JPH0732611B2 - Ultrasonic motor oscillator - Google Patents

Ultrasonic motor oscillator

Info

Publication number
JPH0732611B2
JPH0732611B2 JP62303525A JP30352587A JPH0732611B2 JP H0732611 B2 JPH0732611 B2 JP H0732611B2 JP 62303525 A JP62303525 A JP 62303525A JP 30352587 A JP30352587 A JP 30352587A JP H0732611 B2 JPH0732611 B2 JP H0732611B2
Authority
JP
Japan
Prior art keywords
vibration
elastic
piezoelectric ceramic
elastic plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62303525A
Other languages
Japanese (ja)
Other versions
JPH01144372A (en
Inventor
修 大西
修 冥加
武志 井上
貞行 高橋
忠保 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62303525A priority Critical patent/JPH0732611B2/en
Publication of JPH01144372A publication Critical patent/JPH01144372A/en
Publication of JPH0732611B2 publication Critical patent/JPH0732611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超音波振動エネルギーを利用したモータに関
するものである。
TECHNICAL FIELD The present invention relates to a motor using ultrasonic vibration energy.

(従来の技術) 超音波紙送り用モータとして、従来弾性板の片面に圧電
セラミック板を接触し、長さ縦振動と幅屈曲振動の二つ
の共振周波数を一致もしくは接近させ、その近傍の周波
数の電界を圧電体に印加することにより前記二つの振動
を縮退状態で励振する振動子(以後縦屈曲多重モード振
動子と呼ぶ)を利用する超音波モータが提案されてい
る。以下図面を参照しながら説明する。
(Prior Art) As an ultrasonic paper feed motor, a piezoelectric ceramic plate is contacted with one surface of a conventional elastic plate to match or approach the two resonance frequencies of the longitudinal longitudinal vibration and the width bending vibration, and An ultrasonic motor using a vibrator (hereinafter referred to as a longitudinal bending multimode vibrator) that excites the two vibrations in a degenerate state by applying an electric field to a piezoelectric body has been proposed. Hereinafter, description will be given with reference to the drawings.

まず縦屈曲多重モード振動子の一例を第4図に示す。こ
れは長さ方向の一次の縦振動と幅方向の一次の屈曲振動
を縮退状態で励振する振動子である。第4図(a)は正
面図、第4図(c)は側面図である。厚さ方向に一様に
分極した圧電セラミック板42の上下両面に金属電極膜43
を設け、それを弾性板41底面に張り合わせている。この
とき弾性板41と圧電セラミック板42は、長さ方向の1次
の縦振動モードと幅方向の1次の屈曲振動モードの共振
周波数が一致するような寸法となっている。このような
振動子の金属電極間に2つの振動モードの共振周波数と
等しい交流圧電を印加する事により、第4図(b),
(d)で表される振幅変位分布を持つ定在波が励振され
る。ここで第4図(b)における44は長さ方向の1次の
縦振動の変位分布、第4図(d)における45は幅方向の
一次の屈曲振動の変位分布を示す。このように縦屈曲多
重モード振動子は2種類の異なる振動モードを縮退させ
て使用していた。
First, an example of the longitudinal bending multimode oscillator is shown in FIG. This is a vibrator that excites the primary longitudinal vibration in the length direction and the primary bending vibration in the width direction in a degenerate state. FIG. 4 (a) is a front view and FIG. 4 (c) is a side view. A metal electrode film 43 is formed on both upper and lower surfaces of a piezoelectric ceramic plate 42 uniformly polarized in the thickness direction.
Is provided and attached to the bottom surface of the elastic plate 41. At this time, the elastic plate 41 and the piezoelectric ceramic plate 42 are dimensioned so that the resonance frequencies of the primary longitudinal vibration mode in the length direction and the primary bending vibration mode in the width direction match. By applying an AC piezoelectric having a resonance frequency of two vibration modes between the metal electrodes of such a vibrator, as shown in FIG.
A standing wave having an amplitude displacement distribution represented by (d) is excited. Here, 44 in FIG. 4 (b) shows the displacement distribution of the primary longitudinal vibration in the length direction, and 45 in FIG. 4 (d) shows the displacement distribution of the primary bending vibration in the width direction. As described above, the longitudinal bending multimode oscillator is used by degenerating two different vibration modes.

(発明が解決しようとする問題点) 上記振動子を利用した超音波モータは、従来の進行波を
利用した超音波モータと比較して、速度・駆動力が共に
大きく、弾性板の形状に工夫を凝らすことにより、更に
高速度・高駆動力化が可能である。
(Problems to be Solved by the Invention) The ultrasonic motor using the above-mentioned vibrator has a large speed and driving force as compared with the ultrasonic motor using the conventional traveling wave, and the shape of the elastic plate is devised. It is possible to further increase the speed and driving force by making the

しかしながら、特にハイパワー励振時に於て圧電セラミ
ック板が圧電的に伸縮したとき、接着面にずれ応力が加
わるため圧電体が剥がれ易いといった欠点があった。
However, when the piezoelectric ceramic plate expands and contracts piezoelectrically during high-power excitation, a displacement stress is applied to the adhesive surface, and the piezoelectric body is easily peeled off.

また、長さ縦振動と幅屈曲振動という複数のモードの共
振周波数を一致させる必要があるために、振動子を設計
する際に自由度が小さく、実際に使用する共振モードで
ある長さ縦振動モード付近に複数の高次の長さ屈曲振動
によるスプリアス振動が発生しこれらのスプリアス振動
を抑える事は極めて難しかった。そのため自励式で駆動
することが困難であるといった欠点があった。
In addition, since it is necessary to match the resonance frequencies of multiple modes of length longitudinal vibration and width bending vibration, the degree of freedom when designing a vibrator is small, and the longitudinal longitudinal vibration that is the resonance mode actually used is It was extremely difficult to suppress these spurious vibrations due to the occurrence of spurious vibrations due to multiple high-order length bending vibrations near the mode. Therefore, there is a drawback that it is difficult to drive by self-excitation.

(問題点を解決するための手段) 本発明は、静的圧縮応力バイアスが印加された圧電セラ
ミック板の両端に弾性板が付加されており一方の弾性板
の端部またはその近傍に、厚さ方向の質量分布が前記弾
性板とは異なる弾性体を前記弾性板と一体となるように
設け、その弾性体により、弾性板の長手方向の振動を厚
さ方向の振動に変換し、これら2種類の振動の合成であ
る楕円振動を発生させ得る構造を特徴とする超音波モー
タ用振動子である。
(Means for Solving the Problems) According to the present invention, elastic plates are added to both ends of a piezoelectric ceramic plate to which a static compressive stress bias is applied. An elastic body having a mass distribution in the direction different from that of the elastic plate is provided so as to be integrated with the elastic plate, and the elastic body converts vibration in the longitudinal direction of the elastic plate into vibration in the thickness direction. Is a vibrator for an ultrasonic motor characterized by a structure capable of generating elliptical vibration, which is a combination of the above vibrations.

(作用) 振動子を上記の構成とすることで、高速度かつ高駆動力
の超音波モータが実現できる。以下図面を参照しながら
説明する。
(Operation) By configuring the vibrator as described above, a high speed and high driving force ultrasonic motor can be realized. Hereinafter, description will be given with reference to the drawings.

第1図は本発明における振動子の基本構成の側面図であ
る。弾性板11の間に圧電セラミック板12を挿入し、弾性
板端部には弾性体13が設けられている。ここで、弾性板
11と圧電セラミック板12の重心14及び弾性体13の重心15
のそれぞれのz座標の値が異なる、即ち厚さ方向の質量
分布が異なるところが重要な点である。
FIG. 1 is a side view of the basic configuration of a vibrator according to the present invention. A piezoelectric ceramic plate 12 is inserted between elastic plates 11, and an elastic body 13 is provided at the end of the elastic plate. Where the elastic plate
11 and the center of gravity 14 of the piezoelectric ceramic plate 12 and the center of gravity 15 of the elastic body 13.
It is an important point that the respective z-coordinate values are different, that is, the mass distribution in the thickness direction is different.

この様な振動子に於て圧電セラミック板12に交流電界を
印加すると、振動子は矢印16のようにx軸方向の伸縮を
繰り返し、これが縦振動となる。この縦振動は弾性板11
から弾性体13に伝わるが、弾性体13は弾性板11よりも重
心が上方に位置しているためにx軸方向の振動16からz
軸方向の振動成分17が発生する。その結果弾性体13上面
に於て楕円振動18を得ることができる。
When an AC electric field is applied to the piezoelectric ceramic plate 12 in such a vibrator, the vibrator repeats expansion and contraction in the x-axis direction as indicated by arrow 16, and this becomes longitudinal vibration. This longitudinal vibration is generated by the elastic plate 11
Is transmitted from the elastic body 13 to the elastic body 13, but since the elastic body 13 has its center of gravity located above the elastic plate 11, the vibration 16 to z in the x-axis direction
An axial vibration component 17 is generated. As a result, elliptical vibration 18 can be obtained on the upper surface of the elastic body 13.

第4図に示すように従来の縦屈曲多重モード振動子で
は、弾性板41の底面に圧電セラミック板42を取り付ける
構造となっているので弾性板41と電極43の間の接着面に
ずれ応力が加わる。そのため振動子を大きなパワーで振
動させると圧電セラミック板42が剥がれ易いといった欠
点があった。しかしながら本発明の方法を用いると圧電
セラミック板12と弾性板11の接触面は振動方向16に垂直
であるために、構造上弾性体11と圧電セラミック板12の
間に全くずれ応力が発生する余地がない。従って圧電セ
ラミック板12が剥がれ難くなり、より大きなパワーでの
振動が可能となる。
As shown in FIG. 4, the conventional longitudinal bending multimode oscillator has a structure in which the piezoelectric ceramic plate 42 is attached to the bottom surface of the elastic plate 41, so that a displacement stress is applied to the adhesive surface between the elastic plate 41 and the electrode 43. Join. Therefore, the piezoelectric ceramic plate 42 is easily peeled off when the vibrator is vibrated with a large power. However, when the method of the present invention is used, since the contact surface between the piezoelectric ceramic plate 12 and the elastic plate 11 is perpendicular to the vibration direction 16, there is room for structural displacement between the elastic body 11 and the piezoelectric ceramic plate 12 to occur. There is no. Therefore, the piezoelectric ceramic plate 12 is less likely to be peeled off, and it is possible to vibrate with a larger power.

従来の縦屈曲多重モード振動子では2種類の振動モード
の共振周波数を一致させる必要があり、これらの共振周
波数は振動子の形状に大きく依存する。従って二つの異
なる振動モードの共振周波数を一致させるためには、振
動子に対して厳密な寸法が要求されるのみならず、振動
子を構成する材料の材料定数に関しても厳しい要求があ
る。従って、実際に上記縦屈曲多重モード振動子を製造
する場合には、二つの振動モードの周波数調整が必要不
可欠であった。これに対して本発明の方法によれば、1
種類の振動モードだけを用いるので寸法の自由度がはる
かに大きくなる。またスプリアス振動が本質的に少ない
ために、使用共振モードにおいて自励発振が容易にな
る。
In the conventional longitudinal bending multimode oscillator, it is necessary to match the resonance frequencies of two kinds of vibration modes, and these resonance frequencies greatly depend on the shape of the oscillator. Therefore, in order to match the resonance frequencies of two different vibration modes, not only strict dimensions are required for the oscillator, but also strict requirements are imposed on the material constants of the materials forming the oscillator. Therefore, when actually manufacturing the above-mentioned longitudinal bending multimode oscillator, frequency adjustment of two vibration modes was indispensable. On the other hand, according to the method of the present invention,
Since only one type of vibration mode is used, the degree of freedom of dimension becomes much larger. Also, since spurious vibrations are essentially small, self-sustained pulsation becomes easy in the resonance mode used.

(実施例) 以下、本発明の実施例について図を参照しながら説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第2図(a)(b)は本発明の超音波モータの実施例の
一つを示す図で、第2図(a)はシートフィーダ用超音
波モータの側面図、第2図(b)は振動子の平面図であ
る。21,24はステンレスで作製された弾性板及び弾性
体、22はPZT圧電セラミック板、23は銀の焼付け電極で
ある。振動子の寸法は、本体(弾性板21−圧電セラミッ
ク板22−弾性板21)が長さ93mm、幅20mm、厚さ5mm、弾
性体24が長さ15mm、幅20mm、厚さ8mm、圧電セラミック
板22が長さ50mm、幅20mm、厚さ5mm、また第2図(a)
中a=3mm、b=5mmとなっており、直径3mmのボルト25
によって圧電セラミック板22に静的圧縮応力バイアスを
印加した。ここではボルトはステンレス製弾性体にねじ
込まれる形になっている。このバイアス印加方法はボル
トに限らない。本振動子において長さ方向縦振動の共振
周波数25kHzとなる。
2 (a) and 2 (b) are views showing one embodiment of the ultrasonic motor of the present invention. FIG. 2 (a) is a side view of the ultrasonic motor for a sheet feeder, and FIG. 2 (b). [Fig. 4] is a plan view of a vibrator. 21, 24 are elastic plates and elastic bodies made of stainless steel, 22 is a PZT piezoelectric ceramic plate, and 23 is a silver baking electrode. The size of the vibrator is 93 mm long, 20 mm wide, and 5 mm thick for the main body (elastic plate 21-piezoelectric ceramic plate 22-elastic plate 21), and the elastic body 24 is 15 mm long, 20 mm wide, and 8 mm thick. The plate 22 has a length of 50 mm, a width of 20 mm, and a thickness of 5 mm, and FIG. 2 (a)
Medium a = 3 mm, b = 5 mm, and a bolt with a diameter of 3 mm 25
A static compressive stress bias was applied to the piezoelectric ceramic plate 22 by. Here, the bolt is screwed into a stainless elastic body. This bias applying method is not limited to the bolt. The resonance frequency of longitudinal vibration in this oscillator is 25 kHz.

弾性体24上部に薄い紙27を載せ、幅10mm、直径15mmのス
テンレス製ローラ26を弾性体端面より10mmの位置に置
き、このローラ26で紙27を圧接した。焼付け電極23から
圧電セラミック板22に、25kHzの交流電界を印加したと
ころローラ26は矢印28の方向に回転し、紙27は矢印29の
方向に進んだ。第4図に示すような従来型の縦屈曲多重
モード振動子を用いたシートフィーダ用超音波モータの
場合、入力パワー10W以上では約1/3の振動子で圧電セラ
ミック板42の剥離が生じたが、第2図の振動子の場合入
力パワー25Wでも圧電セラミック板22の剥離は起きなか
った。この様に大きなパワーで振動させることができる
で、結果として、圧電セラミックの体積が同じ場合約1.
5倍の最高速度及び約2.5倍の起動駆動力が得られた。
A thin paper 27 was placed on the elastic body 24, a stainless steel roller 26 having a width of 10 mm and a diameter of 15 mm was placed at a position 10 mm from the end surface of the elastic body, and the paper 27 was pressed by the roller 26. When an alternating electric field of 25 kHz was applied from the baking electrode 23 to the piezoelectric ceramic plate 22, the roller 26 rotated in the direction of arrow 28, and the paper 27 proceeded in the direction of arrow 29. In the case of an ultrasonic motor for a sheet feeder using a conventional vertical bending multimode oscillator as shown in FIG. 4, peeling of the piezoelectric ceramic plate 42 occurred at about 1/3 of the oscillator when the input power was 10 W or more. However, in the case of the vibrator of FIG. 2, the piezoelectric ceramic plate 22 did not peel even with an input power of 25 W. It is possible to vibrate with such a large power, and as a result, it is about 1.
A maximum speed of 5 times and a starting drive force of about 2.5 times were obtained.

第3図は回転型モータとしての実施例の一つで、第2図
の紙を除き、弾性板34で直接ローラ36を回転させるもの
である。ローラの圧接力を1.0kgとしたときに、従来よ
りある進行波を用いた円輪型超音波モータに比べて約1.
8倍の起動トルクが得られた。
FIG. 3 is one of the embodiments of the rotary type motor, in which the roller 36 is directly rotated by the elastic plate 34 except for the paper of FIG. When the roller pressure contact force is 1.0 kg, it is about 1.
8 times more starting torque was obtained.

(発明の効果) 以上述べたように、本発明によれば超音波エネルギーを
利用した薄型高駆動力のモータが実現でき、例えばプリ
ンタ、ファクシミリ等の紙送り機構の超薄型化が図れる
といった長所を有し、工業的価値が多大である。
(Effects of the Invention) As described above, according to the present invention, it is possible to realize a thin motor having a high driving force using ultrasonic energy, and it is possible to achieve an ultrathin paper feeding mechanism for a printer, a facsimile, or the like. And has a great industrial value.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の振動子の基本構成図、第2図、第3図
は実施例構成図、第4図(a),(c)は従来型振動子
の基本構成図、第4図(b),(d)は変位分布図であ
る。 図において、 11,21,31,41は弾性板、12は圧電体、13,24,34は弾性
体、14は弾性板11と圧電体12の重心、15は弾性体13の重
心、16はx軸方向の振動の様子、17はz軸方向の振動の
様子、18は楕円振動の様子、22,32,42は圧電セラミック
板、23,33,43は銀の焼付け電極、25,35は締め付け用ボ
ルト、26,36はローラ、27は薄い紙、28,37はローラの回
転方向、29は紙の進行方向、44,45は変位分布をそれぞ
れ示す。
FIG. 1 is a basic configuration diagram of a vibrator of the present invention, FIGS. 2 and 3 are configuration diagrams of an embodiment, and FIGS. 4 (a) and 4 (c) are basic configuration diagrams of a conventional vibrator, FIG. (B) and (d) are displacement distribution maps. In the figure, 11,21,31,41 are elastic plates, 12 is a piezoelectric body, 13,24,34 are elastic bodies, 14 is the center of gravity of the elastic plate 11 and the piezoelectric body 12, 15 is the center of gravity of the elastic body 13, and 16 is the center of gravity. X-axis vibration, 17 z-axis vibration, 18 elliptical vibration, 22, 32, 42 piezoelectric ceramic plates, 23, 33, 43 silver baking electrodes, 25, 35 Tightening bolts, 26 and 36 are rollers, 27 is thin paper, 28 and 37 are roller rotation directions, 29 is paper traveling direction, and 44 and 45 are displacement distributions, respectively.

フロントページの続き (72)発明者 高橋 貞行 東京都港区芝5丁目33番1号 日本電気株 式会社内 (72)発明者 内川 忠保 東京都港区芝5丁目33番1号 日本電気株 式会社内Front page continuation (72) Inventor Sadayuki Takahashi 5-33-1 Shiba, Minato-ku, Tokyo NEC Corporation Stock company (72) Inventor Tadaho Uchikawa 5-33-1, Shiba, Minato-ku, Tokyo NEC Corporation In the company

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】静的圧縮応力バイアスが印加された圧電セ
ラミック板の両端に第1及び第2の弾性板が付加されて
おり、第1の弾性板では端部又はその近傍において、第
1の弾性板を厚さ方向に非対称な形状とし、かつ弾性板
の長手方向の振動を厚さ方向の振動に変換することでこ
れら2種類の振動の合成である楕円振動を発生させる弾
性体が一体化されていることを特徴とする超音波モータ
用振動子。
1. A first and a second elastic plate are added to both ends of a piezoelectric ceramic plate to which a static compressive stress bias is applied. The first elastic plate has a first elastic plate at an end or in the vicinity thereof. The elastic plate is formed into an asymmetric shape in the thickness direction, and the elastic body that generates elliptical vibration, which is a combination of these two kinds of vibrations, is integrated by converting the vibration in the longitudinal direction of the elastic plate into the vibration in the thickness direction. A transducer for an ultrasonic motor, which is characterized in that
JP62303525A 1987-11-30 1987-11-30 Ultrasonic motor oscillator Expired - Lifetime JPH0732611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62303525A JPH0732611B2 (en) 1987-11-30 1987-11-30 Ultrasonic motor oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62303525A JPH0732611B2 (en) 1987-11-30 1987-11-30 Ultrasonic motor oscillator

Publications (2)

Publication Number Publication Date
JPH01144372A JPH01144372A (en) 1989-06-06
JPH0732611B2 true JPH0732611B2 (en) 1995-04-10

Family

ID=17922040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62303525A Expired - Lifetime JPH0732611B2 (en) 1987-11-30 1987-11-30 Ultrasonic motor oscillator

Country Status (1)

Country Link
JP (1) JPH0732611B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5296469B2 (en) * 2008-03-04 2013-09-25 太平洋セメント株式会社 Ultrasonic motor
JP5275734B2 (en) * 2008-03-06 2013-08-28 太平洋セメント株式会社 Ultrasonic motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230472A (en) * 1983-06-13 1984-12-25 Hitachi Ltd Drive device
JPS60109776A (en) * 1983-11-18 1985-06-15 Matsushita Electric Ind Co Ltd Piezoelectric motor
JPS60200776A (en) * 1984-03-23 1985-10-11 Hitachi Ltd Driving device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59230472A (en) * 1983-06-13 1984-12-25 Hitachi Ltd Drive device
JPS60109776A (en) * 1983-11-18 1985-06-15 Matsushita Electric Ind Co Ltd Piezoelectric motor
JPS60200776A (en) * 1984-03-23 1985-10-11 Hitachi Ltd Driving device

Also Published As

Publication number Publication date
JPH01144372A (en) 1989-06-06

Similar Documents

Publication Publication Date Title
US5200665A (en) Ultrasonic actuator
JP4119903B2 (en) Flat plate piezoelectric ultrasonic motor
JPH0453786B2 (en)
JPH0732611B2 (en) Ultrasonic motor oscillator
JP2646668B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JP2847758B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JP2605355B2 (en) Driving method of ultrasonic motor and vibrator for ultrasonic motor
JPH0787709B2 (en) Ultrasonic motor and its driving method
JPS63174581A (en) Oscillatory wave motor
JP2590536B2 (en) Ultrasonic motor
JP3297211B2 (en) Ultrasonic motor
JPH0514512B2 (en)
JPH07107756A (en) Ultrasonic motor
JP2615953B2 (en) Ultrasonic motor and its driving method
JPH0669303B2 (en) Ultrasonic motor oscillator
JPS63294271A (en) Ultrasonic wave motor
JP2517021B2 (en) Object moving device
JP2605121B2 (en) Ultrasonic vibrator and ultrasonic motor using the same
JPS6152164A (en) Cantilever beam supersonic elliptical vibrator
JPH07337046A (en) Ultrasonic motor drive
JPS63290176A (en) Driving method for supersonic motor
JPS63294272A (en) Driving method for ultrasonic wave motor
JPH01110070A (en) Driving method for supersonic motor
JPH07194154A (en) Ultrasonic motor and torsional oscillation generating device
JPH0516275B2 (en)