JPH07328801A - Lathe turning method and blade tool drive device - Google Patents

Lathe turning method and blade tool drive device

Info

Publication number
JPH07328801A
JPH07328801A JP12005194A JP12005194A JPH07328801A JP H07328801 A JPH07328801 A JP H07328801A JP 12005194 A JP12005194 A JP 12005194A JP 12005194 A JP12005194 A JP 12005194A JP H07328801 A JPH07328801 A JP H07328801A
Authority
JP
Japan
Prior art keywords
cutting tool
point
turning
rotation axis
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12005194A
Other languages
Japanese (ja)
Inventor
Toru Minegishi
亨 峯岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SPC Electronics Corp
Original Assignee
SPC Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SPC Electronics Corp filed Critical SPC Electronics Corp
Priority to JP12005194A priority Critical patent/JPH07328801A/en
Publication of JPH07328801A publication Critical patent/JPH07328801A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turning (AREA)

Abstract

PURPOSE:To provide a lathe turning method for producing chips having such a shape as enabling safety security of works and continuous driving of a lathe turning device. CONSTITUTION:After a blade tool 3 is taper transferred from the lowest point (the minimum point of the distance between a central axis 41 and the blade tool 3) to the highest point (the maximum point of the same), it is taper transferred again to the following lowest point. The first lathe turning process is performed by periodically repeating this action as a unit block so as to form the surface of a work 4 into a corrugated shape. Secondarily, the second lathe turning process is performed by linearly transferring the blade tool 3 while holding it at the lowest point so as to remove the corrugated surface. Torsional phenomena based on residual stress is thus generated on chip 5 which is made into such a shrunk shape as hard to wind around the work 4, etc.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば銅やアルミ合金
等非鉄材の旋削時に、旋削加工装置や被削材を損傷させ
ることなく長時間の連続旋削を可能にする旋削加工方法
及びこの方法を実現するための刃具駆動装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turning method and a method for turning a non-ferrous material such as copper or aluminum alloy, which enables continuous turning for a long time without damaging a turning device or a work material. The present invention relates to a blade driving device for realizing the above.

【0002】[0002]

【従来の技術】旋削加工は、回転する被削材の表層を刃
具で旋断して所定形状に変形させる手法であり、加工に
際しては必然的に切り屑が発生する。この切り屑の形状
は、刃具の駆動態様、被削材の材質によって連続型ある
いは非連続型に大別される。ここに連続型とは、切り屑
が部分的に切断されることなく連続する形状のものであ
り、非連続型とは、切り屑が部分的に切断される形状の
ものである。
2. Description of the Related Art Turning is a method of turning a surface layer of a rotating work material with a cutting tool to deform it into a predetermined shape, and chips are inevitably generated during the working. The shape of the chips is roughly classified into a continuous type or a discontinuous type depending on the driving mode of the cutting tool and the material of the work material. Here, the continuous type is a shape in which chips are continuous without being partially cut, and the discontinuous type is a shape in which chips are partially cut.

【0003】図5は、従来の一般的な旋削加工方法の説
明図であり、回転する被削材(以下、ワークと称する)
50の表層を刃具支持部52で支持された刃具53を用
いて直線的に旋削する状態を示す。図示の例では、ワー
ク50の回転軸51に対して水平方向となる刃具53の
相対的変位量(以下、送り量)が時間的に一定で、ワー
ク50の表層への切り込み量も一定なので、旋削により
発生する切り屑54の形状は、図示のように直線連続型
になる。
FIG. 5 is an explanatory view of a conventional general turning method, in which a rotating work material (hereinafter referred to as a work).
The state in which the surface layer of 50 is linearly turned using the cutting tool 53 supported by the cutting tool support 52 is shown. In the illustrated example, the relative displacement amount (hereinafter, feed amount) of the cutting tool 53 in the horizontal direction with respect to the rotation shaft 51 of the work 50 is constant in time, and the cut amount of the work 50 into the surface layer is also constant. The shape of the chips 54 generated by turning is a linear continuous type as shown in the drawing.

【0004】このような旋削加工方法では、1回の旋削
で所望形状の加工が可能となる利点はあるが、旋削が進
むに従って切り屑54が次第に長くなり、ワーク50に
巻き付いてしまうおそれもある。この切り屑54の巻き
付きを放置したまま作業を続けると、刃具53にチッピ
ングが起こり、刃具53の破損やワーク50の損傷を招
く。そのため、従来は、切り屑54が一定の長さに達し
た場合や連続型の切り屑に由来する何らかの異常が検出
された場合に、刃具53のチップブレーカー等を作用さ
せて切り屑54を所定の間隔で切断し、その巻きつきを
防ぐ構成を採用するのが一般的であった。
Such a turning method has an advantage that a desired shape can be machined by turning once, but as the turning progresses, the chips 54 become gradually longer and may be wound around the work 50. . If the work is continued while the wrapping of the chips 54 is left unattended, chipping of the cutting tool 53 occurs, causing damage to the cutting tool 53 and damage to the workpiece 50. Therefore, conventionally, when the chips 54 reach a certain length or when any abnormality derived from the continuous chips is detected, the chips 54 of the blade 53 are actuated so that the chips 54 are predetermined. It was common to employ a configuration in which cutting is performed at intervals of 10 to prevent the winding.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記構
成を採用しても、ワーク50の材質によっては上記チッ
プブレーカ等が有効に作用しない場合がある。この場合
は、異常発生時に切り屑54がワーク50に巻き付き、
刃具53の破損等を招来するとともに、巻き付いた切り
屑の除去作業のために加工中断を余儀なくされる問題が
あった。しかも、巻き付いた切り屑の除去作業は裂傷を
受ける可能性のある危険な作業でもあり、安全面からも
課題が残されていた。
However, even if the above configuration is adopted, the chip breaker or the like may not work effectively depending on the material of the work 50. In this case, when an abnormality occurs, the chips 54 wind around the work 50,
There is a problem in that the cutting tool 53 is damaged and the processing is forced to be interrupted for removing the wound chips. Moreover, the work of removing the wrapping chips is a dangerous work that may be torn, and there is a problem in terms of safety.

【0006】このような問題があるので、本来連続運転
が可能な数値制御旋盤や自動旋盤等の旋削加工装置が設
置されていても、これを長時間連続して運転することは
事実上困難であり、旋削効率の向上を図れない問題があ
った。
Due to such a problem, even if a turning machine such as a numerically controlled lathe or an automatic lathe, which is originally capable of continuous operation, is installed, it is practically difficult to operate it continuously for a long time. However, there was a problem that the turning efficiency could not be improved.

【0007】本発明は上記問題点を除去し、旋削加工装
置の連続運転を可能にする形状の切り屑を発生させる旋
削加工方法を提供することを目的とする。本発明の他の
目的は、上記旋削加工方法の実施に適した構成の刃具駆
動装置を提供することにある。
An object of the present invention is to provide a turning method which eliminates the above problems and produces chips having a shape which enables continuous operation of a turning apparatus. Another object of the present invention is to provide a cutting tool driving device having a configuration suitable for carrying out the above-described turning method.

【0008】[0008]

【課題を解決するための手段】上記目的を達成する本発
明の旋削加工方法は、回転するワークの表層との相対位
置が該ワークの回転軸と平行の方向に定速で変位する刃
具と、該ワークの回転軸を指向する前記刃具の先端位置
を制御する手段とを備える装置を用いた旋削加工方法に
おいて、前記刃具の先端位置を前記回転軸から遠ざかる
方向及び前記回転軸に近づく方向に交互且つ周期的に変
えて前記ワークの表層を波状に旋削する第1旋削工程
と、前記刃具の先端位置と前記回転軸との距離を一定に
保持して前記第1旋削工程を経たワークの波状の表層を
除去する第2旋削工程と、を有することを特徴とする。
このような旋削加工方法は、銅やアルミ合金のような、
非鉄材料の中でも比較的軟らかく粘りのあるワークに特
に有効となる。
The turning method of the present invention which achieves the above object, is a cutting tool whose relative position to the surface layer of a rotating workpiece is displaced at a constant speed in a direction parallel to the axis of rotation of the workpiece, In a turning method using a device provided with means for controlling the tip position of the cutting tool that points the rotation axis of the work, the tip position of the cutting tool is alternated in a direction away from the rotation axis and a direction approaching the rotation axis. And a first turning step of periodically changing the surface layer of the work into a wavy shape, and a wavy shape of the work that has undergone the first turning step while keeping the distance between the tip end position of the cutting tool and the rotary shaft constant. And a second turning step for removing the surface layer.
This kind of turning method, like copper and aluminum alloy,
It is especially effective for non-ferrous materials that are relatively soft and sticky.

【0009】なお、前記第1旋削工程における前記刃具
の先端と該先端が指向する前記回転軸との距離が極大に
なる点は、好ましくは、加工前の当該ワークの表層付近
とする。より好ましくは、前記第1旋削工程における前
記刃具先端の変位比率は、該先端の前記回転軸からの距
離が極小になる点から極大になる点までの送り量を1と
したときに、該極大点から次の極小点までの送り量が略
3となる比率とし、しかも、前記極大点から次の極小点
までのスロープと前記回転軸との為す角度が略27度と
なるようにする。
The point at which the distance between the tip of the cutting tool and the rotation axis on which the tip is directed in the first turning step is maximized is preferably near the surface layer of the workpiece before machining. More preferably, the displacement ratio of the tip of the cutting tool in the first turning step is the maximum when the feed amount from the point where the distance from the rotation axis of the tip is the minimum to the maximum is 1 The feed amount from one point to the next minimum point is set to about 3, and the angle between the slope from the maximum point to the next minimum point and the rotation axis is about 27 degrees.

【0010】また、上記他の目的を達成する本発明の刃
具駆動装置は、回転するワークの表層を旋削するための
刃具を駆動する装置であって、前記ワークの回転軸を指
向する刃具の先端を前記回転軸から遠ざかる方向及び前
記回転軸に近づく方向に交互且つ周期的に変位させる第
1の制御手段と、前記刃具の先端位置を前記回転軸から
一定距離に保持する第2の制御手段と、を少なくとも備
えて成る。
Further, a cutting tool driving device of the present invention which achieves the above-mentioned other object is a device for driving a cutting tool for turning a surface layer of a rotating work, and a tip of the cutting tool which is directed to a rotation axis of the work. First control means for alternately and periodically displacing the blades in a direction away from the rotation axis and a direction approaching the rotation axis, and second control means for holding the tip position of the cutting tool at a constant distance from the rotation axis. And at least.

【0011】上記構成において、第1の制御手段は、例
えば、前記刃具先端の前記回転軸からの距離が極小にな
る点から極大になる点までの送り量と該極大点から次の
極小点までの送り量との比率を任意に設定する比率設定
部と、設定された比率に従って前記刃具の昇降時間を周
期的に制御する昇降制御部と、を含むことを特徴とす
る。
In the above arrangement, the first control means may be, for example, the feed amount from the point where the distance from the rotary shaft of the tip of the cutting tool to the point where the distance is the maximum and the point where the distance is from the maximum point to the next minimum point. It is characterized by including a ratio setting unit for arbitrarily setting a ratio to the feed amount of the blade, and a lifting control unit for periodically controlling the lifting time of the cutting tool according to the set ratio.

【0012】[0012]

【作用】本発明の旋削加工方法では、ワークの旋削加工
を2段階に分けて行う。第1旋削工程では、刃具の先端
位置をワークの回転軸から遠ざかる方向及び近づく方向
に交互且つ周期的に変えてワークの表層を波状に旋削す
る。これにより刃具の送り量に対するワークの切り込み
量が周期的に変わるので、ワークの表層に発生する応力
が常時変動すると共に、切り屑側に残る残留応力にも差
が生じ、切り屑がねじれて縮んだ形状となる。第2旋削
工程では、刃具の先端位置と回転軸との距離を一定に保
持して第1旋削工程を経たワークの波状の表層を除去す
る。即ち、切り込み量を一定にして再度旋削を行うが、
第1旋削工程によりワークの表層が波状に成形されてい
るので、旋削時の切り屑の厚みが徐々に変わり、第1旋
削工程と同様、ねじれて縮んだ切り屑が発生する。この
縮み形状の切り屑は、ワークに巻き付きにくい形状なの
で、従来の課題であった連続旋削加工が可能になる。
In the turning method of the present invention, the turning of the work is performed in two stages. In the first turning step, the tip end position of the cutting tool is alternately and periodically changed in a direction away from and a direction approaching the rotation axis of the work, and the surface layer of the work is turned in a wavy shape. As a result, the cutting amount of the work changes periodically with respect to the feed amount of the cutting tool, so the stress generated in the surface layer of the work constantly fluctuates, and the residual stress remaining on the chip side also varies, causing the chips to twist and shrink. It becomes a shape. In the second turning step, the corrugated surface layer of the work that has undergone the first turning step is removed by keeping the distance between the tip position of the cutting tool and the rotary shaft constant. That is, turning is performed again with a constant cutting depth,
Since the surface layer of the work is formed in a wavy shape in the first turning step, the thickness of the chips during turning gradually changes, and like the first turning step, twisted and shrunk chips are generated. Since the shredded chips have a shape that does not easily wind around the work, continuous turning, which has been a problem in the past, can be performed.

【0013】なお、刃具の先端と該先端が指向するワー
クの回転軸との距離が極大になる点を加工前の当該ワー
クの表層付近とすると、上記応力及び切り屑自身の重み
により当該切り屑が切断され易くなるので、切り屑の形
状が非連続形状に変わり、上記巻き付きがより有効に抑
制される。
If the point at which the distance between the tip of the cutting tool and the axis of rotation of the work pointed by the tip is maximized is near the surface layer of the work before machining, the stress and the weight of the scrap itself cause the scrap. Since it becomes easier to cut, the shape of the chips changes to a discontinuous shape, and the above-mentioned winding is more effectively suppressed.

【0014】また、本発明の刃具駆動装置では、第1の
制御手段を構成する比率設定部に、刃具先端の前記回転
軸からの距離が極小になる点から極大になる点までの送
り量と該極大点から次の極小点までの送り量との比率を
設定し、昇降制御部において上記設定された比率に従っ
て刃具の昇降時間を周期的に制御することで、上記第1
旋削工程を実行することができる。第2の制御手段は、
上記第1旋削工程を経たワークについて第2旋削工程を
実行する。
Further, in the cutting tool driving device of the present invention, the feed rate from the point where the distance from the rotary shaft of the cutting edge of the cutting tool to the point where the cutting tool tip reaches the maximum is set in the ratio setting section which constitutes the first control means. By setting the ratio of the feed amount from the maximum point to the next minimum point and periodically controlling the lifting time of the cutting tool in accordance with the ratio set in the lifting control unit, the first
A turning process can be performed. The second control means is
The second turning process is performed on the workpiece that has undergone the first turning process.

【0015】[0015]

【実施例】次に、図面を参照して本発明の実施例を詳細
に説明にする。図1は、本発明の一実施例に係る旋削加
工装置の要部構成図である。この旋削加工装置は、刃具
駆動装置1、刃具支持部2、刃具3、及び、ワーク4を
回転駆動するための回転駆動機構(図示省略)を有して
いる。ワーク4は、例えば銅やアルミ合金のような非鉄
材のものである。なお、旋削時にワーク4をその回転軸
41方向に定速移動させて刃具3の送り量を相対的に変
える構成も考えられるが、本実施例では、便宜上、刃具
3を上記回転軸41と平行方向に定速移動させる例につ
いて説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a configuration diagram of essential parts of a turning apparatus according to an embodiment of the present invention. This turning apparatus has a blade driving device 1, a blade supporting portion 2, a blade 3, and a rotary drive mechanism (not shown) for rotationally driving a work 4. The work 4 is made of a non-ferrous material such as copper or aluminum alloy. It should be noted that a configuration may be considered in which the workpiece 4 is moved at a constant speed in the direction of the rotation axis 41 during turning to relatively change the feed amount of the cutting tool 3, but in the present embodiment, for convenience, the cutting tool 3 is parallel to the rotation axis 41. An example in which the vehicle is moved at a constant speed in the direction will be described.

【0016】刃具駆動装置1は、回転軸41を指向する
刃具3の送り量と切り込み量とを制御してワーク4の表
層を図示のように波状に成形するための装置であり、刃
具3の先端の回転軸41からの距離が極小になる点から
極大になる点までの送り量と該極大点から次の極小点ま
での送り量との比率を任意に設定する比率設定部11
と、設定された比率に従って刃具3の昇降時間を周期的
に制御する昇降制御部12とを少なくとも含んで構成さ
れる。
The cutting tool driving device 1 is a device for controlling the feed amount and the cutting amount of the cutting tool 3 which is directed to the rotary shaft 41 to form the corrugated surface layer of the work 4 as shown in the drawing. A ratio setting unit 11 that arbitrarily sets the ratio of the feed amount from the point where the distance from the rotary shaft 41 of the tip is the minimum point to the maximum point and the feed amount from the maximum point to the next minimum point.
And a lifting control unit 12 that periodically controls the lifting time of the cutting tool 3 according to the set ratio.

【0017】図2は、刃具駆動装置1により制御された
刃具3の軌跡を示す図であり、上記極小点となる切り込
み開始点をX1、上記極大点となる切り込み中間点をX
2、上記次の極小点となる終点をX3とし、これら各点
からなるブロックを所定周期繰り返す例について示して
ある。なお、図2では、実験により得られた好適な数値
例として、極小点と極大点との幅を3[mm]、X1か
らX2までの送り量を5[mm]、X2からX3までの
送り量を15[mm]としたが、少なくとも各点間の送
り量の比率X1−X2:X2−X3を、ほぼ1:3にす
れば、後述する残留応力効果をより顕著に発揮できるの
で、比率設定部11への設定は、必ずしも上記数値例に
限定されるものではない。
FIG. 2 is a diagram showing the locus of the cutting tool 3 controlled by the cutting tool driving device 1. The cutting start point that is the minimum point is X1, and the cutting middle point that is the maximum point is X.
2. The end point of the next minimum point is set to X3, and a block consisting of these points is repeated for a predetermined period. In FIG. 2, as a preferable numerical example obtained by the experiment, the width between the minimum point and the maximum point is 3 [mm], the feed amount from X1 to X2 is 5 [mm], and the feed amount from X2 to X3. Although the amount is set to 15 [mm], if the ratio X1-X2: X2-X3 of the feed amount between points is set to approximately 1: 3, the residual stress effect described below can be more significantly exhibited. The setting to the setting unit 11 is not necessarily limited to the above numerical example.

【0018】図3は、昇降制御部12における制御内容
の一例を示すフローチャートであり、Sは処理ステップ
を表す。ここでは、第1旋削工程を実行する例について
説明する。
FIG. 3 is a flow chart showing an example of control contents in the elevating control section 12, and S represents a processing step. Here, an example of executing the first turning process will be described.

【0019】まず、刃具3を旋削開始点にセットする
(S101)。この旋削開始点は、例えば刃具先端とそ
のときの回転軸41との距離が極小となる点(上記始点
X1)である。次に、刃具支持部2を介して刃具3の送
り量と切り込み量を比率設定部11の設定値に従って制
御し、刃具先端を回転軸41との距離が極大になる点
(上記中間点X2)方向にいわゆるテーパ移動させる
(S102)。即ち、刃具先端と回転軸41との距離が
徐々に大きくなるように刃具3を上昇させる。次に、比
率設定部11の設定値に基づき刃具先端が極大点に達し
たかどうかを判定し(S103)、達していないときは
同一方向のテーパ移動を続行させる。他方、極大点に達
した場合には、次の極小点(上記終点X3)に向かうよ
うに刃具3のテーパ移動の方向を変える(S104)。
即ち、刃具3を下降させる。その後、比率設定部11の
設定値に基づき刃具先端が極小点(X3)に達したかど
うかを判定し(S105)、達していなければ同一方向
のテーパ移動を続行し、極小点に達したときは、旋削終
了条件を満たしているかどうか、例えばワーク4の全て
の表層を旋削したか否かを判定し(S106)、旋削条
件を満たさないときは、S102〜S106までの処理
を繰り返す。旋削条件を満たすときは、刃具3を所定位
置に戻し、昇降制御を終了する。
First, the cutting tool 3 is set at the turning start point (S101). This turning start point is, for example, a point where the distance between the tip of the cutting tool and the rotary shaft 41 at that time is the minimum (starting point X1). Next, the feed amount and the cutting amount of the cutting tool 3 are controlled according to the set values of the ratio setting section 11 via the cutting tool supporting section 2, and the distance between the tip of the cutting tool and the rotating shaft 41 is maximized (the intermediate point X2). The taper is moved in the direction (S102). That is, the blade 3 is raised so that the distance between the tip of the blade and the rotary shaft 41 gradually increases. Next, it is determined based on the set value of the ratio setting unit 11 whether or not the tip of the cutting tool has reached the maximum point (S103), and if not reached, taper movement in the same direction is continued. On the other hand, when the maximum point is reached, the taper movement direction of the cutting tool 3 is changed to move to the next minimum point (the end point X3) (S104).
That is, the blade 3 is lowered. After that, it is determined whether the tip of the cutting tool has reached the minimum point (X3) based on the set value of the ratio setting unit 11 (S105). If not, the taper movement in the same direction is continued, and when the minimum point is reached. Determines whether the turning end condition is satisfied, for example, whether all the surface layers of the work 4 have been turned (S106), and when the turning condition is not satisfied, the processes of S102 to S106 are repeated. When the turning condition is satisfied, the cutting tool 3 is returned to the predetermined position and the lifting control is ended.

【0020】上述のように昇降制御部12を動作させる
ことで、図1に示したように、ワーク4の表層が波状に
成形される。その際、旋削部位から逐次切り屑5が発生
するが、加工硬化に起因する表層の残留応力変化によっ
て該切り屑5にねじれ現象が起きる。そして、この切り
屑5がワーク4の表層から反発して縮み形状となり、刃
具先端近辺で塊り状態となるので、ワーク4に巻き付き
にくくなる。このような切り屑の残留応力による縮み効
果をより顕著に発揮するための送り量の比率が前述の
1:3の比率であり、この比率を変えると上記効果が緩
和される。但し、値は必ずしも厳密である必要はなく、
近似値で足りる。
By operating the elevating controller 12 as described above, the surface layer of the work 4 is formed into a wavy shape as shown in FIG. At that time, the chips 5 are successively generated from the turning portion, but a twist phenomenon occurs in the chips 5 due to a change in the residual stress of the surface layer due to work hardening. Then, the chips 5 repel from the surface layer of the work 4 to be in a contracted shape and become clumped in the vicinity of the tip of the cutting tool, which makes it difficult to wind around the work 4. The ratio of the feed amount for more significantly exerting the shrinking effect due to the residual stress of the chips is the above-mentioned ratio of 1: 3, and changing the ratio alleviates the above effect. However, the value does not have to be exact,
An approximate value is enough.

【0021】また、上記中間点X2において刃具3のテ
ーパ移動が次の極小点(終点:X3)に向かう方向に変
わる際、切り屑5は、この時点で切断される。切断を確
実に行うためには、上記中間点X2がワーク4の表層に
あるか、または十分に表面に近いことが好ましい。この
ようにすることで、切り屑5は自身の重み及び応力変化
によって自動的に切断され、ワーク4への巻き付きがよ
り有効に防止される。
When the taper movement of the cutting tool 3 changes toward the next minimum point (end point: X3) at the intermediate point X2, the chips 5 are cut at this point. In order to ensure the cutting, it is preferable that the intermediate point X2 is on the surface layer of the work 4 or is sufficiently close to the surface. By doing so, the chips 5 are automatically cut by their own weight and stress change, and the winding around the work 4 is more effectively prevented.

【0022】なお、図4に示すように、刃具3として市
販の汎用刃具を利用し、且つ最も効率的な旋削を実現す
るためには、中間点X2から終点X3までのスロープと
回転軸41に平行な線42との為す角度、即ちテーパ角
θを27度とすると良い。テーパ角が27度を超えた場
合、市販の刃具角度は30度であるのが通常なので、ワ
ーク4と刃具3とが摺動し、刃具3の磨耗及び破損が生
じるからであり、逆に、テーパ角が27度以下の場合に
は切削効率が低下するからである。但し、この数値も必
ずしも厳密である必要はなく、近似値で足りる。
As shown in FIG. 4, a commercially available general-purpose cutting tool is used as the cutting tool 3 and in order to realize the most efficient turning, the slope from the intermediate point X2 to the end point X3 and the rotary shaft 41 are arranged. The angle formed by the parallel lines 42, that is, the taper angle θ is preferably 27 degrees. When the taper angle exceeds 27 degrees, the commercially available cutting tool angle is usually 30 degrees, so that the work 4 and the cutting tool 3 slide and wear and damage of the cutting tool 3 occur, and conversely, This is because the cutting efficiency decreases when the taper angle is 27 degrees or less. However, this numerical value does not necessarily have to be exact, and an approximate value is sufficient.

【0023】本実施例では、図3で説明した第1旋削工
程を経た後、当該ワーク4の表層について第2旋削工程
を施す。この第2旋削工程は、具体的には、刃具3の切
り込み量を一定に保持し、波状に成形されたワーク4の
表層を除去するために前記始点X1から終点X3へ刃具
3を直線移動させる。これにより発生する切り屑の厚み
は、旋削が進むにつれて徐々に変化する。従って、切り
込み量を変えて旋削を行う第1旋削加工時と同様、切り
屑に縮み現象が生じ、ワーク4に巻き付きにくくなる。
In the present embodiment, after the first turning step described with reference to FIG. 3, the second turning step is applied to the surface layer of the work 4. In the second turning step, specifically, the cutting amount of the cutting tool 3 is kept constant, and the cutting tool 3 is linearly moved from the starting point X1 to the ending point X3 in order to remove the corrugated surface of the work 4. . The thickness of the chips thus generated gradually changes as the turning progresses. Therefore, as in the case of the first turning process in which the turning amount is changed and turning is performed, the chipping phenomenon occurs in the chips, making it difficult to wind around the work 4.

【0024】このように、本実施例の旋削加工装置で
は、ワーク4に対し、刃具駆動装置1を用いて第1及び
第2旋削工程を施すようにしたので、旋削時に生じる切
り屑の形状がワーク4に巻き付きにくい形状となり、加
工中断や刃具3のチッピングが抑制される。これによっ
て旋削作業を中断することなく連続に行えるようにな
り、結果的に旋削時間を大きく短縮することが出来る。
また、工具破損や磨耗が少なくなるので、ワーク4への
悪影響も少なく、ランニングコストも低減される。更
に、危険を伴う切り屑の除去作業も行う必要もなくなる
ので、安全性が高くなる。
As described above, in the turning apparatus of this embodiment, the work 4 is subjected to the first and second turning steps by using the cutting tool driving apparatus 1. Therefore, the shape of the chips produced during turning is The work 4 has a shape that is difficult to be wound around, so that interruption of processing and chipping of the cutting tool 3 are suppressed. As a result, the turning operation can be performed continuously without interruption, and as a result, the turning time can be greatly reduced.
Further, since tool breakage and wear are reduced, the work 4 is less adversely affected and the running cost is reduced. Further, since it is not necessary to perform the work of removing chips, which is dangerous, safety is improved.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、本発明
の旋削加工方法によれば、第1旋削工程において刃具の
先端位置をワークの回転軸から遠ざかる方向及び近づく
方向に交互且つ周期的に変えてワークの表層を波状に旋
削し、第2旋削工程において刃具の先端位置と回転軸と
の距離を一定に保持して第1旋削工程を経たワークの波
状の表層を除去するようにしたので、発生する切り屑が
残留応力によりねじれて縮んだ形状となり、ワークに巻
き付きにくくなる効果がある。これにより従来の課題で
あった作業の安全性確保と連続旋削加工の実現が可能に
なる。
As is apparent from the above description, according to the turning method of the present invention, in the first turning step, the tip position of the cutting tool is alternately and periodically arranged in the direction away from and toward the rotation axis of the workpiece. Instead, the surface layer of the work is turned into a wavy shape, and in the second turning process, the distance between the tip position of the cutting tool and the rotation axis is kept constant to remove the wavy surface layer of the work that has undergone the first turning process. The resulting chips are twisted and contracted by the residual stress, which has the effect of making it difficult to wind around the work. This makes it possible to secure work safety and realize continuous turning, which have been issues in the past.

【0026】また、本発明の旋削加工方法によれば、刃
具の先端と該先端が指向するワークの回転軸との距離が
極大になる点を加工前の当該ワークの表層付近にしたの
で、上記残留応力及び切り屑自身の重みにより切り屑が
切断され易くなり、切り屑が非連続形状に変わって上記
巻き付きがより有効に抑制される効果がある。
Further, according to the turning method of the present invention, the point where the distance between the tip of the cutting tool and the rotation axis of the work pointed by the tip is maximized is near the surface layer of the work before machining. Due to the residual stress and the weight of the chips themselves, the chips are easily cut, and the chips change into a discontinuous shape, so that the above-mentioned winding is effectively suppressed.

【0027】更に、第1旋削工程において、刃具先端と
ワークの回転軸との距離が極小になる点から極大になる
点までの送り量に対し、該極大点から次の極小点までの
送り量が相対的に略3倍となるように刃具を駆動し、し
かも、前記極大点から次の極小点までのスロープとワー
クの回転軸との為す角度が略27度となるようにしたの
で、市販の汎用刃具を利用して最も効率的な旋削加工を
実現することができる。
Further, in the first turning step, the feed amount from the maximum point to the next minimum point is the feed amount from the point where the distance between the tip of the cutting tool and the rotation axis of the workpiece becomes the maximum point to the maximum point. The blade tool is driven so that is approximately 3 times, and the angle formed by the slope from the maximum point to the next minimum point and the rotation axis of the work is approximately 27 degrees. It is possible to realize the most efficient turning by using the general-purpose cutting tool.

【0028】このような旋削加工方法は、本発明の刃具
駆動装置の第1の制御手段及び第2の制御手段によって
容易に実施することができる。従って、原理的には連続
運転が可能であるにもかかわらず、従来は連続運転が非
常に困難であった数値制御旋盤や自動旋盤に本発明を適
用することで、長時間連続切削加工を安全且つ容易に行
うことが可能となる。
Such a turning method can be easily carried out by the first control means and the second control means of the cutting tool driving device of the present invention. Therefore, although continuous operation is possible in principle, continuous operation can be performed safely for a long time by applying the present invention to a numerically controlled lathe or an automatic lathe, which has been extremely difficult in the past. And it becomes possible to perform easily.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る旋削加工装置の要部構
成図。
FIG. 1 is a configuration diagram of a main part of a turning apparatus according to an embodiment of the present invention.

【図2】本実施例の刃具駆動装置により制御された刃具
の軌跡を示す図。
FIG. 2 is a diagram showing a trajectory of a cutting tool controlled by a cutting tool driving device of the present embodiment.

【図3】本実施例の刃具駆動装置の構成要素である昇降
制御部の処理例、例えば第1旋削工程の流れを示すフロ
ーチャート。
FIG. 3 is a flowchart showing a processing example of a lifting control unit which is a component of the cutting tool driving device of the present embodiment, for example, a flow of a first turning process.

【図4】本実施例による旋削部位の状態を示す部分拡大
図。
FIG. 4 is a partial enlarged view showing a state of a turning portion according to the present embodiment.

【図5】従来法に係る旋削加工方法の説明図。FIG. 5 is an explanatory view of a turning method according to a conventional method.

【符号の説明】[Explanation of symbols]

1 刃具駆動装置 11 比率設定部 12 昇降制御部 2 刃具支持部 3 刃具 4 ワーク(被削材) 41 回転軸 1 Cutting Tool Driving Device 11 Ratio Setting Section 12 Elevating Control Section 2 Cutting Tool Supporting Section 3 Cutting Tool 4 Workpiece (Work Material) 41 Rotating Shaft

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 回転する被削材の表層との相対位置が該
被削材の回転軸と平行の方向に定速で変位する刃具と、
該被削材の回転軸を指向する前記刃具の先端位置を制御
する手段とを備える装置を用いた旋削加工方法におい
て、 前記刃具の先端位置を前記回転軸から遠ざかる方向及び
前記回転軸に近づく方向に交互且つ周期的に変えて前記
被削材の表層を波状に旋削する第1旋削工程と、 前記刃具の先端位置と前記回転軸との距離を一定に保持
して前記第1旋削工程を経た被削材の波状の表層を除去
する第2旋削工程と、 を有することを特徴とする旋削加工方法。
1. A cutting tool whose relative position to a surface layer of a rotating work material is displaced at a constant speed in a direction parallel to a rotation axis of the work material,
In a turning method using a device provided with a means for controlling the tip position of the cutting tool that points the rotation axis of the work material, a direction in which the tip position of the cutting tool moves away from the rotation axis and a direction approaching the rotation axis. A first turning step of alternately and periodically changing the surface layer of the work material into a wavy shape, and the first turning step while keeping the distance between the tip position of the cutting tool and the rotary shaft constant. A second turning step for removing a corrugated surface layer of a work material, and a turning method.
【請求項2】 前記第1旋削工程における前記刃具の先
端と該先端が指向する前記回転軸との距離が極大になる
点は、加工前の当該被削材の表層付近であることを特徴
とする請求項1記載の旋削加工方法。
2. The point at which the distance between the tip of the cutting tool and the rotation axis on which the tip points in the first turning step becomes maximum is near the surface layer of the work material before machining. The turning method according to claim 1.
【請求項3】 前記第1旋削工程における前記刃具先端
の変位比率は、該先端の前記回転軸からの距離が極小に
なる点から極大になる点までの送り量を1としたとき
に、該極大点から次の極小点までの送り量が略3となる
比率であることを特徴とする請求項1または2記載の旋
削加工方法。
3. The displacement ratio of the tip of the cutting tool in the first turning step is calculated when the feed amount from the point where the distance of the tip from the rotation axis is the minimum to the point where the distance is the maximum is 1. The turning method according to claim 1 or 2, wherein the feed amount from the maximum point to the next minimum point is a ratio of about 3.
【請求項4】 前記極大点から次の極小点までのスロー
プと前記回転軸との為す角度が略27度であることを特
徴とする請求項3記載の旋削加工方法。
4. The turning method according to claim 3, wherein an angle formed by the slope from the maximum point to the next minimum point and the rotation axis is approximately 27 degrees.
【請求項5】 回転する被削材の表層を旋削するための
刃具を駆動する装置であって、前記被削材の回転軸を指
向する刃具の先端を前記回転軸から遠ざかる方向及び前
記回転軸に近づく方向に交互且つ周期的に変位させる第
1の制御手段と、前記刃具の先端位置を前記回転軸から
一定距離に保持する第2の制御手段と、を少なくとも備
えて成る刃具駆動装置。
5. A device for driving a cutting tool for turning a surface layer of a rotating work material, comprising: a direction in which a tip of the cutting tool, which points the rotation axis of the work material, is away from the rotation axis; and the rotation axis. A cutting tool driving device comprising at least first control means for displacing the cutting tool alternately and periodically and a second control means for holding the tip position of the cutting tool at a constant distance from the rotation axis.
【請求項6】 前記第1の制御手段は、前記刃具先端の
前記回転軸からの距離が極小になる点から極大になる点
までの送り量と該極大点から次の極小点までの送り量と
の比率を任意に設定する比率設定部と、設定された比率
に従って前記刃具の昇降時間を周期的に制御する昇降制
御部と、を含むことを特徴とする請求項5記載の刃具駆
動装置。
6. The feed amount from a point where the distance of the tip of the cutting tool from the rotation axis is the maximum to the point where the distance is the maximum and the feed amount from the maximum point to the next minimum point. 6. The blade tool driving device according to claim 5, further comprising: a ratio setting unit that arbitrarily sets a ratio between the blade and the blade, and a lifting control unit that periodically controls the lifting time of the blade according to the set ratio.
JP12005194A 1994-06-01 1994-06-01 Lathe turning method and blade tool drive device Pending JPH07328801A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12005194A JPH07328801A (en) 1994-06-01 1994-06-01 Lathe turning method and blade tool drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12005194A JPH07328801A (en) 1994-06-01 1994-06-01 Lathe turning method and blade tool drive device

Publications (1)

Publication Number Publication Date
JPH07328801A true JPH07328801A (en) 1995-12-19

Family

ID=14776681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12005194A Pending JPH07328801A (en) 1994-06-01 1994-06-01 Lathe turning method and blade tool drive device

Country Status (1)

Country Link
JP (1) JPH07328801A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106112011A (en) * 2016-06-30 2016-11-16 广东技术师范学院 A kind of hot machining method and device of temperature-controllable
JP2017102630A (en) * 2015-12-01 2017-06-08 ファナック株式会社 Numerical controller for performing fixed cycle operation control of muscle processing for shredding chips
CN111390204A (en) * 2020-04-20 2020-07-10 南京嘉玺数控科技有限公司 Active chip breaking method for continuous turning
CN111390205A (en) * 2020-04-20 2020-07-10 南京工业大学 Unmanned workshop-oriented active chip breaking method and device for metal cutting machining
JP2021065942A (en) * 2019-10-18 2021-04-30 高松機械工業株式会社 Machine tool and threading machining method using the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017102630A (en) * 2015-12-01 2017-06-08 ファナック株式会社 Numerical controller for performing fixed cycle operation control of muscle processing for shredding chips
US10248100B2 (en) 2015-12-01 2019-04-02 Fanuc Corporation Numerical controller
CN106112011A (en) * 2016-06-30 2016-11-16 广东技术师范学院 A kind of hot machining method and device of temperature-controllable
CN106112011B (en) * 2016-06-30 2019-03-01 广东技术师范学院 A kind of hot machining method and device of temperature-controllable
JP2021065942A (en) * 2019-10-18 2021-04-30 高松機械工業株式会社 Machine tool and threading machining method using the same
CN111390204A (en) * 2020-04-20 2020-07-10 南京嘉玺数控科技有限公司 Active chip breaking method for continuous turning
CN111390205A (en) * 2020-04-20 2020-07-10 南京工业大学 Unmanned workshop-oriented active chip breaking method and device for metal cutting machining

Similar Documents

Publication Publication Date Title
JP2719345B2 (en) Processing control device using force sensor
CN101015871B (en) De-burring apparatus for a hobbing machine
EP0918595B1 (en) Improvements relating to grinding methods
US5660579A (en) Method and apparatus for forming a grinding wheel
US7441484B1 (en) CNC prescribe method to encourage chip breaking
CN103785905A (en) Machine tool
US20140379115A1 (en) Numerical controller of machine tool for drilling
JPH07328801A (en) Lathe turning method and blade tool drive device
US5011345A (en) Contour machining method and apparatus for printed circuit board
US6893323B2 (en) Method of and apparatus for removing material
JP3412463B2 (en) Friction welding method
JPH0369647B2 (en)
JP4889162B2 (en) Thrusting method
JPH106181A (en) Control method for main spindle rotation speed in nc machine tool
JP2009131072A (en) Method of manufacturing of commutator, method of manufacturing of armature, and apparatus for manufacturing commutator
JP2886279B2 (en) Cutting control device in cutting machine
JP3215485B2 (en) Screw processing equipment
SU1225695A1 (en) Method of tangential turning of bodies of revolution
JPH0255167B2 (en)
JP4396491B2 (en) Grinding method
JP6012103B2 (en) Grooving method of multi-grooved roller for wire saw
JPH07256556A (en) Grinding work by controlling number of revolution of spindle motor of surface grinding machine
JP2520508B2 (en) How to remove cuttings from a drill
JP2752124B2 (en) Laser processing method
JPS63300865A (en) Grinding device