JPH0733023B2 - Master model for tire mold - Google Patents

Master model for tire mold

Info

Publication number
JPH0733023B2
JPH0733023B2 JP3316833A JP31683391A JPH0733023B2 JP H0733023 B2 JPH0733023 B2 JP H0733023B2 JP 3316833 A JP3316833 A JP 3316833A JP 31683391 A JP31683391 A JP 31683391A JP H0733023 B2 JPH0733023 B2 JP H0733023B2
Authority
JP
Japan
Prior art keywords
master model
tire
tire mold
cross
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3316833A
Other languages
Japanese (ja)
Other versions
JPH05147044A (en
Inventor
昌弘 川畑
光男 小沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP3316833A priority Critical patent/JPH0733023B2/en
Publication of JPH05147044A publication Critical patent/JPH05147044A/en
Publication of JPH0733023B2 publication Critical patent/JPH0733023B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液状紫外線硬化樹脂を
光造形法で硬化させて得られるタイヤ金型用マスターモ
デルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a master model for a tire mold obtained by curing a liquid ultraviolet curable resin by an optical molding method.

【0002】[0002]

【従来の技術】タイヤ金型のタイヤのトレッド及びショ
ルダーに当たる部分は、アルミニューム鋳造によって製
作されたトレッドリングまたはドレッドセグメントによ
って構成されている。このトレッドリングまたはドレッ
ドセグメントの製作プロセスの中で、タイヤパターンの
原形をタイヤ金型用マスターモデルと称している。
2. Description of the Related Art The tire tread and the shoulder contact portion of a tire mold are constituted by a tread ring or dread segment manufactured by aluminum casting. In the manufacturing process of this tread ring or dread segment, the original shape of the tire pattern is called a master model for tire mold.

【0003】従来、前記タイヤ金型用マスターモデル
は、石膏のブロック素材をNC型彫盤等で切削加工する
ことにより製作されていた。しかし、その製作には多大
の時間と労力を要していた。そこで、タイヤ金型用マス
ターモデルの製作の容易化を図ったものとして、例え
ば、特開昭61-181616 号公報に記載のものが提案されて
いる。
Conventionally, the master model for a tire mold has been manufactured by cutting a plaster block material with an NC type engraving machine or the like. However, it took a lot of time and effort to make it. Therefore, as an attempt to facilitate the production of a master model for a tire mold, for example, the one described in JP-A-61-181616 has been proposed.

【0004】この従来のマスターモデルは、タイヤをそ
の赤道面に平行または垂直にスライスしたときに得られ
るトレッド部の断面形状と同一の形状を有する複数枚の
薄板を、スライス位置の順に重ね合わせて固定してなる
ものであった。前記従来の薄板積層式マスターモデル
は、ソリッドの石膏からNC加工するものに比べて加工
時間等の短縮が図れるが、しかし、各断面薄板を高精度
に積層一体化することが困難であり、今一歩のものであ
った。
In this conventional master model, a plurality of thin plates having the same shape as the cross-sectional shape of the tread portion obtained when the tire is sliced in parallel or perpendicularly to the equatorial plane are superposed in the order of slice positions. It was fixed. The conventional thin plate laminated type master model can shorten the processing time and the like as compared with the one in which solid plaster is NC processed, however, it is difficult to stack and laminate each cross-section thin plate with high accuracy. It was one step.

【0005】そこで、各断面を高精度に積層できるもの
として、例えば、特開平3-2030号公報に記載の立体形状
成形方法がある。この従来の技術は、ワーク台の上面に
所定の厚さで位置させた液状紫外線硬化型樹脂材にビー
ム照射を行って該液状紫外線硬化型樹脂材を選択的に硬
化させて第 1の硬化樹脂層を形成し、次いで、該第 1の
硬化樹脂層の上に所定の厚さの液状紫外線硬化型樹脂材
を位置させてビーム照射を行って選択的に硬化させて第
1の硬化樹脂層の上に第 2の硬化樹脂層を積層させ、同
様にして、第3、第 4……と順次に硬化樹脂層を積層し
て行って立体形状を形成するものであった。
Therefore, as a method of stacking each cross section with high accuracy, there is, for example, a three-dimensional shape forming method described in Japanese Patent Laid-Open No. 3-2030. In this conventional technique, a liquid ultraviolet curable resin material, which is positioned on the upper surface of a work table with a predetermined thickness, is irradiated with a beam to selectively cure the liquid ultraviolet curable resin material to selectively cure the first ultraviolet curable resin. A layer is formed, and then a liquid ultraviolet curable resin material having a predetermined thickness is placed on the first curable resin layer, and beam irradiation is performed to selectively cure the layer.
The second cured resin layer is laminated on the first cured resin layer, and similarly, the cured resin layers are sequentially laminated in the order of the third, fourth and so on to form a three-dimensional shape. .

【0006】この、立体形状成形方法をタイヤ金型用マ
スターモデルの作成に応用すれば、高精度の積層マスタ
ーモデルを作成することが可能である。
If this three-dimensional shape molding method is applied to the preparation of a tire mold master model, it is possible to prepare a highly accurate laminated master model.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記前記立体
形状成形方法を、只単に、タイヤ金型用マスターモデル
の作成方法に転用するだけでは、次の問題点が生じた。
即ち、硬化樹脂層の各層が、前記薄板層と同様にソリッ
ド( 中実) のものであれば、各硬化樹脂層の硬化時に生
じる内部残留応力により、立体形状の全体形状が歪にな
り、高精度のマスターモデルに造形することが困難であ
った。
However, if the above three-dimensional shape forming method is simply diverted to a method for producing a master model for a tire mold, the following problems occur.
In other words, if each layer of the cured resin layer is solid (solid) like the thin plate layer, the internal residual stress generated during curing of each cured resin layer causes distortion of the entire three-dimensional shape, resulting in high distortion. It was difficult to make a master model of accuracy.

【0008】また、各層の断面全体を硬化させると、多
量の樹脂材料が必要となり、また、レーザ光照射のため
の走査時間が長時間になるという問題があった。そこ
で、本発明は、硬化樹脂層の残留応力による歪みが生じ
ないようにし、また、消費樹脂材料の低減及び加工時間
の短縮が図れるタイヤ金型用マスターモデルを提供する
ことを目的とする。
Further, when the entire cross section of each layer is cured, a large amount of resin material is required, and the scanning time for laser light irradiation becomes long. Therefore, an object of the present invention is to provide a master model for a tire mold in which distortion due to residual stress of a cured resin layer does not occur, and consumption resin material is reduced and processing time is shortened.

【0009】[0009]

【課題を解決する手段】前記目的を達成するため、本発
明は次の手段を講じた。即ち、本発明の特徴とするとこ
ろは、3次元CADデータベースを用いてタイヤモデル
を作成し、該タイヤモデルを所定厚みの断層に切断し
て、各断層の断面形状のデータを作成し、該断面形状の
データに基づき、液状紫外線硬化樹脂にレーザー光を照
射してその断面形状に硬化させると共に、各断層を積層
することにより得られるタイヤ金型用マスターモデルで
あって、前記各断層の厚みは0.05〜0.3mm であり、各断
層を積層して得られた前記マスターモデルは、その表面
肉厚が3 〜20mmに形成されている点にある。
In order to achieve the above object, the present invention has taken the following means. That is, a feature of the present invention is that a tire model is created using a three-dimensional CAD database, the tire model is cut into slices of a predetermined thickness, and data of the cross-sectional shape of each slice is created, Based on the shape data, the liquid ultraviolet curing resin is irradiated with a laser beam to be cured into its cross-sectional shape, and the tire mold master model obtained by stacking each fault, and the thickness of each fault is The thickness is 0.05 to 0.3 mm, and the surface thickness of the master model obtained by laminating each fault is 3 to 20 mm.

【0010】そして、該マスターモデルの内部に空洞と
厚み3 〜5mm の補強骨格を有している。
The master model has a cavity and a reinforcing skeleton having a thickness of 3 to 5 mm.

【0011】[0011]

【作用】前記構成の本発明によれば、各断層の断面形状
がソリッドではなく、空洞を有し、且つ、補強骨格を有
しているので、ソリッド断面にくらべ、その実断面積が
小さくなり、従って、その断層に生じる残留応力が小さ
くなるので、歪みが小さくなり、高精度の保形性を維持
することができる。さらに、消費樹脂材料が少なくてす
み、かつ、加工時間が短くなる。
According to the present invention having the above-mentioned structure, since the cross-sectional shape of each fault is not solid but has a cavity and a reinforcing skeleton, the actual cross-sectional area is smaller than that of the solid cross section. Therefore, the residual stress generated in the fault becomes small, the strain becomes small, and the shape retention with high accuracy can be maintained. Furthermore, the consumption of resin material is small, and the processing time is short.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。本発明のタイヤ金型用マスターモデルは、3次元C
ADデータを使い、液状紫外線硬化樹脂をレーザ光によ
って硬化させる光造形法によって作られる。図2に示す
ものは、前記光造形法によってタイヤ金型マスターモデ
ル1 を製作するための製造装置の構成図である。この製
造装置は、前記特開平3-2030号公報に記載の立体形状成
形装置と同じものであるので、その詳細は、同公報に記
載のものを援用するが、該装置は、液状紫外線硬化樹脂
2 を収容する上方開口の収容容器3 を有する。該収容容
器3 内には、昇降駆動装置4 によって昇降自在となるワ
ーク台5 が収納されている。前記収容容器3 の上方に
は、レーザ光照射装置6が配置されている。前記昇降駆
動装置4 及びレーザ光照射装置6 を制御するための制御
装置7 が設けられている。この制御装置7 には、コンピ
ュータ8 で作成された3次元CADデータがインプトさ
れる。
Embodiments of the present invention will be described below with reference to the drawings. The master model for tire mold of the present invention is a three-dimensional C
It is made by a stereolithography method in which a liquid ultraviolet curable resin is cured by laser light using AD data. FIG. 2 is a block diagram of a manufacturing apparatus for manufacturing the tire mold master model 1 by the stereolithography method. Since this manufacturing apparatus is the same as the three-dimensional shape molding apparatus described in JP-A-3-2030, the details thereof are incorporated by reference, but the apparatus is a liquid ultraviolet curing resin.
It has a storage container 3 with an upper opening for storing 2. A work table 5 that can be raised and lowered by an elevation drive device 4 is accommodated in the accommodation container 3. A laser beam irradiation device 6 is arranged above the storage container 3. A control device 7 for controlling the lifting drive device 4 and the laser light irradiation device 6 is provided. The control device 7 receives the three-dimensional CAD data created by the computer 8.

【0013】前記コンピュータ7 による3次元CADデ
ータは、前記特開昭61-181616 号公報に記載の方法で作
成される。即ち、図3(a)に示すように、先ず、所定
のトレッドパターン9 を備えたタイヤの立体モデル10の
データを作成する。次に、得られた立体モデル10を周方
向に区分し、図3(b)に示すように単位ブロック11に
分割する。そして、更に赤道面12に沿って2分割し、図
3(c)に示すように単位ブロック13を作成すると共
に、この単位ブロック13をタイヤ赤道面12に垂直に所定
間隔Δhでスライス( 切断) し、各層の断面形状データ
を作成する。これらのデータ作成は、全てコンピュータ
7 上で行われる。
The three-dimensional CAD data by the computer 7 is created by the method described in the above-mentioned JP-A-61-181616. That is, as shown in FIG. 3A, first, data of a three-dimensional model 10 of a tire having a predetermined tread pattern 9 is created. Next, the obtained three-dimensional model 10 is divided in the circumferential direction and divided into unit blocks 11 as shown in FIG. Then, it is further divided into two along the equatorial plane 12 to create a unit block 13 as shown in FIG. 3C, and the unit block 13 is sliced (cut) perpendicularly to the tire equatorial plane 12 at a predetermined interval Δh. Then, the cross-sectional shape data of each layer is created. These data are all created by computer.
Done on 7.

【0014】本発明においては、前記スライスの所定間
隔(各断層の厚み)Δhは、0.05〜0.3mm に設定されて
いる。更に本発明においては、図1に示すように、各層
の断面形状は、ソリッドではなく、その表面肉厚a が3
〜20mmであり、且つ、内部に空洞14と厚みb が3 〜5mm
の補強骨格15を有する形状となるよう、コンピュータで
データ処理がされている。
In the present invention, the predetermined interval (thickness of each slice) Δh between the slices is set to 0.05 to 0.3 mm. Further, in the present invention, as shown in FIG. 1, the cross-sectional shape of each layer is not solid, and the surface thickness a is 3
~ 20 mm, with a cavity 14 inside and a thickness b of 3-5 mm
Data processing is performed by the computer so that the shape having the reinforcing skeleton 15 is obtained.

【0015】尚、前記補強骨格15は、6角形または8角
形のハニカム形状とされているが、これに限定されるも
のではない。このようにコンピュータで作成された3次
元CADデータは、前記制御装置7にインプトされ、該
データに基づき前記昇降駆動装置4 やレーザ光照射装置
6 を制御する。
The reinforcing skeleton 15 has a hexagonal or octagonal honeycomb shape, but is not limited to this. The three-dimensional CAD data created by the computer as described above is input to the control device 7, and based on the data, the lifting drive device 4 and the laser light irradiation device.
Control 6

【0016】即ち、前記収容容器3 に液状紫外線硬化樹
脂2 を所定量収容し、ワーク台5 を該液状紫外線硬化樹
脂2 の液面から前記スライスの所定間隔Δh(本実施例
では0.2mm )分だけ下方に位置させる。そして、第1層
目の断面形状にしたがって、レーザ光を液状紫外線硬化
樹脂2 に照射する。レーザ光を照射された部分の液状紫
外線硬化樹脂2 は硬化し、0.2mm 厚みの断層が形成され
る。
That is, a predetermined amount of the liquid ultraviolet curable resin 2 is contained in the container 3, and the work table 5 is separated from the liquid surface of the liquid ultraviolet curable resin 2 by a predetermined interval Δh (0.2 mm in this embodiment) of the slice. Position it just below. Then, the liquid ultraviolet curing resin 2 is irradiated with laser light according to the cross-sectional shape of the first layer. The liquid ultraviolet curable resin 2 in the portion irradiated with the laser light is cured, and a 0.2 mm-thick section is formed.

【0017】次に、ワーク台5 が0.2mm 下降し、第2層
目の断面形状にしたがってレーザ光が照射され、その断
面形状の樹脂が硬化する。以下同様の操作が繰り返され
て、各断層を積層したタイヤ金型用マスターモデル1が
作成される。しかして、そのマスターモデル1 の断面形
状は、図1に示す如くとなる。前記本発明の実施例によ
れば、樹脂製マスターモデル1の断面がソリッドでな
く、空洞14を有し、且つ、補強骨格15を有するものであ
るので、ソリッドのものに比べ、残留応力が小さくな
り、マスターモデル1 全体の変形が極めて小さくなり、
高精度のものにすることができる。
Next, the work table 5 is lowered by 0.2 mm, laser light is irradiated according to the sectional shape of the second layer, and the resin having the sectional shape is cured. Thereafter, the same operation is repeated to create the tire mold master model 1 in which the respective faults are laminated. Then, the cross-sectional shape of the master model 1 is as shown in FIG. According to the embodiment of the present invention, the cross section of the resin master model 1 is not solid and has the cavity 14 and has the reinforcing skeleton 15, so that the residual stress is smaller than that of the solid one. , The deformation of the entire Master Model 1 becomes extremely small,
It can be highly accurate.

【0018】更に、ソリッドのものに比べ、樹脂使用量
が少なくなるので、経済的であると共に、レーザ光照射
のための走査距離が少なくて済むので、加工時間が短縮
され、製作費用の低減が図られる。尚、前記光造形法に
よれば、切削加工では加工不可能なアンダーカットなど
がレーザの働きにより加工可能となる。また、細かいグ
ルーブ(溝)を形成するためのナイフブレードと称する
ステンレスの成形を、前記同一の3次元CADデータを
用いて設計すると、前記光造形法で得たマスターモデル
の形状と一致するので、従来あった、出来上りナイフブ
レードが石膏モデルに挿入できないという不具合もなく
すことが可能になる。
Further, as compared with the solid type, the amount of resin used is smaller, which is economical, and the scanning distance for laser light irradiation is shorter, so that the processing time is shortened and the manufacturing cost is reduced. Planned. According to the stereolithography method, an undercut that cannot be processed by cutting can be processed by the action of the laser. Further, when the molding of stainless steel called a knife blade for forming a fine groove (groove) is designed using the same three-dimensional CAD data, it matches the shape of the master model obtained by the stereolithography method. It is possible to eliminate the conventional problem that the finished knife blade cannot be inserted into the plaster model.

【0019】尚、本発明は、前記実施例に限定されるも
のではなく、本発明の目的から逸脱しない範囲におい
て、種々の変更が可能である。
The present invention is not limited to the above-mentioned embodiment, and various modifications can be made without departing from the object of the present invention.

【0020】[0020]

【発明の効果】本発明によれば、残留応力によるマスタ
ーモデルの変形が防止され、高精度なものにできると共
に、材料の節約、並びに加工時間の短縮が図られるもの
であり、その効果は顕著である。
According to the present invention, the deformation of the master model due to the residual stress can be prevented, the precision can be improved, the material can be saved, and the processing time can be shortened. The effect is remarkable. Is.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例のタイヤ金型用マスターモデルの
断面図であり、且つ、図2のA−A線断面図である。
FIG. 1 is a cross-sectional view of a master model for a tire mold according to an embodiment of the present invention, and is a cross-sectional view taken along the line AA of FIG.

【図2】本発明実施例のタイヤ金型用マスターモデルを
製作するための製造装置の構成図である。
FIG. 2 is a configuration diagram of a manufacturing apparatus for manufacturing a master model for a tire mold according to an embodiment of the present invention.

【図3】コンピュータで3次元CADデータを作成する
概念図である。
FIG. 3 is a conceptual diagram of creating three-dimensional CAD data by a computer.

【符号の簡単な説明】[Simple explanation of symbols]

1 タイヤ金型用マスターモデル 14 空洞 15 補強骨格 1 Master model for tire mold 14 Cavity 15 Reinforcement skeleton

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29C 35/08 9156−4F B29K 21:00 105:24 B29L 30:00 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location // B29C 35/08 9156-4F B29K 21:00 105: 24 B29L 30:00

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 3次元CADデータベースを用いてタイ
ヤモデルを作成し、該タイヤモデルを所定厚みの断層に
切断して、各断層の断面形状のデータを作成し、該断面
形状のデータに基づき、液状紫外線硬化樹脂にレーザー
光を照射してその断面形状に硬化させると共に、各断層
を積層することにより得られるタイヤ金型用マスターモ
デルであって、 前記各断層の厚みは0.05〜0.3mm であり、各断層を積層
して得られた前記マスターモデルは、その表面肉厚が3
〜20mmに形成されていることを特徴とするタイヤ金型用
マスターモデル
1. A tire model is created using a three-dimensional CAD database, the tire model is cut into slices of a predetermined thickness, data of the cross-sectional shape of each slice is created, and based on the data of the cross-sectional shape, A master model for a tire mold obtained by irradiating a liquid ultraviolet curable resin with laser light to cure it into its cross-sectional shape and stacking each section, and the thickness of each section is 0.05 to 0.3 mm. , The master model obtained by stacking each fault has a surface thickness of 3
~ 20 mm master model for tire molds characterized by
【請求項2】請求項1記載のタイヤ金型用マスターモデ
ルは、その内部に空洞と厚み3 〜5mm の補強骨格を有す
ることを特徴とするタイヤ金型用マスターモデル。
2. The master model for tire mold according to claim 1, wherein the master model for tire mold has a cavity and a reinforcing skeleton having a thickness of 3 to 5 mm therein.
JP3316833A 1991-11-29 1991-11-29 Master model for tire mold Expired - Lifetime JPH0733023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3316833A JPH0733023B2 (en) 1991-11-29 1991-11-29 Master model for tire mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3316833A JPH0733023B2 (en) 1991-11-29 1991-11-29 Master model for tire mold

Publications (2)

Publication Number Publication Date
JPH05147044A JPH05147044A (en) 1993-06-15
JPH0733023B2 true JPH0733023B2 (en) 1995-04-12

Family

ID=18081426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3316833A Expired - Lifetime JPH0733023B2 (en) 1991-11-29 1991-11-29 Master model for tire mold

Country Status (1)

Country Link
JP (1) JPH0733023B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2870445B2 (en) * 1995-02-20 1999-03-17 ソニー株式会社 Mold formed by additive manufacturing and method of forming the same
DK134295A (en) * 1995-11-28 1997-05-29 Formkon Aps Process for making two or multi-part molds
EP1770467A1 (en) 2000-05-12 2007-04-04 Incs Inc. Design and fabrication of molds using a client-server architecture
JP4566386B2 (en) * 2000-11-01 2010-10-20 住友ゴム工業株式会社 Extruded tread shape design method during molding, extruded tread shape design support system during molding, and computer-readable recording medium
US6799371B2 (en) * 2002-08-14 2004-10-05 Yu-Ren Liu Method for manufacturing a steel tire mold
JP4992450B2 (en) * 2007-02-06 2012-08-08 横浜ゴム株式会社 Molding method of mold master model by paper additive manufacturing method
JP2008254256A (en) * 2007-04-03 2008-10-23 Yokohama Rubber Co Ltd:The Method for producing tire molding mold
WO2017116824A1 (en) 2015-12-29 2017-07-06 Bridgestone Americas Tire Operations, Llc Tire with shaped tread
CN108698344B (en) 2015-12-29 2021-05-18 普利司通美国轮胎运营有限责任公司 Composite layer tyre
CN108698345B (en) 2015-12-29 2020-11-03 普利司通美国轮胎运营有限责任公司 Tire with variable shear element

Also Published As

Publication number Publication date
JPH05147044A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
US5718279A (en) Method for laminate forming a sand mould and a method for producing a casting using the same
JPH0733023B2 (en) Master model for tire mold
JPS61108512A (en) Mold for vulcanizing type
JP2003136605A (en) Method for forming product and its product
JP3911471B2 (en) 3D modeling method and 3D modeling apparatus
KR20180111912A (en) Method for manufacturing three dimensional shaped sculpture
KR100270934B1 (en) Sheet deposition type rapid prototyping system minimizing post processing
EP0763417A1 (en) Method and apparatus for determining thickness values and shapes of laminate layers of product
JPH10119136A (en) Photo-shaping method using selected light sources and stereoscopially shaped article to be obtained by the method
JP2000263650A (en) Stereo lithographic apparatus
JP3458593B2 (en) Method for forming a three-dimensional shape
Glozer et al. Laminate tooling for injection moulding
JP2003320595A (en) Manufacturing method for core for manufacturing tire
KR102127648B1 (en) Method of manufacturing salt core
CN108407324B (en) Tool scheme for manufacturing net-size composite material
CN204414606U (en) Based on the elevating mechanism of the 3D printer of DLP
JP2553124B2 (en) Mold manufacturing method
JP2000234103A (en) Manufacture of mold by optical molding
JPH1024495A (en) Method for making photo-molding
JP2007077443A (en) Method for manufacturing three-dimensional structure
JP4405671B2 (en) Determination of resin hardened area in optical stereolithography
JPH10217337A (en) Three-dimensional shaping method
JP2547805B2 (en) Mold manufacturing method
CN117207518A (en) Photo-curing 3D printing method
JPH11309545A (en) Manufacture of mold