect or Reed-switches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/02Signalling devices actuated by tyre pressure
    • B60C23/04Signalling devices actuated by tyre pressure mounted on the wheel or tyre
    • B60C23/0408Signalling devices actuated by tyre pressure mounted on the wheel or tyre transmitting the signals by non-mechanical means from the wheel or tyre to a vehicle body mounted receiver
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/04Arrangements for transmitting signals characterised by the use of a wireless electrical link using magnetically coupled devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/11Mounting of sensors thereon
    • B60G2204/113Tyre related sensors

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To provide an electromagnetic induction displacement detector which can accurately detect displacement with a simple circuit configuration regardless of the frequency fluctuation of a carrier signal and at the same time provide an electromagnetic induction type tire air pressure sensor which can accurately detect tire air pressure and its change regardless of the change in vehicle speed. CONSTITUTION:A magnetic flux change generation means 2 modulates the amplitude of alternate magnetic flux according to the displacement in a movable body and an amplitude compensation means (low-pass filter) 4 attenuates the amplitude of the electromagnetic induction voltage of a pickup coil 3 with an attenuation rate which is nearly proportional to the amplitude of an electromagnetic induction voltage. When the frequency (carrier frequency) of the alternate magnetic flux fluctuates, the amplitude of the electromagnetic induction voltage fluctuates proportionately with the frequency. However since the amplitude of the electromagnetic induction voltage is attenuated with an attenuation rate which is nearly proportional to the frequency, the amplitude of the electromagnetic induction voltage does not change almost at all regardless of the change in the frequency (carrier frequency of electromagnetic induction voltage) of alternate magnetic flux and hence an accurate displacement can be detected according to the amplitude change.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、増幅率を周波数に応じ
て変化可能な増幅率可変装置と、移動体の内圧検出装置
と、電磁誘導原理を用いて非接触に変位を検出する電磁
誘導式変位検出装置と、この電磁誘導式変位検出装置を
用いたタイヤ空気圧センサに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amplification factor varying device capable of changing the amplification factor according to frequency, an internal pressure detecting device for a moving body, and an electromagnetic induction for detecting a displacement in a non-contact manner using the electromagnetic induction principle. Type displacement detection device and a tire air pressure sensor using this electromagnetic induction type displacement detection device.

【0002】[0002]

【従来の技術】変位が検出されるべき可動体と連動して
変位するとともに、変位に応じてピックアップコイルと
鎖交する磁束量を変化させる磁束変化発生手段を備える
電磁誘導式変位検出装置は、可動体に接触することなく
その変位を検出できる利点を有している。
2. Description of the Related Art An electromagnetic induction type displacement detecting device is provided which includes a magnetic flux change generating means for changing the amount of magnetic flux interlinking with a pickup coil according to the displacement as well as the displacement of a movable body to be detected. It has an advantage that its displacement can be detected without contacting the movable body.

【0003】また、この電磁誘導式変位検出装置の応用
例として、上記磁束変化発生手段としてタイヤに内蔵し
た永久磁石がタイヤ空気圧により変位することを車両側
のピックアップコイルで検出するタイヤ空気圧センサも
知られている。
Further, as an application example of this electromagnetic induction type displacement detecting device, a tire air pressure sensor for detecting that a permanent magnet built in a tire is displaced by tire air pressure as a magnetic flux change generating means by a pickup coil on the vehicle side is also known. Has been.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記し
た従来の電磁誘導式変位検出装置やそれを用いたタイヤ
空気圧センサは、次の問題を有している。すなわち、こ
の電磁誘導式変位検出装置などが、可変周波数の搬送信
号の振幅変調(AM)により上記変位を検出する場合、
搬送信号(キャリヤ)の周波数の変動に応じてピックア
ップコイルに電磁誘導される検出電圧の振幅が変化し、
この搬送信号の周波数変化に伴う振幅変化が、本来の可
動体の変位に応じた振幅変化に重畳してしまい、その結
果、ピックアップコイルに電磁誘導された信号電圧の振
幅により可動体の振幅を決定するのが困難であった。
However, the above-mentioned conventional electromagnetic induction type displacement detection device and the tire air pressure sensor using the same have the following problems. That is, when this electromagnetic induction type displacement detection device or the like detects the above displacement by amplitude modulation (AM) of a carrier signal of variable frequency,
The amplitude of the detection voltage electromagnetically induced in the pickup coil changes according to the fluctuation of the frequency of the carrier signal (carrier),
The amplitude change due to the frequency change of the carrier signal is superimposed on the original amplitude change corresponding to the displacement of the movable body, and as a result, the amplitude of the movable body is determined by the amplitude of the signal voltage electromagnetically induced in the pickup coil. It was difficult to do.

【0005】このため、上記した従来のタイヤ空気圧セ
ンサでは、可動体の変位の所定位置(所定のタイヤ空気
圧値)において例えば永久磁石を回動させてピックアッ
プコイルの鎖交磁束量を急変させる工夫をしている。し
かしながら、このような二値的なタイヤ空気圧の検出は
タイヤ空気圧の所定限界レベルへの接近を前もって知る
などの動作ができないという欠点を有している。
Therefore, in the above-described conventional tire air pressure sensor, there is a device for rapidly changing the flux linkage amount of the pickup coil by rotating, for example, a permanent magnet at a predetermined position of displacement of the movable body (a predetermined tire air pressure value). is doing. However, such a binary tire pressure detection has a drawback in that it cannot perform an operation such as knowing in advance that the tire pressure approaches a predetermined limit level.

【0006】本発明は上記問題点に鑑みなされたもので
あり、搬送信号の周波数変動にもかかわらず変位を正確
に検出可能な増幅率可変装置及び電磁誘導式変位検出装
置を提供することをその目的としている。また、本発明
は、車速の変化にもかかわらずタイヤ空気圧及びその変
化の正確な検出が可能な移動体の内圧検出装置及び電磁
誘導式のタイヤ空気圧センサを提供することを他の目的
としている。
The present invention has been made in view of the above problems, and it is an object of the present invention to provide an amplification factor varying device and an electromagnetic induction type displacement detecting device capable of accurately detecting a displacement despite frequency fluctuations of a carrier signal. Has an aim. Another object of the present invention is to provide an internal pressure detection device for a moving body and an electromagnetic induction type tire air pressure sensor capable of accurately detecting tire air pressure and its change despite changes in vehicle speed.

【0007】また、本発明は、簡素な回路構成で上記目
的を達成することを他の目的としている。更に、本発明
は、後述する作用効果を達成することを他の目的として
いる。
Another object of the present invention is to achieve the above object with a simple circuit configuration. Further, the present invention has another object to achieve the effects described below.

【0008】[0008]

【課題を解決するための手段】本発明の第1の構成は、
周波数及び出力信号の大きさが変化する信号を出力する
出力発生手段と、該出力発生手段からの信号が入力さ
れ、その信号の周波数に応じた増幅率の可変を減衰特性
部分により行う周波数フィルタ手段とを具備したことを
特徴とする増幅率可変装置である。
The first structure of the present invention is as follows.
Output generating means for outputting a signal in which the frequency and the magnitude of the output signal change, and frequency filter means for inputting the signal from the output generating means and varying the amplification factor according to the frequency of the signal by means of the attenuation characteristic portion An amplification factor varying device characterized by comprising:

【0009】本発明の第2の構成は、上記第1の構成に
おいて更に、前記周波数フィルタ手段がローパスフィル
タであることを特徴としている。本発明の第3の構成
は、上記第1の構成において更に、前記周波数フィルタ
手段がハイパスフィルタであることを特徴としている。
本発明の第4の構成は、上記第1の構成において更に、
前記周波数フィルタ手段がバンドパスフィルタであるこ
とを特徴としている。
A second structure of the present invention is characterized in that, in the first structure, the frequency filter means is a low-pass filter. A third configuration of the present invention is characterized in that, in the first configuration, the frequency filter means is a high pass filter.
A fourth configuration of the present invention is the same as the first configuration,
The frequency filter means is a bandpass filter.

【0010】本発明の第5の構成は、上記第1〜第3の
いずれかの構成において更に、前記入力信号の周波数
を、前記周波数フィルタ手段のカットオフ周波数に設定
したことを特徴としている。本発明の第6の構成は、上
記第1の構成において更に、前記出力発生手段からの出
力信号は電磁誘導信号であることを特徴としている。
A fifth structure of the present invention is characterized in that, in any one of the first to third structures, the frequency of the input signal is set to a cutoff frequency of the frequency filter means. A sixth configuration of the present invention is further characterized in that, in the first configuration, the output signal from the output generating means is an electromagnetic induction signal.

【0011】本発明の第7の構成は、移動体の内圧の変
化を磁束の変化として検出する圧力検出手段と、該手段
からの信号をその周波数に応じて増幅率を変化させるよ
う調整する増幅率可変手段と、該可変手段により調整さ
れて出力された出力信号を処理して前記移動体の内圧を
判定する信号処理手段とから構成されることを特徴とす
る移動体の内圧検出装置である。
According to a seventh aspect of the present invention, a pressure detecting means for detecting a change in internal pressure of the moving body as a change in magnetic flux, and an amplifier for adjusting a signal from the means so as to change an amplification factor according to its frequency. An internal pressure detecting device for a moving body, comprising: a rate varying means; and a signal processing means for processing an output signal adjusted and outputted by the varying means to determine an internal pressure of the moving body. .

【0012】本発明の第8の構成は、上記第7の構成に
おいて更に、前記可変手段が、前記圧力検出手段からの
出力信号の周波数に応じた増幅率の可変を減衰特性によ
り行うようにした周波数フィルタ手段を具備したことを
特徴としている。本発明の第9の構成は、上記第7又は
第8の構成において更に、前記圧力検出手段が、前記移
動体の内圧の変化に応じて位置が変化する磁石と、該磁
石の磁力により磁極の位置が変化する磁石とからなる圧
力センサ部を包含していることを特徴としている。
According to an eighth structure of the present invention, in addition to the above-mentioned seventh structure, the variable means changes the amplification factor according to the frequency of the output signal from the pressure detection means by the attenuation characteristic. It is characterized in that frequency filter means is provided. According to a ninth configuration of the present invention, in addition to the seventh or eighth configuration, the pressure detecting means further comprises a magnet whose position changes according to a change in the internal pressure of the moving body, and a magnetic force of the magnetic pole of the magnet. It is characterized in that it includes a pressure sensor portion composed of a magnet whose position changes.

【0013】本発明の第10の構成は、上記第7〜第9
のいずれかの構成において更に、前記信号処理手段が、
調整された前記出力信号と少なくとも一つ以上の閾値と
の比較により前記移動体の内圧の大小を少なくとも2段
階以上に分けて判定するものであることを特徴としてい
る。本発明の第11の構成は、上記第7〜第9のいずれ
かの構成において更に、前記信号処理手段は、調整され
た前記出力信号の大きさにより前記移動体の内圧の大き
さを信号として出力するものであることを特徴としてい
る。
A tenth structure of the present invention is the above seventh to ninth embodiments.
In any one of the above configurations, the signal processing means further comprises
It is characterized in that the magnitude of the internal pressure of the moving body is judged in at least two stages or more by comparing the adjusted output signal with at least one threshold value. An eleventh configuration of the present invention is the configuration according to any one of the seventh to ninth configurations, wherein the signal processing means uses the magnitude of the adjusted output signal as a signal. It is characterized by being output.

【0014】本発明の第12の構成は、上記第7〜第1
1のいずれかの構成において更に、前記移動体は自動車
のタイヤであることを特徴としている。本発明の第13
の構成は、ピックアップコイルと、変位が検出されるべ
き可動体と連動して変位するとともに前記変位に応じて
前記ピックアップコイルと鎖交する交番磁束を振幅変調
する磁束変化発生手段と、周波数に略比例する減衰率で
前記ピックアップコイルの電磁誘導電圧の振幅を減衰さ
せる振幅補正手段とを備えることを特徴としている。
A twelfth structure of the present invention is the seventh to the first above.
In any one of the configurations of 1 and 2, the moving body is a tire of an automobile. 13th of the present invention
In the configuration, a pickup coil, a magnetic flux change generating means for performing amplitude modulation of an alternating magnetic flux which is displaced in association with a movable body whose displacement is to be detected and which interlinks with the pickup coil according to the displacement, and a frequency substantially Amplitude correction means for attenuating the amplitude of the electromagnetic induction voltage of the pickup coil with a proportional attenuation rate is provided.

【0015】本発明の第14の構成は、上記第13の構
成において更に、前記振幅補正手段がローパスフィルタ
からなり、前記交番磁束の搬送周波数が、出力信号振幅
が周波数に略比例する前記減衰率で減衰する前記ローパ
スフィルタの減衰帯域内に設定されることを特徴として
いる。本発明の第15の構成は、上記第13の構成にお
いて更に、減衰率を所定の比例定数値をKとする時、
0.5K〜2Kの範囲に設定されることを特徴としてい
る。
A fourteenth structure of the present invention is the above thirteenth structure, wherein the amplitude correction means is a low-pass filter, and the carrier frequency of the alternating magnetic flux is such that the output signal amplitude is substantially proportional to the frequency. It is characterized in that it is set within the attenuation band of the low-pass filter which is attenuated by. A fifteenth structure of the present invention is the same as the thirteenth structure, wherein when the attenuation rate is a predetermined proportional constant value K,
It is characterized in that it is set in the range of 0.5K to 2K.

【0016】本発明の第16の構成は、上記第13〜第
15のいずれかの構成において更に、前記振幅補正手段
が、シャント抵抗Rsと帰還容量Cとの並列帰還回路を
通じて出力電圧を負帰還する積分回路からなり、前記搬
送周波数fはfc=1/(2πRsC)より大きい値に
設定されることを特徴としている。本発明の第17の構
成は、前記磁束変化発生手段が、タイヤに固定される固
定磁石と、前記固定磁石に対面して前記タイヤに変位自
在に保持されるとともに前記タイヤの空気圧に応じて前
記固定磁石との間の距離が変化する可動磁石と、前記両
磁石間に位置して回転自在に保持されるとともに前記可
動磁石及び前記固定磁石の磁気力により前記可動磁石の
変位により回動する回動磁石とからなり、車速に連動す
る搬送信号と前記車速及び前記変位に応じた振幅を有す
る電磁誘導電圧を前記ピックアップコイルに発生させる
ものである上記第13〜第16のいずれかの構成を用い
たタイヤ空気圧センサからなることを特徴としている。
In a sixteenth structure of the present invention, in addition to any one of the thirteenth to fifteenth structures, the amplitude correction means further negatively feeds back the output voltage through a parallel feedback circuit of a shunt resistor Rs and a feedback capacitor C. The carrier frequency f is set to a value larger than fc = 1 / (2πRsC). In a seventeenth configuration of the present invention, the magnetic flux change generating means is fixed to a tire, is fixed to the fixed magnet, and is held by the tire so as to be displaceable on the fixed magnet. A movable magnet whose distance from the fixed magnet changes, and a rotary magnet which is positioned between the two magnets and is rotatably held and is rotated by the displacement of the movable magnet due to the magnetic force of the movable magnet and the fixed magnet. Any one of the above-mentioned thirteenth to sixteenth configurations is used which is configured to generate a carrier signal interlocked with a vehicle speed, and an electromagnetic induction voltage having an amplitude according to the vehicle speed and the displacement, in the pickup coil, which is composed of a dynamic magnet. It is characterized in that it is composed of a tire pressure sensor.

【0017】本発明の第18の構成は、上記第17の構
成において更に、前記振幅補正手段の出力信号の振幅に
対応するタイヤ空気圧信号を出力することを特徴として
いる。本発明の第19の構成は、上記第18の構成にお
いて更に、前記振幅補正手段の出力信号の振幅に対応す
るタイヤ空気圧信号を多段階信号に変換する比較手段
と、前記比較結果を表示する表示手段とを有することを
特徴としている。
An eighteenth structure of the present invention is characterized in that, in the seventeenth structure, a tire air pressure signal corresponding to the amplitude of the output signal of the amplitude correction means is output. A nineteenth structure of the present invention is the same as the eighteenth structure, further including a comparison means for converting a tire pressure signal corresponding to the amplitude of the output signal of the amplitude correction means into a multi-step signal, and a display for displaying the comparison result. And means.

【0018】[0018]

【作用及び発明の効果】本発明の第1の構成において
は、増幅率可変装置に入力される信号が周波数によりそ
の大きさが変わる様な性質をもっている場合において
も、本発明の増幅率可変装置により一定レベルの大きさ
の信号にすることができ、周波数にかかわらず安定な出
力を得ることができる。又、逆に入力信号が周波数によ
らず一定の大きさであるものを本発明の増幅率可変装置
により周波数に応じた信号を得ることが可能になる。
In the first configuration of the present invention, even when the signal input to the amplification factor varying device has a property that its magnitude changes depending on the frequency, the amplification factor varying device of the present invention. As a result, a signal having a constant level can be obtained, and a stable output can be obtained regardless of the frequency. On the contrary, it is possible to obtain the signal corresponding to the frequency by the amplification factor varying device of the present invention when the input signal has a constant magnitude regardless of the frequency.

【0019】本発明の第2の構成においては、入力信号
が周波数と共にその大きさが大きくなる性質のものに対
し、一定のレベルの大きさにすることが出来、周波数に
かかわらず安定した出力を得ることが出来る。又逆に周
波数によって大きさが変わらない信号を本発明の増幅率
可変装置により周波数が大きくなるに従い大きさが小さ
くなる信号に変換することができる。
In the second structure of the present invention, the input signal can be increased in size with frequency, but can be set to a constant level, and a stable output can be obtained regardless of frequency. You can get it. Conversely, a signal whose magnitude does not change depending on the frequency can be converted into a signal whose magnitude decreases as the frequency increases by the amplification factor varying device of the present invention.

【0020】本発明の第3の構成においては 入力信号
が周波数と共にその大きさが小さくなる性質のものに対
し、一定のレベルの大きさにすることが出来、周波数に
かかわらず安定した出力を得ることが出来る。又逆に周
波数によって大きさが変わらない信号を本発明の増幅率
可変装置により周波数が大きくなるに従い大きさが大き
くなる信号に変換することができる。
In the third configuration of the present invention, the input signal can be reduced in magnitude with frequency, but can be set to a constant level, and a stable output can be obtained regardless of frequency. You can Conversely, a signal whose magnitude does not change depending on the frequency can be converted into a signal whose magnitude increases as the frequency increases by the amplification factor varying device of the present invention.

【0021】本発明の第4の構成においては、入力信号
が2つ以上の周波数帯域をもちその周波数帯域により信
号が大きくなる又発明小さくなる性質のものに対し一定
レベルの大きさの信号を得ることができる。又、逆にそ
の周波数帯域において周波数に従いその大きさが大きく
なる又は小さくなる様な信号を得ることができる。本発
明の第5の構成においては、想定した入力信号の周波数
帯域より大きいか又は小さい周波数の信号に対しては、
それ以上の増幅を行わない様にすることができ、後段に
用いられる回路の過大出力を防止できる。
In the fourth structure of the present invention, an input signal has two or more frequency bands, and a signal of a certain level is obtained for the characteristics that the signal becomes large or the invention becomes small depending on the frequency bands. be able to. On the contrary, it is possible to obtain a signal whose magnitude increases or decreases according to the frequency in the frequency band. In the fifth configuration of the present invention, for a signal having a frequency higher or lower than the assumed frequency band of the input signal,
It is possible to prevent further amplification, and it is possible to prevent excessive output of the circuit used in the subsequent stage.

【0022】本発明の第6の構成においては移動体から
発生する磁束を電磁誘導を利用して信号電圧に変換する
ので、各種検出装置の信号を移動速度によらず安定した
出力を得る事ができる。本発明の第7〜9の構成におい
ては移動体にとりつけられた空気圧センサの出力を移動
速度によらず空気圧のみにより変化する出力が得られる
空気圧検出装置を得ることができる。
In the sixth structure of the present invention, since the magnetic flux generated from the moving body is converted into the signal voltage by using the electromagnetic induction, it is possible to obtain a stable output of the signals of various detecting devices regardless of the moving speed. it can. With the seventh to ninth configurations of the present invention, it is possible to obtain an air pressure detection device that can obtain an output that changes the output of the air pressure sensor attached to the moving body only by the air pressure regardless of the moving speed.

【0023】更に、本発明の第10〜12の構成におい
ては、空気圧信号を多段階、またはその絶対値を出力で
きるため、空気圧の様子をより正確に認知できる。本発
明の第13の構成では、磁束変化発生手段が可動体の変
位に応じて交番磁束を振幅変調させ、振幅補正手段は、
ピックアップコイルの電磁誘導電圧の振幅を周波数に略
比例する減衰率で減衰させる。
Further, in the tenth to twelfth configurations of the present invention, since the air pressure signal can be output in multiple stages or its absolute value, the state of the air pressure can be recognized more accurately. In the thirteenth configuration of the present invention, the magnetic flux change generation means amplitude-modulates the alternating magnetic flux according to the displacement of the movable body, and the amplitude correction means
The amplitude of the electromagnetic induction voltage of the pickup coil is attenuated at an attenuation rate substantially proportional to the frequency.

【0024】交番磁束の周波数(搬送周波数ともいう)
が変動すると、上記電磁誘導電圧の振幅は上記周波数に
比例して変動するが、本構成では、電磁誘導電圧の振幅
を周波数に略比例する減衰率で減衰させるので、交番磁
束の周波数(電磁誘導電圧の搬送周波数)の変化にかか
わらず、電磁誘導電圧の振幅はほとんど変化せず、この
振幅変化により正確に変位を検出することができる。
Frequency of alternating magnetic flux (also called carrier frequency)
, The amplitude of the electromagnetic induction voltage fluctuates in proportion to the frequency.However, in this configuration, the amplitude of the electromagnetic induction voltage is attenuated at a damping rate that is approximately proportional to the frequency. The amplitude of the electromagnetic induction voltage hardly changes regardless of the change of the carrier frequency of the voltage, and the displacement can be accurately detected by the change of the amplitude.

【0025】本発明の第14の構成では、上記第13の
構成において更に、出力信号振幅が周波数に略比例して
減衰するローパスフィルタの減衰帯域内に交番磁束の搬
送周波数を設定しているので、簡単なローパスフィルタ
により上記振幅補正手段を構成することができる。本発
明の第15の構成では、上記第13の構成において更
に、検出すべき搬送信号帯域において所定の比例定数値
をKとする時、減衰率を0.5K〜2Kの範囲に設定す
るので、この検出すべき搬送信号帯域において搬送信号
周波数の変動に対して電磁誘導電圧の振幅をほぼ一定と
することができ、その結果、電磁誘導電圧の振幅により
変位を正確に検出することができる。
In the fourteenth structure of the present invention, in addition to the thirteenth structure, the carrier frequency of the alternating magnetic flux is set within the attenuation band of the low pass filter in which the output signal amplitude attenuates substantially in proportion to the frequency. The amplitude correction means can be configured with a simple low-pass filter. In the fifteenth configuration of the present invention, when the predetermined proportional constant value is K in the carrier signal band to be detected in the thirteenth configuration, the attenuation factor is set in the range of 0.5K to 2K. In the carrier signal band to be detected, the amplitude of the electromagnetic induction voltage can be made substantially constant with respect to the fluctuation of the carrier signal frequency, and as a result, the displacement can be accurately detected by the amplitude of the electromagnetic induction voltage.

【0026】本発明の第16の構成では、上記第13〜
第15のいずれかの構成において更に、シャント抵抗R
sと帰還容量Cとの並列帰還回路を通じて出力電圧を負
帰還する積分回路により振幅補正手段を構成し、搬送周
波数fをfc=1/(2πRsC)より大きい値に設定
しているので、fcより小さい電磁誘導電圧の低周波数
成分又は直流成分(上記可動体の変位による鎖交磁束量
の変化周波数を含む)に対しては飽和を防止してリニア
増幅を行うことができ、一方、fcより大きい周波数成
分(交番磁束の周波数すなわち搬送周波数を含む)に対
しては積分動作により搬送周波数の大きさに略比例して
その振幅を減衰することができる。
In the sixteenth structure of the present invention, the thirteenth to the thirteenth embodiments are
In any one of the fifteenth configuration, the shunt resistor R
Since the amplitude correction means is configured by the integrating circuit that negatively feeds back the output voltage through the parallel feedback circuit of s and the feedback capacitance C, and the carrier frequency f is set to a value larger than fc = 1 / (2πRsC), Saturation can be prevented and linear amplification can be performed for a low frequency component or a direct current component of a small electromagnetic induction voltage (including a change frequency of the flux linkage amount due to the displacement of the movable body), while it is larger than fc. With respect to the frequency component (including the frequency of the alternating magnetic flux, that is, the carrier frequency), the amplitude can be attenuated by the integral operation in proportion to the magnitude of the carrier frequency.

【0027】本発明の第17又は第18の構成では、回
動磁石はタイヤ空気圧の変化により変位する可動磁石と
固定磁石との合成磁界により回動して鎖交磁束量を変化
させるとともに、上記回動時点以前においても上記可動
磁石の変位やそれに影響される回動磁石の小回動などに
より鎖交磁束量を変化させる。したがって、振幅補正手
段から出力される補正済の信号の振幅は、回動磁石の大
回動による信号電圧変化以前に可動磁石の変位に連動し
て変化するものの、車速変化(搬送周波数変化)により
ほとんど変化せず、その結果、回動磁石の大回動前に正
確に可動磁石の変位を検出することができる。
In the seventeenth or eighteenth structure of the present invention, the rotating magnet is rotated by the combined magnetic field of the movable magnet and the fixed magnet displaced by the change of the tire air pressure to change the amount of the interlinking magnetic flux. Even before the turning time, the amount of the interlinkage magnetic flux is changed by the displacement of the movable magnet or the small turning of the turning magnet affected by the displacement. Therefore, although the amplitude of the corrected signal output from the amplitude correction means changes in conjunction with the displacement of the movable magnet before the signal voltage change due to the large rotation of the rotating magnet, it changes due to the vehicle speed change (carrier frequency change). There is almost no change, and as a result, the displacement of the movable magnet can be accurately detected before the large rotation of the rotating magnet.

【0028】本発明の第19の構成では、上記第18の
構成において更に、振幅補正手段の出力信号の振幅に対
応するタイヤ空気圧信号を多段階表示するので、運転者
は容易にタイヤ空気圧の低下状態を認知することがで
き、かつ、回動磁石の回動によりタイヤ空気圧が所定の
(例えば圧力補充要の)値となったことを正確に認知す
ることができる。
In the nineteenth structure of the present invention, the tire pressure signal corresponding to the amplitude of the output signal of the amplitude correcting means is further displayed in multiple stages in the eighteenth structure, so that the driver can easily reduce the tire pressure. It is possible to recognize the state, and it is possible to accurately recognize that the tire air pressure has reached a predetermined value (for example, pressure supplement is required) due to the rotation of the rotating magnet.

【0029】[0029]

【実施例】【Example】

<実施例>以下,本発明の電磁誘導式変位検出装置の応
用例でもある自動車のタイヤ空気圧センサの一実施例を
図面に基づいて説明する。図1はこのタイヤ空気圧セン
サの斜視図を示す。
<Embodiment> An embodiment of an automobile tire air pressure sensor which is also an application example of the electromagnetic induction type displacement detection device of the present invention will be described below with reference to the drawings. FIG. 1 shows a perspective view of this tire pressure sensor.

【0030】タイヤ1のリム11は車軸(図示せず)に
固定されており、車軸を保持するハブ13はショックア
ブソーバ(図示せず)を通じて車体(図示せず)に支承
されている。リム11には上記タイヤ空気圧センサの磁
石部(本発明でいう磁束変化発生手段)2が固定されて
おり、ハブ13には磁石部2に近接可能にピックアップ
コイル3が固定されている。
A rim 11 of the tire 1 is fixed to an axle (not shown), and a hub 13 holding the axle is supported by a vehicle body (not shown) through a shock absorber (not shown). The rim 11 is fixed with the magnet portion 2 of the tire air pressure sensor (magnetic flux change generating means in the present invention), and the hub 13 is fixed with the pickup coil 3 so as to be close to the magnet portion 2.

【0031】ピックアップコイル3の出力電圧(電磁誘
導電圧)Vpは、後述する補償アンプ4及び信号処理回
路5で処理されて、タイヤ空気圧として表示器6に多段
階レベル表示される。磁石部2を図2を参照して説明す
る。円筒ケース20の両端開口は蓋部21、22により
閉鎖されており、蓋部21、22は、それぞれ軸心に沿
って内側に突出する軸部21a、22aを有している。
軸部22aにはベローズ23が嵌着され、ベローズ23
の基端部が軸部22aの基部に固定されている。ベロー
ズ23の先端部にはホルダ24が固定されており、ホル
ダ24は円筒ケース20の内周面を摺動自在にガイドさ
れている。軸部22aにはタイヤ空気圧が導入される孔
部が形成されており、これによりベローズ23はタイヤ
空気圧により図中、左方へ伸長するよう付勢されてい
る。ホルダ24には可動磁石25が固定されている。ま
た、基端が軸部21aに支持されたスプリング26がホ
ルダ24を図中、右方へ付勢しており、ホルダ24は上
記両力の拮抗点で静止する。
The output voltage (electromagnetic induction voltage) Vp of the pickup coil 3 is processed by a compensation amplifier 4 and a signal processing circuit 5, which will be described later, and is displayed as a tire pressure on the display 6 in multiple levels. The magnet unit 2 will be described with reference to FIG. Both end openings of the cylindrical case 20 are closed by lids 21 and 22, and the lids 21 and 22 have shafts 21a and 22a, respectively, which project inward along the axis.
A bellows 23 is fitted on the shaft portion 22a,
The base end portion of is fixed to the base portion of the shaft portion 22a. A holder 24 is fixed to the tip of the bellows 23, and the holder 24 is slidably guided along the inner peripheral surface of the cylindrical case 20. The shaft portion 22a is formed with a hole through which tire air pressure is introduced, whereby the bellows 23 is urged by the tire air pressure so as to extend to the left in the figure. A movable magnet 25 is fixed to the holder 24. Further, the spring 26, whose base end is supported by the shaft portion 21a, urges the holder 24 to the right in the drawing, so that the holder 24 stands still at a point where the above two forces oppose each other.

【0032】一方、軸部21aの基端部には固定磁石2
7が嵌着、固定され、更に、軸部21aの中央部には回
動磁石28が回転自在、軸方向変位不能に保持されてい
る。可動磁石25、固定磁石27及び回動磁石28はそ
れぞれ厚肉の輪板形状を有しており、可動磁石25は図
中、上方がN極、下方がS極となるように磁化されてお
り、固定磁石27は図中、上方がS極、下方がN極とな
るように磁化されている。回動磁石28は固定磁石27
から軸方向に所定距離離れて配置されている。
On the other hand, the fixed magnet 2 is attached to the base end of the shaft portion 21a.
7 is fitted and fixed, and a rotating magnet 28 is rotatably held in the center of the shaft portion 21a so as not to be displaced in the axial direction. The movable magnet 25, the fixed magnet 27, and the rotating magnet 28 each have a thick wheel plate shape, and the movable magnet 25 is magnetized so that the upper portion has an N pole and the lower portion has an S pole in the drawing. The fixed magnet 27 is magnetized so that the upper part has an S pole and the lower part has an N pole in the figure. The rotating magnet 28 is a fixed magnet 27.
Is arranged at a predetermined distance in the axial direction from.

【0033】可動磁石25が回動磁石28から離れてい
る場合、回動磁石28は固定磁石27の磁界により図2
に図示するように、図中、上方がN極、下方がS極とな
る姿勢で保持される。一方、可動磁石25が回動磁石2
8に近接すると、固定磁石27の磁界より可動磁石25
の磁界の方が回動磁石28により強く作用するようにな
り、その結果、回動磁石28は半回転して、図中、下方
がN極、上方がS極となる姿勢で保持される。
When the movable magnet 25 is separated from the rotating magnet 28, the rotating magnet 28 is moved by the magnetic field of the fixed magnet 27 as shown in FIG.
As shown in the figure, the upper part of the drawing is held in a posture in which it is an N pole and the lower part is an S pole. On the other hand, the movable magnet 25 is the rotating magnet 2
8, when the magnetic field of the fixed magnet 27 is reached, the movable magnet 25
The magnetic field of 1 becomes stronger than that of the rotating magnet 28, and as a result, the rotating magnet 28 is rotated by half, and is held in a posture in which the lower portion is the N pole and the upper portion is the S pole.

【0034】磁石部2はタイヤ1とともに回転するの
で、磁石部2から漏洩する磁束の一部はタイヤ1の1回
転毎にピックアップコイル3と鎖交し、ピックアップコ
イル3が1サイクルの交流電圧波形を出力することにな
る。そして、回動磁石28の上記回動により、この1サ
イクルの交流電圧波形の形状が180度合位相が異なる
ことになる。すなわち、1サイクルの交流電圧波形の正
の半波と負の半波との順序が逆となる。このタイヤ空気
圧センサは上記原理を用いてタイヤ空気圧が所定値以下
となったかどうかを検出している。
Since the magnet portion 2 rotates together with the tire 1, a part of the magnetic flux leaking from the magnet portion 2 interlinks with the pickup coil 3 for each rotation of the tire 1, and the pickup coil 3 has one cycle of AC voltage waveform. Will be output. Then, due to the above rotation of the rotary magnet 28, the shape of the AC voltage waveform of this one cycle is different in 180 degree phase. That is, the order of the positive half-wave and the negative half-wave of the AC voltage waveform of one cycle is reversed. This tire air pressure sensor detects whether or not the tire air pressure has become equal to or lower than a predetermined value by using the above principle.

【0035】次に、ピックアップコイル3の電磁誘導電
圧について更に説明する。回動磁石28の上記回動前後
において、回動磁石28の表面からピックアップコイル
3の方向へ漏洩する磁束量が減少することを原因とし
て、ピックアップコイル3の鎖交磁束量はタイヤ空気圧
の減少とともにすこしづつ減少していき、回動が90度
になった時点での鎖交磁束量が最小となり、それ以後、
鎖交磁束量は再び増加する。その結果、一定車速でのピ
ックアップコイル3の電磁誘導電圧のピーク値(又は半
波整流値でもよい、更に言えば絶対値)は、空気圧変化
に追従して変化する。
Next, the electromagnetic induction voltage of the pickup coil 3 will be further described. Before and after the rotation of the rotating magnet 28, the amount of magnetic flux leaking from the surface of the rotating magnet 28 toward the pickup coil 3 decreases, so that the amount of interlinkage magnetic flux of the pickup coil 3 decreases as the tire air pressure decreases. It gradually decreases, and the amount of interlinkage magnetic flux at the time when the rotation reaches 90 degrees becomes the minimum, and after that,
The amount of interlinkage magnetic flux increases again. As a result, the peak value (or the half-wave rectification value, or more specifically, the absolute value) of the electromagnetic induction voltage of the pickup coil 3 at a constant vehicle speed changes following the change in air pressure.

【0036】ただし、ピックアップコイル3の電磁誘導
電圧のピーク値は車速にほぼ比例して変化する。図4に
車速10km/hにおける電磁誘導電圧Vの波形を示
し、図5に車速200km/hにおける電磁誘導電圧V
の波形を示す。理論的には両車速に於ける電磁誘導電圧
の比は20倍となるが、各種損失のために実際には0.
2V対3.0Vと、15倍になっている。
However, the peak value of the electromagnetic induction voltage of the pickup coil 3 changes substantially in proportion to the vehicle speed. FIG. 4 shows the waveform of the electromagnetic induction voltage V at a vehicle speed of 10 km / h, and FIG. 5 shows the electromagnetic induction voltage V at a vehicle speed of 200 km / h.
Shows the waveform of. Theoretically, the ratio of electromagnetic induction voltage at both vehicle speeds is 20 times, but due to various losses, it is actually 0.
It is 15V, 2V vs. 3.0V.

【0037】このタイヤ空気圧モニタを10km/hか
ら200km/hの範囲で動作させる時、タイヤ回転数
は1.5rpsから30rpsとなる。測定によればこ
の時、ピックアップコイル3の電磁誘導電圧の1サイク
ル時間(周期)は4msから60msであるとみなすこ
とができた。ここで1サイクル時間(周期)は電磁誘導
電圧がそのピーク値の1/20となる両端の時点間の時
間とする。この明細書では、この1サイクル時間の逆数
をこの電磁誘導電圧の周波数(本発明でいう搬送周波
数)とみなす。よって、搬送周波数は17Hzから25
0Hzとなる。
When the tire pressure monitor is operated in the range of 10 km / h to 200 km / h, the tire rotation speed is 1.5 rps to 30 rps. According to the measurement, at this time, one cycle time (cycle) of the electromagnetic induction voltage of the pickup coil 3 could be considered to be 4 ms to 60 ms. Here, one cycle time (cycle) is defined as the time between both ends when the electromagnetic induction voltage becomes 1/20 of its peak value. In this specification, the reciprocal of this one cycle time is regarded as the frequency of this electromagnetic induction voltage (carrier frequency in the present invention). Therefore, the carrier frequency is from 17Hz to 25
It becomes 0 Hz.

【0038】図6に、車速、搬送周波数と電磁誘導電圧
のピーク値との実測結果を示す。両者は上述したように
略正比例関係を有する。図7に、ピックアップコイル3
の出力電圧の周波数特性を改善する補償アンプ4の一例
を示す。補償アンプ4は、オペアンプ40と、シャント
抵抗Rsと帰還容量Cとの並列回路からなる帰還回路
と、オペアンプ40の+入力端と接地間とを接続するオ
フセット補償抵抗R2と、オペアンプ40の−入力端と
ピックアップコイル3の一端とを接続する入力抵抗R1
とからなる。ピックアップコイル3の他端は接地されて
いる。なお、この実施例では、R1を93KΩ,Rsを
6.3KΩ,Cを0.1μFと設定した。
FIG. 6 shows the measured results of the vehicle speed, the carrier frequency and the peak value of the electromagnetic induction voltage. Both have a substantially direct proportional relationship as described above. In FIG. 7, the pickup coil 3
An example of the compensation amplifier 4 for improving the frequency characteristic of the output voltage of is shown. The compensation amplifier 4 includes an operational amplifier 40, a feedback circuit including a parallel circuit of a shunt resistor Rs and a feedback capacitor C, an offset compensation resistor R2 connecting the + input terminal of the operational amplifier 40 and the ground, and a negative input of the operational amplifier 40. Input resistor R1 for connecting the end and one end of the pickup coil 3
Consists of. The other end of the pickup coil 3 is grounded. In this example, R1 was set to 93 KΩ, Rs was set to 6.3 KΩ, and C was set to 0.1 μF.

【0039】補償アンプ4は、通常の積分回路(ローパ
スフィルタ)であって、その直流増幅率は−Rs/R1
である。よく知られているように、この積分回路では、
入力信号電圧の周波数fがfc=1/(2πRsC)よ
り小さい場合に単なる反転増幅器となり、周波数fがf
cを超えると積分器となる。この実施例では、図8に示
すようにfcを10Hzに設定し、車速にかかわらず補
償アンプ4の出力電圧のピーク値をほぼ2Vとしてい
る。
The compensating amplifier 4 is an ordinary integrating circuit (low-pass filter), and its DC amplification factor is -Rs / R1.
Is. As is well known, in this integration circuit,
When the frequency f of the input signal voltage is smaller than fc = 1 / (2πRsC), it becomes a mere inverting amplifier and the frequency f becomes f.
When it exceeds c, it becomes an integrator. In this embodiment, fc is set to 10 Hz as shown in FIG. 8, and the peak value of the output voltage of the compensation amplifier 4 is set to about 2 V regardless of the vehicle speed.

【0040】すなわち、補償アンプ4の積分器としての
帯域(以下、遮断帯域ともいう)を搬送信号帯域と重
ね、信号帯域(空気圧信号の帯域、0.1Hz以下)を
補償アンプ4の線形増幅器としての帯域(以下、線形増
幅帯域又は通過帯域ともいう)を搬送信号帯域と重ねた
ものである。積分器としての帯域(遮断帯域)では、補
償アンプ4の出力電圧は周波数にほぼ反比例するので、
上記した車速の変動による電磁誘導電圧Vのピーク値の
変動を補償してほぼ周波数に依存しないようにすること
ができる。一方、空気圧に対応する鎖交磁束量に対して
は上記通過帯域のアンプ特性によりリニア増幅を行うこ
とができる。更に、この実施例では、補償アンプ4とし
て非常に遮断周波数が低いローパスフィルタを採用して
いるので、各種の交流ノイズ電圧成分(例えばピックア
ップコイル3に誘導される電磁ノイズをほとんど全てカ
ットすることができ、極めてSN比が高くかつ車速によ
り振幅が変動しないタイヤ空気圧信号を得ることができ
る。
That is, the band as an integrator of the compensating amplifier 4 (hereinafter also referred to as a stop band) is overlapped with the carrier signal band, and the signal band (pneumatic signal band, 0.1 Hz or less) is used as a linear amplifier of the compensating amplifier 4. (Hereinafter, also referred to as a linear amplification band or a pass band) is overlapped with the carrier signal band. In the band (stop band) as the integrator, the output voltage of the compensation amplifier 4 is almost inversely proportional to the frequency,
It is possible to compensate for the variation in the peak value of the electromagnetic induction voltage V due to the variation in the vehicle speed described above so that it is substantially independent of the frequency. On the other hand, for the amount of interlinkage magnetic flux corresponding to the air pressure, linear amplification can be performed by the amplifier characteristic of the pass band. Further, in this embodiment, since a low-pass filter having a very low cutoff frequency is used as the compensation amplifier 4, various AC noise voltage components (for example, almost all electromagnetic noise induced in the pickup coil 3 can be cut). As a result, it is possible to obtain a tire pressure signal whose SN ratio is extremely high and whose amplitude does not vary depending on the vehicle speed.

【0041】図9に、補償アンプ4から出力された補償
済の信号電圧Vcを処理して表示器6に出力する信号処
理回路5を示す。信号電圧Vcは、コンパレータ51〜
55に入力され、その出力信号S1〜S5は論理回路部
56に入力される。コンパレータ54、55は、回動磁
石28の回動前か回動後かを判別するためのものであっ
て、回動前と回動後では電磁誘導電圧の1サイクル波形
の+半波と−半波との順序が逆転するので、これを判別
して、回動前後を判定する。
FIG. 9 shows a signal processing circuit 5 for processing the compensated signal voltage Vc output from the compensation amplifier 4 and outputting it to the display 6. The signal voltage Vc is output from the comparators 51 to
55, and the output signals S1 to S5 thereof are input to the logic circuit section 56. The comparators 54 and 55 are for determining whether the rotating magnet 28 is rotating before or after rotating. Before and after rotating, the comparators 54 and 55 have a + half wave and a −half wave of one cycle waveform of the electromagnetic induction voltage. Since the order of the half-waves is reversed, this is discriminated to determine before and after the rotation.

【0042】コンパレータ54は+半波をしきい値電圧
Vrefaで二値化するものであって、コンパレータ5
5は−半波をしきい値電圧Vrefbで二値化するもの
であって、論理回路部56は、出力電圧S4が出力電圧
S5より先に出現する場合に回動判定信号としてハイレ
ベル(回動完了前)を出力し、出力電圧S5が出力電圧
S4より先に出現する場合に回動判定信号としてローレ
ベル(回動完了後)を出力する。
The comparator 54 binarizes the + half wave with the threshold voltage Vrefa, and the comparator 5
Reference numeral 5 denotes a binary half-wave with a threshold voltage Vrefb. The logic circuit unit 56 outputs a high level (turn signal) when the output voltage S4 appears before the output voltage S5. Before the movement is completed) is output, and when the output voltage S5 appears before the output voltage S4, a low level (after the completion of the rotation) is output as the rotation determination signal.

【0043】一方、コンパレータ51〜53は、それぞ
れ+半波のピークがこれを超えるかどうかを判定するも
のであって、これにより鎖交磁束量の変化すなわち可動
磁石25の変位すなわちタイヤ空気圧の変化を判定する
ものである(図3参照)。図3に示すように、論理回路
部56は、上記回動判定信号とコンパレータ51〜53
の比較結果S1〜S3により、6つのタイヤ空気値a〜
fを決定することができ、これらの6つのレベルをそれ
ぞれ異なる色で表示する発光表示器6に出力する。 (変形態様)磁束変化発生手段としては、タイヤ空気圧
の変化に応じてピックアップコイル3と鎖交する磁束量
を変化させるものであれば、どんなものでもよい。
On the other hand, the comparators 51 to 53 each judge whether or not the peak of + half-wave exceeds it, and accordingly, the change of the interlinkage magnetic flux amount, that is, the displacement of the movable magnet 25, that is, the change of the tire air pressure. Is determined (see FIG. 3). As shown in FIG. 3, the logic circuit unit 56 includes the rotation determination signal and the comparators 51 to 53.
According to the comparison results S1 to S3, the six tire air values a to
f can be determined, and these six levels are output to the light-emitting display 6 that displays different colors. (Modification) As the magnetic flux change generating means, any means may be used as long as it changes the amount of magnetic flux interlinking with the pickup coil 3 according to the change in tire air pressure.

【0044】補償アンプ4としては、上記ローパスフィ
ルタの他、搬送周波数帯域で略1/f特性を有し、タイ
ヤ空気圧の変化周波数帯域(ほぼ直流)では一定の伝送
効率を有する回路であれば、他の回路でもよい。例え
ば、電磁誘導電圧の周波数を抽出し、この周波数に反比
例する増幅率に制御される可変利得増幅器を採用するこ
ともできる。ただし、この場合には回路構成は複雑とな
り、消費電力は増大する。
As the compensating amplifier 4, in addition to the above low-pass filter, if it is a circuit having a 1 / f characteristic in the carrier frequency band and a constant transmission efficiency in the tire air pressure change frequency band (almost DC), Other circuits may be used. For example, it is also possible to employ a variable gain amplifier in which the frequency of the electromagnetic induction voltage is extracted and the amplification factor is controlled in inverse proportion to this frequency. However, in this case, the circuit configuration becomes complicated and power consumption increases.

【0045】また、上記実施例では移動体として自動車
のタイヤを例に説明を行ったが、タイヤに限らず他の移
動物体の内圧を同じ方法で非接触に検出することができ
る。更に、検出すべき移動体は回転運動体だけでなく直
線運動体や非直線運動体とすることも当然可能である。
Further, in the above-described embodiment, the description has been given by taking the automobile tire as an example of the moving body, but the internal pressures of not only the tire but also other moving objects can be detected in a non-contact manner by the same method. Further, the moving body to be detected is not limited to the rotary moving body, and may be a linear moving body or a non-linear moving body.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実施例のタイヤ空気圧センサの全体構成を示
す模式斜視図である。
FIG. 1 is a schematic perspective view showing the overall configuration of a tire air pressure sensor of this embodiment.

【図2】図1の磁石部2の断面図である。2 is a cross-sectional view of a magnet unit 2 of FIG.

【図3】図1のピックアップコイル3の電磁誘導電圧の
ピーク値とタイヤ空気圧との関係を示す図である。
3 is a diagram showing the relationship between the peak value of the electromagnetic induction voltage of the pickup coil 3 of FIG. 1 and the tire pressure.

【図4】電磁誘導電圧の波形図である。FIG. 4 is a waveform diagram of an electromagnetic induction voltage.

【図5】電磁誘導電圧の波形図である。FIG. 5 is a waveform diagram of an electromagnetic induction voltage.

【図6】車速及び搬送周波数と電磁誘導電圧のピーク値
との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a vehicle speed and a carrier frequency and a peak value of an electromagnetic induction voltage.

【図7】補償アンプ4の回路図である。FIG. 7 is a circuit diagram of a compensation amplifier 4.

【図8】補償アンプ4の周波数−利得関係を示す図であ
る。
FIG. 8 is a diagram showing a frequency-gain relationship of the compensation amplifier 4.

【図9】信号処理回路5のブロック図である。9 is a block diagram of a signal processing circuit 5. FIG.

【図10】補償アンプ4の出力電圧波形と各しきい値電
圧との関係を示す波形図である。
FIG. 10 is a waveform diagram showing the relationship between the output voltage waveform of the compensation amplifier 4 and each threshold voltage.

【符号の説明】[Explanation of symbols]

1はタイヤ、2は磁石部(磁束変化発生手段)、3はピ
ックアップコイル、4は補償アンプ(振幅補正手段)、
5は信号処理回路、25は可動磁石、27は固定磁石、
28は回動磁石。
1 is a tire, 2 is a magnet part (flux change generating means), 3 is a pickup coil, 4 is a compensating amplifier (amplitude correcting means),
5 is a signal processing circuit, 25 is a movable magnet, 27 is a fixed magnet,
28 is a rotating magnet.

Claims (19)

【特許請求の範囲】[Claims] 【請求項1】周波数及び出力信号の大きさが変化する信
号を出力する出力発生手段と、該出力発生手段からの信
号が入力され、その信号の周波数に応じた増幅率の可変
を減衰特性部分により行う周波数フィルタ手段とを具備
したことを特徴とする増幅率可変装置。
1. An output characteristic means for outputting a signal whose frequency and a magnitude of an output signal change, and a signal from the output generation means are inputted, and a variable amplification factor corresponding to the frequency of the signal is used as an attenuation characteristic portion. An amplification factor varying device, comprising:
【請求項2】前記周波数フィルタ手段はローパスフィル
タであることを特徴とする請求項1記載の増幅率可変装
置。
2. The amplification factor varying device according to claim 1, wherein the frequency filter means is a low-pass filter.
【請求項3】前記周波数フィルタ手段はハイパスフィル
タであることを特徴とする請求項1記載の増幅率可変装
置。
3. The amplification factor varying device according to claim 1, wherein the frequency filter means is a high-pass filter.
【請求項4】前記周波数フィルタ手段はバンドパスフィ
ルタであることを特徴とする請求項1記載の増幅率可変
装置。
4. The amplification factor varying device according to claim 1, wherein said frequency filter means is a bandpass filter.
【請求項5】前記入力信号の周波数を、前記周波数フィ
ルタ手段のカットオフ周波数に設定したことを特徴とす
る請求項1乃至3何れか一つに記載の増幅率可変装置。
5. The amplification factor varying device according to claim 1, wherein the frequency of the input signal is set to a cutoff frequency of the frequency filter means.
【請求項6】前記出力発生手段からの出力信号は電磁誘
導信号であることを特徴とする請求項1記載の増幅率可
変装置。
6. The amplification factor varying device according to claim 1, wherein the output signal from said output generating means is an electromagnetic induction signal.
【請求項7】移動体の内圧の変化を磁束の変化として検
出する圧力検出手段と、該手段からの信号をその周波数
に応じて増幅率を変化させるよう調整する増幅率可変手
段と、該可変手段により調整されて出力された出力信号
を処理して前記移動体の内圧を判定する信号処理手段
と、から構成されたことを特徴とする移動体の内圧検出
装置。
7. A pressure detecting means for detecting a change in internal pressure of a moving body as a change in magnetic flux, an amplification factor changing means for adjusting a signal from the means so as to change an amplification factor according to the frequency, and the variable. An internal pressure detecting device for a mobile body, comprising: a signal processing means for processing an output signal adjusted and output by the means to determine the internal pressure of the mobile body.
【請求項8】前記可変手段は、前記圧力検出手段からの
出力信号の周波数に応じた増幅率の可変を減衰特性によ
り行うようにした周波数フィルタ手段を具備したことを
特徴とする請求項7記載の移動体の内圧検出装置。
8. The variable means comprises frequency filter means for changing the amplification factor according to the frequency of the output signal from the pressure detecting means by means of an attenuation characteristic. Internal pressure detection device for moving objects.
【請求項9】前記圧力検出手段は、前記移動体の内圧の
変化に応じて位置が変化する磁石と、該磁石の磁力によ
り磁極の位置が変化する磁石とからなる圧力センサ部を
包含していることを特徴とする請求項7又は請求項8記
載の移動体の内圧検出装置。
9. The pressure detecting means includes a pressure sensor section including a magnet whose position changes in accordance with a change in internal pressure of the moving body and a magnet whose magnetic pole position changes due to the magnetic force of the magnet. The internal pressure detection device for a moving body according to claim 7 or 8, wherein:
【請求項10】前記信号処理手段は、調整された前記出
力信号と少なくとも一つ以上の閾値との比較により前記
移動体の内圧の大小を少なくとも2段階以上に分けて判
定するものであることを特徴とする請求項7〜請求項9
何れか一つに記載の移動体の内圧検出装置。
10. The signal processing means judges the magnitude of the internal pressure of the moving body in at least two stages by comparing the adjusted output signal with at least one threshold value. Claims 7 to 9 characterized
The internal pressure detection device for a moving body according to any one of claims.
【請求項11】前記信号処理手段は、調整された前記出
力信号の大きさにより前記移動体の内圧の大きさを信号
として出力するものであることを特徴とする請求項7乃
至請求項9何れか一つに記載の移動体の内圧検出装置。
11. The signal processing means outputs the magnitude of the internal pressure of the moving body as a signal according to the magnitude of the adjusted output signal. The internal pressure detection device for a moving body according to any one of the above.
【請求項12】前記移動体は自動車のタイヤであること
を特徴とする請求項7乃至請求項11何れか一つに記載
の移動体の内圧検出装置。
12. The internal pressure detection device for a moving body according to claim 7, wherein the moving body is a tire of an automobile.
【請求項13】ピックアップコイルと、 変位が検出されるべき可動体と連動して変位するととも
に前記変位に応じて前記ピックアップコイルと鎖交する
交番磁束を振幅変調する磁束変化発生手段と、 周波数に略比例する減衰率で前記ピックアップコイルの
電磁誘導電圧の振幅を減衰させる振幅補正手段とを備え
ることを特徴とする電磁誘導式変位検出装置。
13. A pickup coil, a magnetic flux change generating means for amplitude-modulating an alternating magnetic flux which is displaced in association with a movable body whose displacement is to be detected, and which interlocks with the pickup coil according to the displacement. An electromagnetic induction type displacement detection device, comprising: an amplitude correction unit that attenuates the amplitude of the electromagnetic induction voltage of the pickup coil with a substantially proportional attenuation rate.
【請求項14】前記振幅補正手段はローパスフィルタか
らなり、前記交番磁束の搬送周波数は、出力信号振幅が
周波数に略比例する前記減衰率で減衰する前記ローパス
フィルタの減衰帯域内に設定される請求項13記載の電
磁誘導式変位検出装置。
14. The amplitude correction means comprises a low pass filter, and the carrier frequency of the alternating magnetic flux is set within the attenuation band of the low pass filter where the output signal amplitude is attenuated at the attenuation rate substantially proportional to the frequency. Item 13. An electromagnetic induction type displacement detection device according to Item 13.
【請求項15】前記減衰率は、所定の比例定数値をKと
する時、0.5K〜2Kの範囲に設定される請求項13
記載の電磁誘導式変位検出装置。
15. The attenuation rate is set in a range of 0.5K to 2K, where K is a predetermined proportional constant value.
The electromagnetic induction type displacement detection device described.
【請求項16】前記振幅補正手段は、シャント抵抗Rs
と帰還容量Cとの並列帰還回路を通じて出力電圧を負帰
還する積分回路からなり、前記搬送周波数fはfc=1
/(2πRsC)より大きい値に設定される請求項13
〜15のいずれか記載の電磁誘導式変位検出装置。
16. The amplitude correcting means comprises a shunt resistor Rs.
The carrier frequency f is fc = 1.
14. A value larger than / (2πRsC) is set.
16. The electromagnetic induction type displacement detection device according to any one of 1 to 15.
【請求項17】前記磁束変化発生手段は、タイヤに固定
される固定磁石と、前記固定磁石に対面して前記タイヤ
に変位自在に保持されるとともに前記タイヤの空気圧に
応じて前記固定磁石との間の距離が変化する可動磁石
と、前記両磁石間に位置して回転自在に保持されるとと
もに前記可動磁石及び前記固定磁石の磁気力により前記
可動磁石の変位により回動する回動磁石とからなり、車
速に連動する搬送信号と前記車速及び前記変位に応じた
振幅を有する電磁誘導電圧を前記ピックアップコイルに
発生させるものである前記請求項13〜16のいずれか
記載の電磁誘導式変位検出装置を用いたタイヤ空気圧セ
ンサ。
17. The magnetic flux change generating means includes a fixed magnet fixed to a tire, a fixed magnet facing the fixed magnet and displaceably held by the tire, and the fixed magnet depending on an air pressure of the tire. A movable magnet whose distance between the two magnets changes, and a rotating magnet which is located between the two magnets and is rotatably held and which is rotated by the displacement of the movable magnets due to the magnetic force of the movable magnets and the fixed magnets. The electromagnetic induction displacement detection device according to any one of claims 13 to 16, wherein an electromagnetic induction voltage having an amplitude corresponding to the vehicle speed and the vehicle speed and the displacement is generated in the pickup coil. Tire pressure sensor using.
【請求項18】前記振幅補正手段の出力信号の振幅に対
応するタイヤ空気圧信号を出力する請求項17記載のタ
イヤ空気圧センサ。
18. The tire air pressure sensor according to claim 17, which outputs a tire air pressure signal corresponding to the amplitude of the output signal of the amplitude correction means.
【請求項19】前記振幅補正手段の出力信号の振幅に対
応するタイヤ空気圧信号を多段階信号に変換する比較手
段と、前記比較結果を表示する表示手段とを有する請求
項18記載のタイヤ空気圧センサ。
19. The tire air pressure sensor according to claim 18, further comprising: comparing means for converting a tire air pressure signal corresponding to the amplitude of the output signal of the amplitude correcting means into a multi-step signal, and display means for displaying the comparison result. .
JP12408094A 1994-06-06 1994-06-06 Variable amplification factor device, mobile object internal pressure detection device, electromagnetic induction type displacement detection device, and tire pressure sensor Expired - Fee Related JP3412258B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12408094A JP3412258B2 (en) 1994-06-06 1994-06-06 Variable amplification factor device, mobile object internal pressure detection device, electromagnetic induction type displacement detection device, and tire pressure sensor
DE19519854A DE19519854B4 (en) 1994-06-06 1995-05-31 Compressed air detection device for a tire
US08/467,120 US5537867A (en) 1994-06-06 1995-06-06 Pneumatic detection apparatus for a tire which utilizes pressure-sensitive displacement of an internal magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12408094A JP3412258B2 (en) 1994-06-06 1994-06-06 Variable amplification factor device, mobile object internal pressure detection device, electromagnetic induction type displacement detection device, and tire pressure sensor

Publications (2)

Publication Number Publication Date
JPH07333092A true JPH07333092A (en) 1995-12-22
JP3412258B2 JP3412258B2 (en) 2003-06-03

Family

ID=14876437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12408094A Expired - Fee Related JP3412258B2 (en) 1994-06-06 1994-06-06 Variable amplification factor device, mobile object internal pressure detection device, electromagnetic induction type displacement detection device, and tire pressure sensor

Country Status (3)

Country Link
US (1) US5537867A (en)
JP (1) JP3412258B2 (en)
DE (1) DE19519854B4 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6591671B2 (en) 1999-08-16 2003-07-15 The Goodyear Tire & Rubber Company Monitoring pneumatic tire conditions
US8266465B2 (en) 2000-07-26 2012-09-11 Bridgestone Americas Tire Operation, LLC System for conserving battery life in a battery operated device
US7161476B2 (en) 2000-07-26 2007-01-09 Bridgestone Firestone North American Tire, Llc Electronic tire management system
US7302868B2 (en) * 2002-06-21 2007-12-04 Bridgestone Corporation Method for measuring forces acted upon tire and apparatus for measuring forces acted upon tire
US7804396B2 (en) * 2007-09-21 2010-09-28 Advanced Tire Pressure Systems, Inc. Tire pressure monitoring system having a collapsible casing
US20150336435A1 (en) * 2014-05-24 2015-11-26 Rimex Supply Ltd. Magnetic mount for tire pressure sensor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5228383A (en) * 1975-08-28 1977-03-03 Mitsubishi Chem Ind Ltd Method of absorbing sample gas to be analized
US4300120A (en) * 1978-11-13 1981-11-10 Eaton Corporation Tire pressure monitor
DE3209660A1 (en) * 1982-03-17 1983-10-06 Heinz Dieter Dipl Sonnleitner Air-pressure indicator for vehicle tyres
JPH0238013B2 (en) * 1982-10-18 1990-08-28 Meisei Electric Co Ltd SAABOFUIRUTAANPU
US4597286A (en) * 1983-11-29 1986-07-01 Gianluigi Aguglia Mechanical-electromagnetic pressure sensor
US4588978A (en) * 1984-06-21 1986-05-13 Transensory Devices, Inc. Remote switch-sensing system
DE3503347A1 (en) * 1985-02-01 1986-08-14 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart DEVICE FOR WIRELESS MEASURING SIGNAL TRANSMISSION
DE3734053A1 (en) * 1986-10-08 1988-04-21 Alligator Ventilfab Gmbh Device and method for monitoring the air pressure of a vehicle tyre
US4866982A (en) * 1988-08-22 1989-09-19 Telemagnetics, Inc. On-board tire pressure sensing system
US5301553A (en) * 1989-12-20 1994-04-12 Tjs Development Corporation Apparatus for remote sensing and receiving
US5260683A (en) * 1990-04-05 1993-11-09 Nippondenso Co., Ltd. Tire pressure detecting apparatus for vehicle
JPH048609A (en) * 1990-04-25 1992-01-13 Nippondenso Co Ltd Air pressure sensing device for tire
JPH0446808A (en) * 1990-06-12 1992-02-17 Nippondenso Co Ltd Pneumatic pressure detecting device for tire
JPH0481309A (en) * 1990-07-24 1992-03-16 Nippondenso Co Ltd Inflation pressure detecting device
JPH06293205A (en) * 1993-01-21 1994-10-21 Nippondenso Co Ltd Tire pneumatic pressure detecting device
DE4425398A1 (en) * 1993-07-22 1995-01-26 Nippon Denso Co Pressure registering device
DE69400987T2 (en) * 1993-08-31 1997-03-27 Nhk Spring Co Ltd Tire pressure monitoring device

Also Published As

Publication number Publication date
US5537867A (en) 1996-07-23
DE19519854A1 (en) 1995-12-07
DE19519854B4 (en) 2006-08-10
JP3412258B2 (en) 2003-06-03

Similar Documents

Publication Publication Date Title
US20170082459A1 (en) Method and device for determining the absolute position of a movable body
US5736852A (en) Circuit and method for conditioning a wheel speed sensor signal
US6229299B1 (en) System and method for computing the angular velocity and direction of a rotational body
US6456063B1 (en) Self compensating control circuit for digital magnetic sensors
US9880027B2 (en) Resolver excitation apparatus
US10444096B2 (en) Distance compensation
JP3412258B2 (en) Variable amplification factor device, mobile object internal pressure detection device, electromagnetic induction type displacement detection device, and tire pressure sensor
US4465976A (en) Hall element with bucking current and magnet biases
CN101424533B (en) Detuning capacitor compensation process and circuit in MEMS gyroscope capacitor read-out circuit
US6140727A (en) Pulse signal generator
US20090141347A1 (en) Apparatus and Method for Using Voice Coils as Screen Motion Sensors
US3971995A (en) Wheel velocity sensor with exciter ring runout compensation
US4972146A (en) Saturble core device with DC component elimination for measuring an external magnetic field
JPH07105809A (en) Linear displacement sensor
US6848308B2 (en) Circuit arrangement for evaluating an acceleration sensor using the Ferraris principle
EP3301427A1 (en) Offset compensation
US10649015B1 (en) Capacitive sensor including compensation for phase shift
US8963542B2 (en) Minimizing magnetic interference in a variable reluctance resolver excited by 180 degree differential signals
US4240301A (en) Free gyro motor drive circuit
JP3171120B2 (en) Motor position detector
JPH04370763A (en) Speed detector
CN116123983A (en) Self-detection device for radial displacement of pure electromagnetic bearing with double-coil structure
JPH072943U (en) Magnetostrictive torque sensor
JP3048327B2 (en) Load discriminator in high frequency transmission lines
JPH0933257A (en) Magnetic direction sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees