JPH07326338A - Manufacture of battery - Google Patents

Manufacture of battery

Info

Publication number
JPH07326338A
JPH07326338A JP6116835A JP11683594A JPH07326338A JP H07326338 A JPH07326338 A JP H07326338A JP 6116835 A JP6116835 A JP 6116835A JP 11683594 A JP11683594 A JP 11683594A JP H07326338 A JPH07326338 A JP H07326338A
Authority
JP
Japan
Prior art keywords
battery
electrode group
electrolytic solution
centrifugal force
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6116835A
Other languages
Japanese (ja)
Inventor
Mikiaki Tadokoro
幹朗 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6116835A priority Critical patent/JPH07326338A/en
Publication of JPH07326338A publication Critical patent/JPH07326338A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To make an electrolyte uniformly penetrate into an electrode group in a short time by rotating an armor can with a central axis as the rotating axis, pressurizing the electrolyte injected by the centrifugal force from the center toward the outer circumference, and making it forcedly penetrate. CONSTITUTION:A battery is rotated with a vertically extended central axis as the rotating axis, or rotated around its own axis. The centrifugal force acts on the battery rotated in this direction from the center of the battery toward the outer circumference as shown by the arrow. The centrifugal force pressurizes the electrolyte injected into an armor can 7 from the center toward the outer circumference. The electrolyte pressurized in this direction is never differed between the upper and lower parts of an electrode group 8. Thus, it is never caused that the electrolyte injected into the armor can 7 is collected to the bottom part and does not penetrate into the upper part of the electrode group 8 as in the past, and the electrolyte is uniformly dispersed. When it is made to penetrate into the electrode group having a center hole 8A, particularly, the electrolyte of the center hole 8A can be made to uniformly penetrate into the electrode group 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電池の製造方法に関し、
とくに、電解液を電極群に速やかに浸透させるために遠
心力を利用する電池の製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for manufacturing a battery,
In particular, the present invention relates to a battery manufacturing method that utilizes centrifugal force to rapidly permeate an electrolytic solution into an electrode group.

【0002】[0002]

【従来の技術】電池は、外装缶に電極群を挿入し、その
後に電解液を注液して製造される。注液された電解液
は、速やかに電極群に浸透させることが大切である。浸
透に時間がかかると生産性が低下するからである。とく
に、電極板に水素吸蔵合金を使用するニッケル−水素電
池は、高率放電特性を実現するために注液時間を短くす
ることが大切である。電解液の浸透に時間がかかると、
電極板である水素吸蔵合金が酸化して性能が低下してし
まうからである。
2. Description of the Related Art A battery is manufactured by inserting an electrode group into an outer can and then injecting an electrolytic solution. It is important that the injected electrolyte is quickly permeated into the electrode group. This is because if it takes time to penetrate, productivity will decrease. In particular, for a nickel-hydrogen battery that uses a hydrogen storage alloy for the electrode plate, it is important to shorten the liquid injection time in order to achieve high rate discharge characteristics. If it takes time for the electrolyte to penetrate,
This is because the hydrogen storage alloy that is the electrode plate oxidizes and the performance deteriorates.

【0003】電解液の浸透時間を短縮するために、遠心
力を利用する技術が、特開昭62−139247号公報
と特開平2−22983号公報に記載されている。これ
等の公報に記載される方法は、図1に示す装置を使用し
て電解液を電極群に浸透させる。この図の装置は、水平
面内で回転されるアーム1の両端に、傾動ピン2を介し
て注液パイプ3と電池の保持台4とを傾動できるように
連結している。アーム1の中心には垂直の回転軸5を連
結し、回転軸5をモーター6に連結している。モーター
6が回転軸5を回転させると、アーム1が水平面内で回
転され、アーム1の両端に連結された保持台4は水平に
傾動して水平面に振り出される状態で回転される。回転
される保持台4に固定された電池は、矢印で示す方向に
遠心力が作用する。遠心力は外装缶7に充填された電解
液を加圧して強制的に電極群8の内部に浸透させる。
Techniques utilizing centrifugal force in order to reduce the permeation time of the electrolytic solution are described in JP-A-62-139247 and JP-A-2-22983. The method described in these publications uses the device shown in FIG. 1 to permeate an electrolyte solution into an electrode group. In the apparatus shown in this figure, a liquid injection pipe 3 and a battery holder 4 are tiltably connected to both ends of an arm 1 rotated in a horizontal plane via tilt pins 2. A vertical rotating shaft 5 is connected to the center of the arm 1, and the rotating shaft 5 is connected to a motor 6. When the motor 6 rotates the rotary shaft 5, the arm 1 is rotated in a horizontal plane, and the holding bases 4 connected to both ends of the arm 1 are horizontally tilted and rotated in a state of being swung to the horizontal plane. Centrifugal force acts on the battery fixed to the rotating holding table 4 in a direction indicated by an arrow. The centrifugal force pressurizes the electrolytic solution filled in the outer can 7 to forcefully penetrate into the electrode group 8.

【0004】[0004]

【発明が解決しようとする課題】図1に示す装置を使用
して、遠心力で電解液を加圧する方法は、電解液を注液
した後に静置する方法に比較すると、短時間で電解液を
電極群に浸透できる。このため、電池を能率よく多量生
産できると共に、ニッケル−水素電池では水素吸蔵合金
の酸化を防止できる特徴がある。
The method of pressurizing the electrolytic solution by centrifugal force using the apparatus shown in FIG. 1 is faster than the method of injecting the electrolytic solution and then leaving it stationary. Can penetrate into the electrode group. Therefore, the battery can be efficiently mass-produced, and the nickel-hydrogen battery can prevent the oxidation of the hydrogen storage alloy.

【0005】しかしながら、図1に示す装置を使用し
て、電解液を電極群に浸透させると、電解液の方向が図
2の矢印で示すように外装缶7の底に向かう方向となる
ので、図のクロスハッチングで示す電極群8の上部に充
分に浸透させるのが難しい欠点があった。このため、電
極群8の全体に充分に電解液を浸透させるのに時間がか
かり、このことが多量生産される電池の生産性を低下さ
せる原因となっている。
However, when the electrolytic solution is permeated into the electrode group using the apparatus shown in FIG. 1, the direction of the electrolytic solution is toward the bottom of the outer can 7 as indicated by the arrow in FIG. There is a drawback that it is difficult to sufficiently penetrate into the upper part of the electrode group 8 shown by cross hatching in the figure. For this reason, it takes time to sufficiently permeate the electrolytic solution into the entire electrode group 8, which causes a decrease in the productivity of batteries that are mass-produced.

【0006】さらに、水素吸蔵合金を電極に使用するニ
ッケル−水素電池は、電解液を電極群に充分に浸透させ
るまでに時間がかかり、電解液を注液した後、直ちに初
期充電できない欠点があった。初期充電までに時間がか
かることは、充電されるまでに水素吸蔵合金が酸化して
電池性能を低下させる原因となる。水素吸蔵合金は、初
期充電して水素を吸蔵させた状態ではほとんど酸化しな
いが、電解液を注液して水素吸蔵合金が液に接触する状
態では特に酸化しやすい環境となる。このため、水素吸
蔵合金を使用する電池は、電池性能の低下を少なくする
ために、注液してから初期充電するまでの時間をいかに
短縮するかが大切である。電解液が電極群に充分に浸透
しない状態で初期充電をすると、全ての電極群が理想的
な状態で電解液に接触しない状態で充電するので、水素
吸蔵合金に均一に水素を吸蔵できず、電池の内圧が上昇
する弊害が発生する。
Further, the nickel-hydrogen battery using a hydrogen storage alloy in the electrodes has a drawback that it takes a long time to sufficiently permeate the electrolytic solution into the electrode group and the initial charging cannot be performed immediately after pouring the electrolytic solution. It was The time required for initial charging causes the hydrogen storage alloy to oxidize before being charged, resulting in deterioration of battery performance. The hydrogen storage alloy hardly oxidizes in a state where hydrogen is stored by initial charge, but an environment in which the hydrogen storage alloy is liable to oxidize is obtained when the electrolyte is injected and the hydrogen storage alloy comes into contact with the solution. For this reason, in a battery using a hydrogen storage alloy, it is important to shorten the time from the injection of liquid to the initial charging in order to reduce deterioration of battery performance. When the initial charge is performed in a state where the electrolytic solution does not sufficiently penetrate into the electrode group, all the electrode groups are charged in a state where they do not come into contact with the electrolytic solution in an ideal state, so that hydrogen cannot be uniformly stored in the hydrogen storage alloy, The internal pressure of the battery rises.

【0007】本発明は、遠心力を利用してより効率よく
電解液を電極群に浸透させることを目的に開発されたも
ので、本発明の重要な目的は、外装缶に注液した電解液
を電極群の内部に短時間に均一に浸透できる電池の製造
方法を提供することにある。
The present invention was developed for the purpose of more efficiently permeating the electrolytic solution into the electrode group by utilizing centrifugal force. An important object of the present invention is to provide an electrolytic solution injected into an outer can. Another object of the present invention is to provide a method for manufacturing a battery that can uniformly penetrate the inside of the electrode group in a short time.

【0008】[0008]

【課題を解決するための手段】本発明の電池の製造方法
は、前述の目的を達成するために下記の構成を備える。
電池の製造方法は、電極群8を挿入した外装缶7に電解
液を注液し、注液した電解液の遠心力を利用して電極群
8に強制的に浸透させる方法を改良したものである。電
解液を電極群8に短時間で均一に浸透させるために、電
解液を電極群8に浸透させるときに、本発明の製法は、
電池を、縦方向に延長された中心軸を回転軸として回転
させる。本明細書において、この方向の回転を自転と記
載する。自転される外装缶7に内蔵された電極群8に
は、図3の矢印で示すように、電池の中心から外装缶7
の外周に向かう遠心力で電解液を電極群8に浸透させ
る。この方向に作用する遠心力は、電解液を図2の矢印
で示すように外装缶7の下方に強制移動させるのではな
い。電池の中心から外周に向かって電解液を加圧して強
制的に浸透させる。円筒形の電池は電極群8に中心孔8
Aがあるので、ここに電解液を注液して理想的な状態で
電極群8に浸透できる特長がある。ただ、本発明の電池
の製造方法は、遠心力で電解液を電極群に浸透させる電
池を、円筒電池に特定しない。電池には角形電池も利用
できるのは言うまでもない。
The method of manufacturing a battery of the present invention has the following constitution in order to achieve the above-mentioned object.
The battery manufacturing method is an improved method of injecting the electrolytic solution into the outer can 7 into which the electrode group 8 is inserted and forcibly permeating into the electrode group 8 using the centrifugal force of the injected electrolytic solution. is there. In order to allow the electrolytic solution to permeate the electrode group 8 uniformly in a short time, when the electrolytic solution permeates into the electrode group 8, the manufacturing method of the present invention is
The battery is rotated about a central axis extending in the longitudinal direction as a rotation axis. In this specification, rotation in this direction is referred to as rotation. As shown in the arrow in FIG. 3, the electrode group 8 built in the outer can 7 that rotates is arranged from the center of the battery to the outer can 7.
The electrolytic solution is permeated into the electrode group 8 by the centrifugal force toward the outer periphery of the electrode group 8. The centrifugal force acting in this direction does not forcibly move the electrolytic solution below the outer can 7 as indicated by the arrow in FIG. The electrolyte is pressed from the center of the battery toward the outer periphery to forcefully penetrate. The cylindrical battery has a central hole 8 in the electrode group 8.
Since there is A, it has a feature that an electrolyte can be injected here to penetrate the electrode group 8 in an ideal state. However, the battery manufacturing method of the present invention does not specify a battery in which the electrolytic solution permeates the electrode group by centrifugal force as a cylindrical battery. It goes without saying that prismatic batteries can also be used as batteries.

【0009】さらに、本発明の電池の製造方法は、図3
の矢印で示すように、電池の中心から外周に遠心力を作
用させるものであるが、図4の矢印で示すように、縦方
向にも遠心力を作用させることも可能であるのは言うま
でもない。図4の矢印で示すように、縦方向と半径方向
の両方に遠心力を作用させるには、電池の中心軸を回転
軸とし、さらに電池の中心軸と直交する軸を回転軸とし
て回転させる。本明細書において、電池の中心軸と直交
する軸を回転軸とした回転を公転と記載する。
Furthermore, the method of manufacturing the battery of the present invention is as shown in FIG.
The centrifugal force is applied from the center of the battery to the outer periphery as indicated by the arrow in Fig. 4, but it goes without saying that the centrifugal force can also be applied in the longitudinal direction as indicated by the arrow in Fig. 4. . As shown by the arrow in FIG. 4, in order to apply a centrifugal force to both the vertical direction and the radial direction, the central axis of the battery is used as the rotation axis, and the axis orthogonal to the central axis of the battery is rotated as the rotation axis. In this specification, rotation about an axis orthogonal to the center axis of the battery as a rotation axis is referred to as revolution.

【0010】本発明に請求項2に記載する電池の製造方
法は、水素吸蔵合金を電極に使用する電池の製造方法で
ある。水素吸蔵合金を電極に使用する電池は、電極群8
を挿入した外装缶7に電解液を注液し、注液して電極群
8に浸透させた後、初期充電するまでの間に、遠心力を
利用して電解液を電極群8に強制的に浸透させる。
A method for producing a battery according to a second aspect of the present invention is a method for producing a battery using a hydrogen storage alloy as an electrode. Batteries that use hydrogen storage alloy for the electrodes are electrode group 8
The electrolytic solution is injected into the outer can 7 in which is inserted, and after the solution is injected and permeates the electrode group 8, the electrolytic solution is forcibly applied to the electrode group 8 by using centrifugal force until the initial charging. Permeate into.

【0011】[0011]

【作用】本発明の電池の製造方法は、図3に示すよう
に、電池の縦方向に延長された中心軸を回転軸として回
転、すなわち自転させる。この方向に回転される電池
は、矢印で示すように、電池の中心から外周に向かって
遠心力が作用する。遠心力は外装缶7に注液された電解
液を、中心から外周に向かって加圧する。この方向に加
圧される電解液は、電極群8の上下で差ができない。し
たがって、従来の製法のように、外装缶7に注液された
電解液が、底部に集中して電極群8の上部に浸透されな
い弊害を防止して、均一に分散できる。とくに、図3に
示すように、中心孔8Aのある電極群8に浸透させると
きに、中心孔8Aの電解液を電極群8に均一に浸透でき
る特長がある。
In the method of manufacturing a battery of the present invention, as shown in FIG. 3, the battery is rotated, that is, rotated about a central axis extending in the longitudinal direction of the battery as a rotation axis. A centrifugal force acts on the battery rotated in this direction from the center of the battery toward the outer periphery, as indicated by the arrow. The centrifugal force pressurizes the electrolytic solution injected into the outer can 7 from the center toward the outer periphery. The electrolytes pressurized in this direction cannot be different above and below the electrode group 8. Therefore, unlike the conventional manufacturing method, it is possible to prevent the electrolyte solution poured into the outer can 7 from being concentrated in the bottom portion and permeating into the upper portion of the electrode group 8 and being dispersed uniformly. In particular, as shown in FIG. 3, when the electrode group 8 having the central hole 8A is permeated, the electrolytic solution in the central hole 8A can be uniformly permeated into the electrode group 8.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。ただし、以下に示す実施例は、本発明の技術思想
を具体化するための電池の製造方法を例示するものであ
って、本発明は電池の製造方法を下記のものに特定しな
い。
Embodiments of the present invention will be described below with reference to the drawings. However, the examples described below exemplify a battery manufacturing method for embodying the technical idea of the present invention, and the present invention does not specify the battery manufacturing method to the following.

【0013】下記のようにして渦巻状の電極群を製作す
る。電極群は、正極板と負極板とをセパレータを介して
積層して巻回して製作する。本発明の電池の製造方法
は、製造する電池の種類を特定するものではない。それ
は、本発明の製法が、遠心力を利用して電解液を電極群
に浸透させることを特徴とするものであるから、電極群
の材質や構造に関係なく、遠心力で電解液を電極群に効
率よく浸透できるからである。具体的に電池の製造方法
を例示するために、以下、渦巻状の電極群を内蔵するニ
ッケル−水素電池を例とした製造方法を説明する。ただ
し、本発明の製法は、電池の種類を下記に詳述するニッ
ケル−水素電池に特定しないのは言うまでもなく、ニッ
ケル−水素電池と同じように遠心力を利用して、電解液
を電極群に浸透させて、ニッケル−カドミウム電池やリ
チウムイオン二次電池も製造できる。さらに、本発明の
製法は、電極群を渦巻状のものに特定するものではな
く、正極板と負極板とをセパレータを介して積層した積
層構造の電極群の電池も製造できる。
A spiral electrode group is manufactured as follows. The electrode group is manufactured by stacking and winding a positive electrode plate and a negative electrode plate with a separator interposed therebetween. The battery manufacturing method of the present invention does not specify the type of battery to be manufactured. Since the manufacturing method of the present invention is characterized in that the electrolytic solution is permeated into the electrode group by utilizing the centrifugal force, the electrolytic solution is centrifugally applied to the electrode group regardless of the material or structure of the electrode group. This is because it can efficiently penetrate into. In order to specifically exemplify the manufacturing method of the battery, the manufacturing method will be described below taking a nickel-hydrogen battery having a spiral electrode group as an example. However, it goes without saying that the manufacturing method of the present invention does not specify the type of battery as a nickel-hydrogen battery which will be described in detail below. By permeating, nickel-cadmium batteries and lithium-ion secondary batteries can also be manufactured. Furthermore, the manufacturing method of the present invention does not specify the electrode group as a spiral type, but can also manufacture a battery having a laminated structure in which a positive electrode plate and a negative electrode plate are laminated via a separator.

【0014】ニッケル−水素電池を下記の工程で製造す
る。 (1) 水素吸蔵合金の作製と粉砕工程 希土類金属であるミッシュメタルと、コバルトと、アル
ミニウムと、マンガンとを所定の重量に秤量して混合
し、これをルツボに入れて高周波溶解炉で焼成し、組成
式がMmNi3.4Co0.8Al0.2Mn0.6で示される水素
吸蔵合金を作製する。得られた水素吸蔵合金の合金鋳塊
を、不活性ガス中で粉砕する。粉砕した水素吸蔵合金は
平均粒子径を150μm以下となるようにする。
A nickel-hydrogen battery is manufactured by the following steps. (1) Production and pulverization process of hydrogen storage alloy Misch metal, which is a rare earth metal, cobalt, aluminum, and manganese are weighed and mixed to a predetermined weight, put in a crucible and fired in a high-frequency melting furnace. to prepare a hydrogen storage alloy whose composition formula is represented by MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 . The obtained alloy ingot of the hydrogen storage alloy is crushed in an inert gas. The crushed hydrogen storage alloy has an average particle size of 150 μm or less.

【0015】(2) 負極板の作製工程 粉砕した水素吸蔵合金の粉末に所定量の添加物を混合し
て活物質とし、この活物質に、水と結着剤としてポリテ
トラフルオロエチレン粉末を混練りしてペースト状にす
る。結着剤であるポリテトラフルオロエチレン粉末の添
加量は、活物質に対して5重量%とする。得られたペー
ストをパンチングメタルである集電体の両面に圧着した
後、プレスして負極板を製作する。
(2) Step of manufacturing negative electrode plate A powder of hydrogen-absorbing alloy that has been ground is mixed with a predetermined amount of an additive to form an active material, and this active material is mixed with water and polytetrafluoroethylene powder as a binder. Knead into a paste. The addition amount of the polytetrafluoroethylene powder, which is a binder, is 5% by weight with respect to the active material. The obtained paste is pressure-bonded to both sides of a current collector which is a punching metal, and then pressed to manufacture a negative electrode plate.

【0016】(3) 電極群の作製工程 焼結式ニッケル極である正極板と、前記の工程で製作さ
れた負極板とを、不織布製のセパレータを介して積層
し、これを巻回して渦巻状の電極群とする。
(3) Step of producing electrode group A positive electrode plate, which is a sintered nickel electrode, and a negative electrode plate produced in the above step are laminated with a separator made of non-woven fabric, which is wound and spirally wound. A group of electrodes.

【0017】(4) 電極群を挿入した外装缶に注液する
工程 前記の工程で製作された渦巻状の電極群を、円筒状の単
3型の外装缶に挿入して試験用のセルを製作する。この
ようにして製作した試験用のセルに下記に示す条件で、
比重が1.3のKOH水溶液である電解液を注液し、電
解液を電極群に浸透させた後直ちに開口部を閉塞してニ
ッケル−水素電池を作製した。このようにして作製した
ニッケル−水素電池の理論容量は1000mAである。
(4) Step of injecting liquid into the outer can in which the electrode group has been inserted The spiral electrode group manufactured in the above step is inserted into a cylindrical AA-type outer can to prepare a test cell. To manufacture. Under the conditions shown below in the test cell thus manufactured,
A nickel-hydrogen battery was manufactured by injecting an electrolytic solution, which is a KOH aqueous solution having a specific gravity of 1.3, and allowing the electrolytic solution to permeate the electrode group and immediately closing the openings. The theoretical capacity of the nickel-hydrogen battery thus produced is 1000 mA.

【0018】電極群に挿入した外装缶に電解液を注液
し、注液した電解液を電極群に浸透させる工程を下記の
条件して、本発明の方法で製造した電池(A1〜A6)
と、従来の方法で製造した電池(X1〜X2)とを試作
し、その特性を測定した。
Batteries produced by the method of the present invention (A1 to A6) under the following conditions, in which the electrolytic solution is injected into the outer can inserted in the electrode group and the injected electrolytic solution is allowed to penetrate into the electrode group.
And the batteries (X1 to X2) manufactured by the conventional method were prototyped and their characteristics were measured.

【0019】ただし、本発明の実施例にかかる製法は、
電池を自転させる回転数を2700rpmとし、回転時
間を10秒に設定した。従来の製法は電池を公転させる
回転数を500rpmとし、回転時間は同じ10秒に設
定した。本発明の電池の回転数を速くしたのは、回転半
径が小さいので同じ回転数では遠心力が弱くなるからで
ある。遠心力は、回転数の自乗と回転半径の積に比例し
て大きくなる。単3電池の半径は約7mmである。これ
に対して従来の方法は、回転軸の中心から電池の底面ま
での距離を200mmとした。したがって、本発明の方
法は、従来の方法の回転数の(200/7)1/2倍の約
2700rpmに設定して、遠心力をほぼ一定に調製し
た。
However, the manufacturing method according to the embodiment of the present invention is
The rotation speed for rotating the battery was set to 2700 rpm, and the rotation time was set to 10 seconds. In the conventional manufacturing method, the rotation speed for revolving the battery was 500 rpm, and the rotation time was set to the same 10 seconds. The reason for increasing the rotation speed of the battery of the present invention is that the centrifugal force becomes weak at the same rotation speed because the rotation radius is small. The centrifugal force increases in proportion to the product of the square of the number of revolutions and the radius of gyration. The radius of an AA battery is about 7 mm. On the other hand, in the conventional method, the distance from the center of the rotating shaft to the bottom surface of the battery is 200 mm. Therefore, in the method of the present invention, the centrifugal force was adjusted to be approximately constant by setting the rotation speed to (200/7) 1/2 times that of the conventional method to about 2700 rpm.

【0020】外装缶に電解液を注液して回転させる装置
を、図5と図6に示す。図5に示す装置は、モーター1
0を基台9に固定し、モーター10の回転軸に、外装缶
7を固定する回転台11を固定している。回転台11は
外装缶7を挟着するシリンダー12を内蔵している。回
転台11のシリンダー12に加圧空気を供給するため
に、回転台11にはカップリング13を連結している。
カップリング13は供給管に圧入される加圧空気をシリ
ンダー12に供給する。回転台11は中心に垂直の姿勢
で外装缶7を挟着する。挟着される外装缶7の中心でそ
の上方には、電解液を注液する注液パイプ3を下向きに
配設している。この装置は、回転台11に外装缶7を挟
着してモーター10で回転台11を回転させて外装缶7
を回転させる。注液パイプ3は、電極群8を挿入した外
装缶7の中心に電解液を注液する。この図に示す装置
は、外装缶7を自転させながら注液することができる。
An apparatus for injecting an electrolytic solution into an outer can and rotating it is shown in FIGS. 5 and 6. The device shown in FIG.
0 is fixed to the base 9, and the rotary base 11 for fixing the outer can 7 is fixed to the rotary shaft of the motor 10. The turntable 11 has a built-in cylinder 12 for holding the outer can 7. A coupling 13 is connected to the rotary table 11 in order to supply pressurized air to the cylinder 12 of the rotary table 11.
The coupling 13 supplies the pressurized air, which is press-fitted into the supply pipe, to the cylinder 12. The turntable 11 holds the outer can 7 in a vertical posture with respect to the center. A liquid injection pipe 3 for injecting an electrolytic solution is arranged downward at the center of and above the outer can 7 to be sandwiched. In this device, the outer can 7 is clamped on the turntable 11, and the motor 10 rotates the turntable 11 to rotate the outer can 7.
To rotate. The liquid injection pipe 3 injects the electrolytic solution into the center of the outer can 7 into which the electrode group 8 is inserted. The apparatus shown in this figure can inject liquid while rotating the outer can 7.

【0021】図6に示す装置は、外装缶を自転させなが
ら公転できる。この装置は、水平面内で回転されるアー
ム1の先端に、傾動ピン2を介して傾動できるように自
転モーター14を連結している。自転モーター14の回
転軸にはカップリング15を介して注液パイプ3を連結
している。注液パイプ3には外装缶7を挟着して保持す
る挟着部材16を装着している。カップリング15は回
転する注液パイプ3に電解液を注液する。アーム1の回
転軸にもカップリング17を連結してる。このカップリ
ング17は、アーム1の回転軸に電解液を供給する。
The apparatus shown in FIG. 6 can revolve while rotating the outer can. In this device, a rotation motor 14 is connected to a tip of an arm 1 rotated in a horizontal plane so as to be tiltable via a tilting pin 2. The liquid injection pipe 3 is connected to the rotation shaft of the rotation motor 14 via a coupling 15. A pinching member 16 for pinching and holding the outer can 7 is attached to the liquid injection pipe 3. The coupling 15 injects the electrolytic solution into the rotating injection pipe 3. The coupling 17 is also connected to the rotary shaft of the arm 1. The coupling 17 supplies the electrolytic solution to the rotating shaft of the arm 1.

【0022】図5と図6に示す装着を使用して、下記の
ようにして、電極群を挿入した外装缶に電解液を注液し
て電池を製作する。
Using the mounting shown in FIGS. 5 and 6, the battery is manufactured by injecting the electrolytic solution into the outer can in which the electrode group is inserted as follows.

【0023】◎ 実施例1の電池A1 電極群を挿入した外装缶に、注液するときに、中心軸を
回転軸として外装缶を2700rpmで自転させて電解
液を電極群に浸透させる。その後、外装缶に封口板を固
定して開口部を閉塞して電池とする。この方法は、注液
しながら、外装缶7を図3に示す方向に2700rpm
で自転させる。
Battery A1 of Example 1 When injecting liquid into the outer can in which the electrode group is inserted, the outer can is rotated at 2700 rpm with the central axis as a rotation axis to allow the electrolytic solution to permeate the electrode group. Then, a sealing plate is fixed to the outer can and the opening is closed to obtain a battery. In this method, while pouring the liquid, the outer can 7 is rotated at 2700 rpm in the direction shown in FIG.
Rotate with.

【0024】◎ 実施例2の電池A2 電極群を挿入した外装缶を静置して注液し、その直後
に、中心軸を回転軸として外装缶を2700rpmで自
転させて電解液を電極群に浸透させる。その後、外装缶
に封口板を固定して開口部を閉塞して電池とする。この
方法は、注液した後に、外装缶7を図3に示す方向に2
700rpmで自転させる。
Battery A2 of Example 2 The outer can in which the electrode group was inserted was allowed to stand still to inject the liquid, and immediately after that, the outer can was rotated at 2700 rpm with the central axis as the rotation axis, and the electrolytic solution was applied to the electrode group. Infiltrate. Then, a sealing plate is fixed to the outer can and the opening is closed to obtain a battery. In this method, after pouring the liquid, the outer can 7 is moved in the direction shown in FIG.
Rotate at 700 rpm.

【0025】◎ 実施例3の電池A3 電極群を挿入した外装缶を静置して注液し、外装缶の開
口部を封口板で密閉した後に、中心軸を回転軸として外
装缶を2700rpmで自転させて電解液を電極群に浸
透させる。この方法は、外装缶を封口した直後に、外装
缶7を図3に示す方向に2700rpmで自転させる。
Battery A3 of Example 3 The outer can having the electrode group inserted therein was allowed to stand still to inject liquid, and after closing the opening of the outer can with the sealing plate, the outer can was rotated at 2700 rpm with the central axis as the rotation axis. The electrolyte is allowed to rotate to permeate the electrode group. In this method, immediately after sealing the outer can, the outer can 7 is rotated at 2700 rpm in the direction shown in FIG.

【0026】◎ 実施例4の電池A4 電極群を挿入した外装缶を500rpmで公転させなが
ら注液し、注液した直後に、中心軸を回転軸として外装
缶を2700rpmで自転させて電解液を電極群に浸透
させる。その後、外装缶に封口板を固定して開口部を閉
塞して電池とする。この方法は、外装缶7を図4で示す
ように2軸を回転軸として回転させる。
◎ Battery A4 of Example 4 The outer can in which the electrode group was inserted was injected while revolving at 500 rpm. Immediately after the injection, the outer can was rotated at 2700 rpm with the central axis as the rotation axis to remove the electrolytic solution. Permeate the electrode group. Then, a sealing plate is fixed to the outer can and the opening is closed to obtain a battery. In this method, the outer can 7 is rotated about two axes as shown in FIG.

【0027】◎ 実施例5の電池A5 電極群を挿入した外装缶を500rpmで公転させなが
ら注液し、注液した外装缶の開口部を封口板で密閉し、
その直後に、中心軸を回転軸として外装缶を2700r
pmで自転させて電解液を電極群に浸透させる。この方
法も、外装缶7を図4で示すように2軸を回転軸として
回転させる。
◎ Battery A5 of Example 5 The outer can in which the electrode group was inserted was injected while revolving at 500 rpm, and the opening of the injected outer can was sealed with a sealing plate.
Immediately after that, the outer can with the center axis of rotation of 2700r
Rotate at pm to permeate the electrolyte solution into the electrode group. Also in this method, the outer can 7 is rotated about two axes as shown in FIG.

【0028】◎ 実施例6の電池A6 電極群を挿入した外装缶を500rpmで公転させると
共に、外装缶の中心軸を回転軸として外装缶を2700
rpmで自転させて電解液を注液する。その後、外装缶
に封口板を固定して開口部を閉塞する。この方法も、外
装缶7を図4で示すように2軸を回転軸として回転させ
るものであるが、この方法は、外装缶を公転させながら
自転させる。
Battery A6 of Example 6 The outer can with the electrode group inserted was revolved at 500 rpm, and the outer can was rotated about the central axis of the outer can for 2700.
Rotate at rpm to inject the electrolyte. Then, the sealing plate is fixed to the outer can to close the opening. Also in this method, the outer can 7 is rotated about two axes as shown in FIG. 4, but this method causes the outer can to rotate while revolving.

【0029】以上は本発明の実施例にかかる製造方法で
あるが、以下は比較のために従来方法で試作する方法で
ある。
The above is the manufacturing method according to the embodiment of the present invention, but the following is a method of making a prototype by the conventional method for comparison.

【0030】△ 比較例1の電池X1 電極群を挿入した外装缶を静置して注液する。その後、
外装缶に封口板を固定して開口部を閉塞して電池とす
る。この方法は外装缶を自転も公転もさせず、回転によ
る遠心力を利用しない方法である。
△ Battery X1 of Comparative Example 1 An outer can having the electrode group inserted therein is allowed to stand still to inject liquid. afterwards,
A sealing plate is fixed to the outer can and the opening is closed to form a battery. In this method, the outer can is neither rotated nor revolved, and the centrifugal force generated by the rotation is not used.

【0031】△ 比較例2の電池X2 電極群を挿入した外装缶を500rpmで公転させなが
ら注液して、電解液を遠心力で電極群に浸透させる。そ
の後、外装缶に封口板を固定して開口部を閉塞して電池
とする。この方法は、外装缶7を図2で示すように回転
させる。
Δ Battery X2 of Comparative Example 2 An outer can in which the electrode group was inserted was poured while revolving at 500 rpm, and the electrolytic solution was permeated into the electrode group by centrifugal force. Then, a sealing plate is fixed to the outer can and the opening is closed to obtain a battery. In this method, the outer can 7 is rotated as shown in FIG.

【0032】△ 比較例3の電池X3 比較例電池X1を1時間静置して、注液した電解液を電
極群8に浸透させる。すなわち、外装缶7を封口した
後、1時間経過するまでは、初期充電を開始しない。
B Battery X3 of Comparative Example 3 The battery X1 of the comparative example is allowed to stand for 1 hour to allow the injected electrolytic solution to permeate the electrode group 8. That is, the initial charging is not started until 1 hour has passed after the outer can 7 is sealed.

【0033】△ 比較例4の電池X 比較例電池X1を5時間静置して、注液した電解液を電
極群8に浸透させる。すなわち、外装缶7を封口した
後、5時間経過するまでは、初期充電を開始しない。
Battery X of Comparative Example 4 The battery X1 of Comparative Example was allowed to stand for 5 hours to allow the injected electrolytic solution to permeate the electrode group 8. That is, after charging the outer can 7, the initial charging is not started until 5 hours have passed.

【0034】△ 比較例5の電池X5 比較例電池X1を24時間静置して、注液した電解液を
電極群8に浸透させる。すなわち、外装缶7を封口した
後、24時間経過するまでは、初期充電を開始しない。
B Battery X5 of Comparative Example 5 The battery X1 of Comparative Example is allowed to stand for 24 hours to allow the injected electrolytic solution to permeate the electrode group 8. That is, after the outer can 7 is sealed, the initial charging is not started until 24 hours have passed.

【0035】△ 比較例6の電池X6 比較例電池X2を1時間静置して、注液した電解液を電
極群8に浸透させる。すなわち、外装缶7を封口した
後、1時間経過するまでは、初期充電を開始しない。
B Battery X6 of Comparative Example 6 The battery X2 of Comparative Example is allowed to stand for 1 hour to allow the injected electrolytic solution to permeate the electrode group 8. That is, the initial charging is not started until 1 hour has passed after the outer can 7 is sealed.

【0036】△ 比較例7の電池X7 比較例電池X2を5時間静置して、注液した電解液を電
極群に浸透させる。すなわち、外装缶7を封口した後、
5時間経過するまでは、初期充電を開始しない。
Battery X7 of Comparative Example 7 The battery X2 of Comparative Example was allowed to stand for 5 hours to allow the injected electrolytic solution to permeate the electrode group. That is, after sealing the outer can 7,
The initial charging is not started until 5 hours have passed.

【0037】△ 比較例8の電池X8 比較例電池X2を24時間静置して、注液した電解液を
電極群に浸透させる。すなわち、外装缶7封口した後、
24時間経過するまでは、初期充電を開始しない。
Battery X8 of Comparative Example 8 The comparative battery X2 is allowed to stand for 24 hours to allow the injected electrolytic solution to permeate the electrode group. That is, after sealing the outer can 7,
The initial charging is not started until 24 hours have passed.

【0038】以上のようにして製作した実施例と比較例
の電池は、上記の工程を完了した直後に100mAで満
充電し、充電を継続しながら5時間後の電池内圧を測定
すると下記の表1の結果となった。比較電池X1〜X8
は、外装缶7を封口した後1〜24時間静置して充電を
開始することになる。
The batteries of Examples and Comparative Examples manufactured as described above were fully charged at 100 mA immediately after the above steps were completed, and the battery internal pressure was measured after 5 hours while continuing charging. The result was 1. Comparative batteries X1 to X8
Will start charging after leaving the outer can 7 closed for 1 to 24 hours.

【0039】[0039]

【表1】 [Table 1]

【0040】この表に示すように、本発明の方法で製造
した電池A1〜A6の電池は、従来の方法で製作した電
池X1〜X8に比較して内圧が低くなる。充電後の内圧
が低くなる電池は、電極群に電解液を均一に浸透してい
ることを意味する。電解液が電極群に充分に浸透されな
い電池を充電すると、内部で電気分解が起こってガスが
発生し、このガスが電池の内圧を高くするからである。
As shown in this table, the batteries A1 to A6 manufactured by the method of the present invention have a lower internal pressure than the batteries X1 to X8 manufactured by the conventional method. A battery in which the internal pressure after charging is low means that the electrolyte solution is uniformly permeated into the electrode group. This is because when a battery in which the electrolytic solution is not sufficiently permeated into the electrode group is charged, electrolysis occurs inside and gas is generated, which increases the internal pressure of the battery.

【0041】この表に示すように、本発明の実施例にか
かる電池は、内圧が0.101〜0.105MPaと相
当に低くなったのに対し、比較例の電池X1は内圧が
0.352MPaと異常に高くなった。それは、比較電
池X1は、遠心力を利用しないので、電解液が電極群に
充分に浸透されないからである。遠心力を利用して電解
液を浸透させる比較例電池X2は、電極群の上部に電解
液を充分に浸透できないので、内圧が0.276MPa
と本発明の実施例の電池よりも相当に高くなった。
As shown in this table, the batteries according to the examples of the present invention had a considerably low internal pressure of 0.101 to 0.105 MPa, whereas the battery X1 of the comparative example had an internal pressure of 0.352 MPa. And became extremely high. This is because the comparative battery X1 does not utilize the centrifugal force, and therefore the electrolytic solution is not sufficiently permeated into the electrode group. The comparative battery X2, which uses the centrifugal force to permeate the electrolytic solution, cannot sufficiently permeate the electrolytic solution above the electrode group, so the internal pressure is 0.276 MPa.
And was considerably higher than the batteries of the examples of the present invention.

【0042】外装缶に電解液を注液して静置すると、電
解液は次第に電極群の全体に浸透するようになるので、
比較電池X4とX7は充電後の内圧の上昇が、0.10
7MPaと、0.107MPaとなって比較電池X3と
X8に比べて低くなる。しかしながら、電解液を電極群
に浸透させるために、1時間以上も静置させる方法は、
多量生産される電池の生産性を低下させる。比較電池X
5とX8のように、長時間静置すると、水素吸蔵合金が
充電される前に酸化されて充電効率が著しく低下してし
まう欠点がある。水素吸蔵合金の電気特性の低下を極減
すると共に、多量生産される電池の生産性を改善するた
めには、電解液をいかに短時間に電極群に浸透できるか
が極めて大切である。
When the electrolytic solution is poured into the outer can and left to stand, the electrolytic solution gradually permeates the entire electrode group.
Comparative batteries X4 and X7 show an increase in internal pressure of 0.10 after charging.
7 MPa, which is 0.107 MPa, which is lower than those of the comparative batteries X3 and X8. However, the method of allowing the electrolytic solution to penetrate into the electrode group for 1 hour or more is
It reduces the productivity of mass-produced batteries. Comparative battery X
5 and X8, when left standing for a long time, there is a drawback that the hydrogen storage alloy is oxidized before being charged and the charging efficiency is significantly reduced. In order to minimize the deterioration of the electrical characteristics of the hydrogen storage alloy and improve the productivity of the battery that is mass-produced, it is extremely important how quickly the electrolyte can penetrate into the electrode group.

【0043】[0043]

【発明の効果】本発明の電池の製造方法は、図3に示す
ように、電解液を電極群に浸透させるときに、電池の中
心軸を回転軸として外装缶を回転し、遠心力で注液され
た電解液を中心から外周方向に加圧して強制的に浸透さ
せる。この方向に作用する遠心力で加圧される電解液
は、従来のように電極群の下部に集中することなく、上
下均一に分散して外周に加圧される。このため、本発明
の電池の製造方法は、外装缶に注液した電解液を、短時
間で均等に電極群に浸透できる。このため、多量生産す
る電池のタクトタイムを短縮して、高品質の電池を能率
よく多量生産できる優れた特長がある。
As shown in FIG. 3, the battery manufacturing method of the present invention rotates the outer can with the central axis of the battery as the axis of rotation and injects it by centrifugal force when the electrolyte is permeated into the electrode group. The liquid electrolyte is pressed from the center to the outer circumference to forcefully permeate. The electrolytic solution, which is pressurized by the centrifugal force acting in this direction, is not uniformly concentrated in the lower part of the electrode group as in the conventional case, but is uniformly dispersed vertically and is pressed to the outer periphery. Therefore, in the battery manufacturing method of the present invention, the electrolytic solution poured into the outer can can uniformly penetrate into the electrode group in a short time. Therefore, there is an excellent feature that the takt time of the battery to be mass-produced can be shortened and the high-quality battery can be efficiently mass-produced.

【図面の簡単な説明】[Brief description of drawings]

【図1】遠心力で電解液を電極群に浸透させる従来装置
の正面図
FIG. 1 is a front view of a conventional device in which an electrolytic solution is permeated into an electrode group by centrifugal force.

【図2】図1に示す装置が外装缶を回転させる状態を示
す概略断面図
FIG. 2 is a schematic sectional view showing a state in which the device shown in FIG. 1 rotates an outer can.

【図3】本発明の実施例にかかる方法で電解液を電極群
に浸透させる状態を示す概略断面図
FIG. 3 is a schematic sectional view showing a state in which an electrolytic solution is permeated into an electrode group by a method according to an embodiment of the present invention.

【図4】本発明の他の実施例にかかる方法で電解液を電
極群に浸透させる状態を示す概略断面図
FIG. 4 is a schematic cross-sectional view showing a state in which an electrolytic solution is permeated into an electrode group by a method according to another embodiment of the present invention.

【図5】本発明の電池の製造方法に使用する装置の一例
を示す一部断面正面図
FIG. 5 is a partial cross-sectional front view showing an example of an apparatus used in the battery manufacturing method of the present invention.

【図6】本発明の電池の製造方法に使用する装置の他の
例を示す一部断面正面図
FIG. 6 is a partial cross-sectional front view showing another example of the apparatus used in the battery manufacturing method of the present invention.

【符号の説明】 1…アーム 2…傾動ピン 3…注液パイプ 4…保持台 5…回転軸 6…モーター 7…外装缶 8…電極群 8A…中心孔 9…基台 10…モーター 11…回転台 12…シリンダー 13…カップリング 14…自転モーター 15…カップリング 16…挟着部材 17…カップリング[Explanation of symbols] 1 ... Arm 2 ... Tilt pin 3 ... Injection pipe 4 ... Holding table 5 ... Rotation shaft 6 ... Motor 7 ... Exterior can 8 ... Electrode group 8A ... Center hole 9 ... Base 10 ... Motor 11 ... Rotation Base 12 ... Cylinder 13 ... Coupling 14 ... Rotation motor 15 ... Coupling 16 ... Clamping member 17 ... Coupling

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極群を挿入した外装缶に電解液を注液
し、注液した電解液を遠心力を利用して電極群に強制的
に浸透させる電池の製造方法において、 電解液を電極群に浸透させる工程において、電池の縦方
向に延長された中心軸を回転軸として電池を回転させ、
電池の中心から外装缶に向かう遠心力で電解液を電極群
に浸透させることを特徴とする電池の製造方法。
1. A method for manufacturing a battery, in which an electrolytic solution is injected into an outer can in which an electrode group is inserted, and the injected electrolytic solution is forcibly penetrated into the electrode group by using centrifugal force. In the step of infiltrating the group, the battery is rotated about the central axis extending in the longitudinal direction of the battery as a rotation axis,
A method of manufacturing a battery, wherein the electrolytic solution is permeated into the electrode group by centrifugal force from the center of the battery toward the outer can.
【請求項2】 電極が水素吸蔵合金である電極群を挿入
した外装缶に電解液を注液し、注液した後初期充電する
までの間に、遠心力を利用して電解液を電極群に強制的
に浸透させる電池の製造方法において、 電解液を電極群に浸透させる工程において、電池の縦方
向に延長された中心軸を回転軸として電池を回転させ、
電池の中心から外装缶に向かう遠心力で電解液を電極群
に浸透させることを特徴とする電池の製造方法。
2. An electrolytic solution is poured into an outer can having an electrode group in which the electrode is a hydrogen storage alloy, and the electrolytic solution is charged by centrifugal force until the initial charging after the injection. In the method of manufacturing the battery forcibly permeating into the electrode, in the step of permeating the electrolytic solution into the electrode group, the battery is rotated with the central axis extending in the longitudinal direction of the battery as the rotation axis,
A method of manufacturing a battery, wherein the electrolytic solution is permeated into the electrode group by centrifugal force from the center of the battery toward the outer can.
JP6116835A 1994-05-30 1994-05-30 Manufacture of battery Pending JPH07326338A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6116835A JPH07326338A (en) 1994-05-30 1994-05-30 Manufacture of battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6116835A JPH07326338A (en) 1994-05-30 1994-05-30 Manufacture of battery

Publications (1)

Publication Number Publication Date
JPH07326338A true JPH07326338A (en) 1995-12-12

Family

ID=14696808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6116835A Pending JPH07326338A (en) 1994-05-30 1994-05-30 Manufacture of battery

Country Status (1)

Country Link
JP (1) JPH07326338A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337827A (en) * 2003-05-16 2004-12-02 Nikko Keisoku:Kk Electrode reaction apparatus in high gravitational field
CN101685888A (en) * 2008-09-25 2010-03-31 深圳市比克电池有限公司 Ageing method of liquid electrolyte battery
JP2011035088A (en) * 2009-07-31 2011-02-17 Shin Kobe Electric Mach Co Ltd Method and apparatus for manufacturing lithium ion capacitor
WO2012043948A1 (en) * 2010-09-30 2012-04-05 주식회사 엘지화학 Device and method for enhancing electrolyte impregnation for secondary battery
KR101334623B1 (en) * 2010-12-02 2013-11-29 주식회사 엘지화학 Degassing Method of Secondary Battery Using Centrifugal Force
CN103490035A (en) * 2013-09-24 2014-01-01 丹阳琦瑞机械有限公司 Method and equipment for centrifugal battery solution absorption
JP2015138713A (en) * 2014-01-23 2015-07-30 株式会社豊田自動織機 Thermostat and manufacturing method of power storage device
CN109037753A (en) * 2018-08-28 2018-12-18 王晓霞 A kind of electrolysis liquid infiltration equipment and invade profit method
CN112670680A (en) * 2020-12-23 2021-04-16 惠州市恒泰科技股份有限公司 Electrolyte infiltration method of soft package battery, soft package battery and preparation method of soft package battery

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004337827A (en) * 2003-05-16 2004-12-02 Nikko Keisoku:Kk Electrode reaction apparatus in high gravitational field
CN101685888A (en) * 2008-09-25 2010-03-31 深圳市比克电池有限公司 Ageing method of liquid electrolyte battery
JP2011035088A (en) * 2009-07-31 2011-02-17 Shin Kobe Electric Mach Co Ltd Method and apparatus for manufacturing lithium ion capacitor
US8728650B2 (en) 2010-09-30 2014-05-20 Lg Chem, Ltd. Apparatus and method for enhancing impregnation with electrolyte in secondary battery
WO2012043948A1 (en) * 2010-09-30 2012-04-05 주식회사 엘지화학 Device and method for enhancing electrolyte impregnation for secondary battery
JP2012533166A (en) * 2010-09-30 2012-12-20 エルジー・ケム・リミテッド Apparatus and method for enhancing electrolyte impregnation of secondary battery
EP2618404A4 (en) * 2010-09-30 2016-12-21 Lg Chemical Ltd Device and method for enhancing electrolyte impregnation for secondary battery
US9214696B2 (en) 2010-12-02 2015-12-15 Lg Chem, Ltd. Degassing method of secondary battery using centrifugal force
KR101334623B1 (en) * 2010-12-02 2013-11-29 주식회사 엘지화학 Degassing Method of Secondary Battery Using Centrifugal Force
CN103490035A (en) * 2013-09-24 2014-01-01 丹阳琦瑞机械有限公司 Method and equipment for centrifugal battery solution absorption
JP2015138713A (en) * 2014-01-23 2015-07-30 株式会社豊田自動織機 Thermostat and manufacturing method of power storage device
CN109037753A (en) * 2018-08-28 2018-12-18 王晓霞 A kind of electrolysis liquid infiltration equipment and invade profit method
CN112670680A (en) * 2020-12-23 2021-04-16 惠州市恒泰科技股份有限公司 Electrolyte infiltration method of soft package battery, soft package battery and preparation method of soft package battery
CN112670680B (en) * 2020-12-23 2023-06-16 惠州市恒泰科技股份有限公司 Electrolyte infiltration method of soft-package battery, soft-package battery and preparation method of soft-package battery

Similar Documents

Publication Publication Date Title
JP3373976B2 (en) Manufacturing method of battery incorporating non-circular spiral electrode body
JPH07326338A (en) Manufacture of battery
JP2001102084A (en) Alkali storage battery and method for manufacturing it
JPH0773874A (en) Hydrogen storage alloy electrode and sealed nickel hydrogen storage battery using this electrode
CN108461302A (en) The production method of lithium-ion capacitor positive electrode and lithium-ion capacitor
JP3499924B2 (en) Hydrogen storage alloy electrodes for metal-hydride alkaline storage batteries
JP2005093375A (en) Nonaqueous secondary battery and its manufacturing method
JP3209071B2 (en) Alkaline storage battery
JP2982199B2 (en) Hydrogen storage alloy electrode, method for producing the same, and sealed alkaline storage battery using the electrode
JPH06283197A (en) Sealed nickel-hydrogen battery and activation thereof
JP3490825B2 (en) Nickel electrode for alkaline storage battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP3103781B2 (en) How to inject the battery
JPH07201329A (en) Hydrogen storage alloy electrode and manufacture of the electrode
JP3057737B2 (en) Sealed alkaline storage battery
JP3070081B2 (en) Sealed alkaline storage battery
JPH0917426A (en) Non-sintered positive electrode for alkaline storage battery and manufacture of alkaline storage battery
JP4703154B2 (en) Alkaline storage battery and method of manufacturing the same
JP4503218B2 (en) Manufacturing method of positive electrode for alkaline storage battery and alkaline storage battery using positive electrode obtained by the manufacturing method
JP3377591B2 (en) Manufacturing method of metal oxide / hydrogen secondary battery
JPS6139453A (en) Enclosed metallic oxide-hydrogen battery
JP2857148B2 (en) Construction method of sealed nickel-hydrogen storage battery
JP2925591B2 (en) Method for producing hydrogen storage electrode
JP2000268852A (en) Active method for sealed nickel-hydrogen secondary battery
JP3553708B2 (en) Hydrogen storage alloy electrode and method for producing the same