JPH07325019A - Vehicle speed controlling apparatus - Google Patents
Vehicle speed controlling apparatusInfo
- Publication number
- JPH07325019A JPH07325019A JP6117976A JP11797694A JPH07325019A JP H07325019 A JPH07325019 A JP H07325019A JP 6117976 A JP6117976 A JP 6117976A JP 11797694 A JP11797694 A JP 11797694A JP H07325019 A JPH07325019 A JP H07325019A
- Authority
- JP
- Japan
- Prior art keywords
- vehicle
- vehicle speed
- control
- transfer function
- circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Feedback Control In General (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、シャシーダイナモメー
タ等の車両試験装置上で車両を運転する時の車両速度制
御装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vehicle speed control device for driving a vehicle on a vehicle testing device such as a chassis dynamometer.
【0002】[0002]
【従来の技術】従来、シャシーダイナモメータ上で車両
を運転する時の速度制御方式には、図7に示すようなP
ID方式、又は図8に示すような加速度マイナ付速度制
御方式がある。図7,図8において、 GC(S):PID演算器の伝達関数 GO(S):アクセルアクチュエータのストローク制御
の伝達関数 MG(S):車両の伝達関数 GC1(S):P演算器の伝達関数 GC2(S):PI演算器の伝達関数 GC3(S):D演算器の伝達関数 を示す。図7のPID方式は車速指令VSと車速Vとの
偏差をPID演算器11で演算してアクセルペダルスト
ローク指令θSを得てアクセルペダルを操作し、車速V
を車速指令VSと一致するように制御している。また図
8の方式は車速指令VSと車速Vとの偏差をP演算器1
2で演算し、その出力と車速VをD演算器13で演算し
た出力との差をPI演算器14で演算してアクセルペダ
ルストローク指令θSを得てアクセルペダルを操作し、
車速Vを車速指令VSと一致するように制御している。2. Description of the Related Art Conventionally, a speed control system for driving a vehicle on a chassis dynamometer has a P control as shown in FIG.
There is an ID method or a speed control method with an acceleration minor as shown in FIG. 7 and 8, G C (S): Transfer function of PID calculator G O (S): Transfer function of stroke control of accelerator actuator MG (S): Transfer function of vehicle G C1 (S): P calculation Transfer function of the calculator G C2 (S): Transfer function of the PI calculator G C3 (S): Transfer function of the D calculator In the PID system shown in FIG. 7, the deviation between the vehicle speed command V S and the vehicle speed V is calculated by the PID calculator 11 to obtain the accelerator pedal stroke command θ S , and the accelerator pedal is operated to operate the vehicle speed V
Is controlled so as to match the vehicle speed command V S. In the system shown in FIG. 8, the deviation between the vehicle speed command V S and the vehicle speed V is calculated by the P calculator 1
2 and the difference between the output and the output of the vehicle speed V calculated by the D calculator 13 is calculated by the PI calculator 14 to obtain the accelerator pedal stroke command θ S to operate the accelerator pedal,
The vehicle speed V is controlled so as to coincide with the command vehicle speed V S.
【0003】上記車両の伝達関数MG(S)の一例を図
2に示す。図2において、 G1(S):アクセルペダルストロークとスロットルバ
ルブ開度までの非線形伝達関数 G2(S):エンジン特性の一つでスロットルバルブ開
度θBから吸気圧までの伝達関数 G3(S):エンジン特性の一つで吸気圧からエンジン
出力トルクまでの伝達関数 iTn:トランスミッションの変速比 iD:ディファレンシャルギャ比 R:タイヤ半径 W:車重 G4(S):車両の走行抵抗 を示す。An example of the transfer function MG (S) of the vehicle is shown in FIG. In FIG. 2, G 1 (S): Non-linear transfer function from accelerator pedal stroke to throttle valve opening G 2 (S): Transfer function from throttle valve opening θ B to intake pressure G 3 which is one of engine characteristics (S): One of engine characteristics, a transfer function from intake pressure to engine output torque i Tn : Transmission gear ratio i D : Differential gear ratio R: Tire radius W: Vehicle weight G 4 (S): Vehicle running Indicates resistance.
【0004】(1)伝達関数G1(S)は、アクセルペ
ダルストロークθAからスロットルバルブ開度θBまでの
伝達関数で、この中にはペダルの遊びやθA−θBの非線
形特性が含まれる。(1) The transfer function G 1 (S) is a transfer function from the accelerator pedal stroke θ A to the throttle valve opening θ B , in which the pedal play and the nonlinear characteristic of θ A -θ B are included. included.
【0005】(2)伝達関数G2(S)は、スロットル
バルブ開度θBから吸気圧Pbまでの伝達関数で、これ
はエンジン回転数をパラメータにする非線形特性を持
ち、エンジンの種類毎に、また、ターボチャージャの有
無によっても特性が異なる。(2) The transfer function G 2 (S) is a transfer function from the throttle valve opening θ B to the intake pressure Pb, which has a non-linear characteristic with the engine speed as a parameter, and is different for each engine type. The characteristics also differ depending on the presence or absence of a turbocharger.
【0006】(3)伝達関数G3(S)は、吸気圧Pb
からエンジン出力トルクτeまでの伝達関数で、これも
エンジン回転数をパラメータにしていてほぼ線形に近い
特性を持っている。エンジンの種類により特性が異な
る。(3) The transfer function G 3 (S) is the intake pressure Pb
To engine output torque τe, which also has a characteristic that is almost linear with the engine speed as a parameter. The characteristics differ depending on the type of engine.
【0007】(4)エンジン出力トルクτeからアクス
ル軸(タイヤ軸)トルクτaまでの伝達関数はiTn×i
Dで表される。(ただし、メカロス分は除く)。ここで
iTnはトランスミッション比で、n=1〜5は1速〜5
速に対応する。iDはディファレンシャルギァ比(デフ
比)で、車両毎に変わる。τa=iTm×iD×τe。(4) The transfer function from the engine output torque τe to the axle shaft (tire shaft) torque τa is i Tn × i
Represented by D. (However, excluding mecha loss). Here, i Tn is a transmission ratio, and n = 1 to 5 is first speed to 5
Correspond to speed. i D is a differential gear ratio (differential ratio), which varies from vehicle to vehicle. τa = i Tm × i D × τe.
【0008】(5)アクスル軸トルクτaからタイヤ接
地面での駆動力FVまでの伝達関数は1/Rで表され
る。ただしRはタイヤ半径(タイヤスリップなしの条
件)。FV=(1/R)τa。(5) The transfer function from the axle shaft torque τa to the driving force F V at the tire contact surface is expressed by 1 / R. However, R is the tire radius (conditions without tire slip). F V = (1 / R) τa.
【0009】(6)走行抵抗の伝達関数G4(S)は車
速Vの関数で表され車両毎に変化する。(6) The transfer function G 4 (S) of the running resistance is expressed as a function of the vehicle speed V and changes from vehicle to vehicle.
【0010】走行抵抗FRL=G4(S)V。Running resistance F RL = G 4 (S) V.
【0011】(7)駆動力FVから走行抵抗FRLを差し
引いたものが加速力Fα(=FV−FRL)となる。(7) The acceleration force F α (= F V −F RL ) is obtained by subtracting the running resistance F RL from the driving force F V.
【0012】(8)加速力Fαから車速Vまでの伝達関
数は、K/SWで表される。ただし、Wは車重,Kは定
数,Sはラプラス演算子。車速信号V=(K/SW)F
αとなる。(8) The transfer function from the acceleration force F α to the vehicle speed V is represented by K / SW. However, W is the vehicle weight, K is a constant, and S is a Laplace operator. Vehicle speed signal V = (K / SW) F
It becomes α .
【0013】上記従来の速度制御はフィードバック制御
であるので、次のようなフィードバック制御特有の欠点
を有する。Since the above-mentioned conventional speed control is feedback control, it has the following drawbacks peculiar to feedback control.
【0014】(1)フィードバック制御ループを安定に
動かすために、演算器GC(S)やGC1(S)〜G
C3(S)等のゲイン調整を行う必要がある。(1) In order to move the feedback control loop stably, the computing units G C (S) and G C1 (S) to G C
It is necessary to adjust the gain of C3 (S).
【0015】(2)車両の伝達関数MG(S)は、車両
個々に変化する要素に多数の項目があり、フィードバッ
ク制御ループで同じ応答の速度制御を求める場合は、こ
れら変化要素が運転時に変化する毎に制御演算器G
C(S)等のゲイン調整を行わねばならない。(2) The transfer function MG (S) of the vehicle has a large number of items which vary depending on the vehicle, and when speed control with the same response is required in the feedback control loop, these changing factors change during driving. Control calculator G every time
Gain adjustment such as C (S) must be performed.
【0016】(3)フィードバック制御ループは閉ルー
プ伝達関数として表され、制御演算器GC(S)等のゲ
インによって決まる制御応答の遅れが存在する。この遅
れはGO(S)×MG(S)の前向きの伝達関数の遅れ
(0.1秒程度)よりはるかに大きく、通常1〜2秒に
なり遅い。(3) The feedback control loop is expressed as a closed loop transfer function, and there is a delay in the control response determined by the gain of the control calculator G C (S) and the like. This delay is much larger than the delay (about 0.1 seconds) of the forward transfer function of G O (S) × MG (S), and is usually 1 to 2 seconds, which is slow.
【0017】このため、本出願人は先に図6に示すよう
に、車両の伝達関数の逆関数MG(S)-1を用いたフィ
ードフォワード制御方式を提案した。(特願平6−75
532号)。Therefore, the present applicant has previously proposed a feedforward control system using an inverse function MG (S) -1 of the transfer function of the vehicle as shown in FIG. (Japanese Patent Application No. 6-75
532).
【0018】この制御方式は、車両の伝達関数MG
(S)の逆関数MG(S)-1を用いて車速指令VSに車
速Vを一致させるに必要なアクセルペダルストロークθ
Aを直接演算により算出し、このθAをアクセルアクチュ
エータ操作信号θSを出力する。これによりアクセルア
クチュエータは作動し、アクセルアクチュエータストロ
ークθを得て、θ=θAとなり、車両のアクセルペダル
を動かし、その結果車速VSに等しい車速Vを得ること
ができる、というものである。This control method is based on the transfer function MG of the vehicle.
The accelerator pedal stroke θ required to match the vehicle speed V with the vehicle speed command V S using the inverse function MG (S) −1 of (S)
A is calculated by direct calculation, and this θ A is output as the accelerator actuator operation signal θ S. As a result, the accelerator actuator is actuated to obtain the accelerator actuator stroke θ, θ = θ A , the accelerator pedal of the vehicle is moved, and as a result, the vehicle speed V equal to the vehicle speed V S can be obtained.
【0019】図3は車両の伝達関数MG(S)の逆関数
MG(S)-1の一例を示す。図3において、 (1)速度指令VSから加速力Fαまでの伝達関数は、
Fα=(SW/K)・VSで表され、速度VSから走行抵
抗FRLまでは、FRL=G4(S)VSで表される。(Wは
車重)。FIG. 3 shows an example of the inverse function MG (S) -1 of the transfer function MG (S) of the vehicle. In FIG. 3, (1) The transfer function from the speed command V S to the acceleration force F α is
It is represented by F α = (SW / K) · V S , and from the speed V S to the running resistance F RL is represented by F RL = G 4 (S) V S. (W is vehicle weight).
【0020】(2)駆動力FVは、加速力Fαと走行抵
抗FRLの合計で、FV=Fα+FRとなる。(2) The driving force F V is F V = F α + F R , which is the sum of the acceleration force F α and the running resistance F RL .
【0021】(3)駆動力FVからアクスル軸トルクτa
までの伝達関数は、τa=R×FVとなる。(Rはタイヤ
半径)。(3) Axle shaft torque τ a from the driving force F V
The transfer function up to is τ a = R × F V. (R is the tire radius).
【0022】(4)アクスル軸トルクτaからエンジン
出力軸トルクτeまでの伝達関数は、τe=(1/(i
Tn×iD))×τaとなる。(iTnはトランスミッション
比、iDはデフ比)。(4) The transfer function from the axle shaft torque τ a to the engine output shaft torque τe is τe = (1 / (i
Tn × i D )) × τ a . (I Tn is transmission ratio, i D is differential ratio).
【0023】(5)エンジン出力軸トルクTeから吸気
圧Pbまでの伝達関数をG3′(S)で表す。(エンジ
ン回転数Neがパラメータになる)。(5) The transfer function from the engine output shaft torque Te to the intake pressure Pb is represented by G 3 ′ (S). (The engine speed Ne is a parameter).
【0024】(6)吸気圧Pbからスロットルバルブ開
度θBまでの伝達関数を、G2′(S)で表す。(エンジ
ン回転数Neがパラメータになる)。(6) The transfer function from the intake pressure Pb to the throttle valve opening θ B is represented by G 2 ′ (S). (The engine speed Ne is a parameter).
【0025】(7)スロットルバルブ開度θBからアク
セルペダルストロークθAまでのペダルの遊びを含む非
線形特性の伝達関数を、G1′(S)で表す。(7) The transfer function of the non-linear characteristic including the pedal play from the throttle valve opening θ B to the accelerator pedal stroke θ A is represented by G 1 ′ (S).
【0026】(8)エンジン回転数Neはトランスミッ
ションが1速から5速のいずれかでクラッチ接の場合、
Ne=(1000/2πR60)×iTn×iD×VSで規
定される。(8) The engine speed Ne is the transmission speed in the case where the transmission is in one of the first speed to the fifth speed and the clutch is engaged
Ne = (1000 / 2πR60) × i Tn × i D × V S
【0027】この車両の伝達関数は全て演算により求め
る方式であり、車重W,タイヤ半径R,トランスミッシ
ョン比iTn,デフ比iDは車両諸元より得ることができ
る。また走行抵抗演算の伝達関数G4(S)も実車の路
上走行抵抗より求めることができる。All the transfer functions of this vehicle are obtained by calculation, and the vehicle weight W, the tire radius R, the transmission ratio i Tn , and the differential ratio i D can be obtained from the vehicle specifications. Further, the transfer function G 4 (S) of the running resistance calculation can also be obtained from the road running resistance of the actual vehicle.
【0028】しかし、伝達関数G3′(S),G2′
(S),G1′(S)は簡単に求めることができない。
このため、上記先出願のものでは、シャシーダイナモ上
で車両を運転し、アクセルペダルストロークθA,吸気
圧Pbおよび演算結果のエンジン出力トルクτeをエン
ジン回転数Neパラメータに、各回転毎に10数点のデ
ータを計測し、これらを図4に示すシーマック(CMA
C)学習機能により荷重テーブルを作り、記憶させる方
式を採用している。However, the transfer functions G 3 '(S), G 2 '
(S) and G 1 ′ (S) cannot be easily obtained.
Therefore, in the above-mentioned prior application, the vehicle is driven on a chassis dynamo, and the accelerator pedal stroke θ A , the intake pressure Pb, and the engine output torque τe of the calculation result are used as the engine rotation speed Ne parameter and 10 rotations per rotation. The point data was measured, and these data were shown in Fig. 4 (see CMAC).
C) The learning table is used to create and store the weight table.
【0029】図4は上記シャシーダイナモ上で車両を運
転し、シーマック学習機能により荷重テーブルを作る例
を示すもので、シーマック学習回路41によりエンジン
出力トルクτe,エンジン回転数Ne及び吸気圧Pbを
用いてシーマックTe/Pb荷重テーブル42を作ると
共に、シーマック学習回路45により吸気圧Pb,エン
ジン回転数Ne及びアクセルペダルストロークθAを用
いてシーマックPb/θA荷重テーブル46を作り、記
憶させる。FIG. 4 shows an example in which a vehicle is driven on the chassis dynamo and a load table is created by the seamak learning function. The seamak learning circuit 41 uses the engine output torque τe, the engine speed Ne and the intake pressure Pb. The seamak Te / Pb load table 42 is created by using the seamak learning circuit 45, and the seamak Pb / θ A load table 46 is created by the intake pressure Pb, the engine speed Ne and the accelerator pedal stroke θ A , and stored.
【0030】そして、図6の速度制御において、車両の
伝達関数の逆関数MG(S)-1の図3に示す伝達関数G
3′(S),G2′(S),G1′(S)としてこの荷重
テーブル42,46を図5のように用いて運転し、テー
ブル42によりTeとNeからPbを演算し、次にテー
ブル46によりPbとNeからθAを演算して出力す
る。これにより10数点×約10パラメータのデータか
ら全域の出力を得るようにしている。In the speed control of FIG. 6, the inverse function MG (S) −1 of the vehicle transfer function shown in FIG.
The load tables 42 and 46 are operated as 3 ′ (S), G 2 ′ (S) and G 1 ′ (S) as shown in FIG. 5, and Pb is calculated from Te and Ne by the table 42. Then, the table 46 calculates θ A from Pb and Ne and outputs it. As a result, the output of the entire region is obtained from the data of 10 points × about 10 parameters.
【0031】[0031]
【発明が解決しようとする課題】上記車両の伝達関数の
逆関数を用いたフィードフォワード制御では、上記フィ
ードバック制御の欠点を理論上、全て解決できるもので
あるが、車両の伝達関数の逆関数を求めるときに必ず誤
差分が生じる。このため正確なアクセルペダルストロー
ク指令が得られなくて、車速指令と検出車速の間に誤差
が生じてしまうという欠点がある。In the feedforward control using the inverse function of the transfer function of the vehicle, theoretically, all the drawbacks of the feedback control can be solved. When calculating, there is always an error. Therefore, there is a drawback that an accurate accelerator pedal stroke command cannot be obtained and an error occurs between the vehicle speed command and the detected vehicle speed.
【0032】本発明は、このようなフィードフォワード
制御の問題点を解決すべくなされたものであり、その目
的とするところは、加速中も車速偏差をゼロにできると
共にオーバーシュートのない追従性能のよい制御ができ
る車両速度制御装置を提供することにある。The present invention has been made to solve the problem of such feed-forward control, and its object is to make the vehicle speed deviation zero during acceleration and to provide a follow-up performance without overshoot. An object of the present invention is to provide a vehicle speed control device capable of good control.
【0033】[0033]
【課題を解決するための手段】上記目的を達成するため
に、本発明における車両速度制御装置は、車両の伝達関
数の逆関数をフィードフォワードの伝達関数に用いて車
速指令から直接アクセルの開度を演算出力し、そのアク
セル操作により車速を車速指令に一致させるフィードフ
ォワード制御回路と、前記制御回路と同じ伝達関数を有
し前記車速指令が入力する車両制御モデル伝達関数回路
と、この回路の出力を補償制御の速度指令として前記フ
ィードフォワード制御による誤差分を補償するフィード
バック制御回路と、からなることを特徴とする。In order to achieve the above object, a vehicle speed control device according to the present invention uses an inverse function of a transfer function of a vehicle as a feedforward transfer function to directly open an accelerator opening from a vehicle speed command. And a feedforward control circuit for matching the vehicle speed to the vehicle speed command by the accelerator operation, a vehicle control model transfer function circuit having the same transfer function as the control circuit and receiving the vehicle speed command, and the output of this circuit Is used as a speed command for compensation control, and a feedback control circuit for compensating for an error amount due to the feedforward control is provided.
【0034】[0034]
【作用】フィードフォワード制御回路の車両の伝達関数
の逆関数を求めるときに必ず誤差があり、これにより車
速指令と車速に誤差を生ずるが、車両制御モデル伝達関
数回路の伝達関数はフィードフォワード制御回路の伝達
関数と同じであり、フィードバック制御回路はこの車両
制御モデル伝達関数回路の出力信号を補償制御の速度指
令として誤差分を検出し補償するので、加速中も車速誤
差が生ずることなく追従性のよい速度制御ができる。When the inverse function of the vehicle transfer function of the feedforward control circuit is found, there is always an error, which causes an error in the vehicle speed command and the vehicle speed. However, the transfer function of the vehicle control model transfer function circuit is the feedforward control circuit. The feedback control circuit uses the output signal of this vehicle control model transfer function circuit as the speed command for compensation control to detect and compensate for the error component, so that there is no vehicle speed error even during acceleration and Good speed control is possible.
【0035】[0035]
【実施例】本発明の実施例について図1〜図5を参照し
て説明する。図1において、Aは加算器A3部分を除き
前記図6に示したものと同様に構成された車両モデル規
範形フィードフォワード制御回路で、この回路がこの方
式のメインとなる。Bは本発明で新たに設けられた上記
フィードフォワード制御により得られた(検出)車速V
と車速指令とに偏差が生じたときに車両の伝達関数の逆
関数回路1からのアクセルペダルストローク(メイン)
指令を補正とするアクセルペダルストローク補正指令を
出力する車両モデル補償制御回路である。Embodiments of the present invention will be described with reference to FIGS. In FIG. 1, A is a vehicle model reference feedforward control circuit configured in the same manner as shown in FIG. 6 except for the adder A 3 portion, and this circuit is the main part of this system. B is (detected) vehicle speed V obtained by the feedforward control newly provided in the present invention.
When there is a deviation between the vehicle speed command and the vehicle speed command, the accelerator pedal stroke (main) from the inverse function circuit 1 of the transfer function of the vehicle
It is a vehicle model compensation control circuit that outputs an accelerator pedal stroke correction command that uses a command as a correction.
【0036】補償制御回路Bについて、4は制御回路A
の伝達関数と同じ、伝達関数MG(S)-1、G
O(S)、MG(S)を採用した車両制御モデル伝達関
数回路、5は回路4からの速度指令VS′を微分する伝
達関数GC3(S)からなるD演算器、A1は回路4から
の車速指令VS′と車両の車速Vとの偏差を検出するつ
き合わせ器、6はこの偏差に比例した信号を出力する伝
達関数GC1(S)のP演算器、7は車速Vを微分する伝
達関数GC3(S)のD演算器、A2は演算器5〜7から
の信号を図示の極性で加算する加算器、8は加算器A2
からの信号を比例積分し、制御回路Aの加算器にアクセ
ルペダルストローク補正指令を出力するPI演算器であ
る。Regarding the compensation control circuit B, 4 is the control circuit A
Same as the transfer function of the transfer function MG (S) -1 , G
A vehicle control model transfer function circuit adopting O (S) and MG (S), 5 is a D calculator composed of a transfer function G C3 (S) for differentiating the speed command V S ′ from the circuit 4, and A 1 is a circuit A matching device for detecting a deviation between the vehicle speed command V S ′ from 4 and the vehicle speed V, 6 is a P calculator for a transfer function G C1 (S) that outputs a signal proportional to this deviation, and 7 is a vehicle speed V D operator of transfer function G C3 (S) that differentiates A, A 2 is an adder that adds the signals from the operators 5 to 7 with the polarities shown, and 8 is an adder A 2
Is a PI calculator that proportionally integrates the signal from and outputs an accelerator pedal stroke correction command to the adder of the control circuit A.
【0037】図3に示す車両伝達関数の逆関数MG
(S)-1の伝達関数G3′(S),G2′(S),G1′
(S)は前記先願と同様シーマック学習機能による荷重
テーブルを用いる(図4,図5)。Inverse function MG of the vehicle transfer function shown in FIG.
(S) −1 transfer functions G 3 ′ (S), G 2 ′ (S), G 1 ′
(S) uses the load table by the seamak learning function as in the previous application (FIGS. 4 and 5).
【0038】車両制御モデル伝達関数回路4の伝達ゲイ
ンは定常で1倍、応答遅れは車速指令VSから車速Vが
出るまでの応答時間である。この回路の目的はオーバー
シュート防止である。この回路がないと、車速指令VS
にて車両を加速した時、指令に対する車速の遅れ分を補
償するアクセルペダルのストローク指令がPI演算器8
の積分項に蓄積されるため、車速指令VSが加速から定
常に移った時この積分項に蓄積された値をPIの時定数
で放出する間、余分なアクセル指令を出すことになり、
この結果車速のオーバーシュートが発生する。回路4は
この車速の遅れ分による積分項への蓄積を防ぎ車速のオ
ーバーシュートを防止する。この回路の出力は車両モデ
ルの車速検出であり、フィードバック制御を用いた車両
モデル補償制御の速度指令VS′となる。The transfer gain of the vehicle control model transfer function circuit 4 is steady, and the response delay is the response time from the vehicle speed command V S until the vehicle speed V is output. The purpose of this circuit is to prevent overshoot. If this circuit is not, the command vehicle speed V S
When the vehicle is accelerated by, the stroke command of the accelerator pedal for compensating for the delay of the vehicle speed with respect to the command is the PI calculator 8
Therefore, when the vehicle speed command V S shifts from acceleration to a steady state, the value accumulated in this integral term is released at the PI time constant, and an extra accelerator command is issued.
As a result, vehicle speed overshoot occurs. The circuit 4 prevents the vehicle speed overshoot from being accumulated in the integral term due to the vehicle speed delay. The output of this circuit is the vehicle speed detection of the vehicle model and becomes the speed command V S ′ of the vehicle model compensation control using the feedback control.
【0039】演算器5〜9からなるフィードバック回路
は、加速度指令フォーシングを持つ加速度マイナー付速
度制御回路となっていて、D演算器5からの加減速度指
令信号と、P演算器6からの車速偏差信号との合計を新
たな加減速指令とし、D演算器7からの加減速度検出信
号との加減速度偏差信号を加算器A2から出力させPI
演算器8で比例積分してアクセルペダルストローク補正
指令θCを制御回路Aの加算器A3に出力してアクセルペ
ダルストローク指令θAをθSに補正するものである。The feedback circuit composed of the calculators 5 to 9 is a speed control circuit with an acceleration minor having an acceleration command forcing, and an acceleration / deceleration command signal from the D calculator 5 and a vehicle speed from the P calculator 6 are provided. The sum of the deviation signal is used as a new acceleration / deceleration command, and the acceleration / deceleration deviation signal with the acceleration / deceleration detection signal from the D calculator 7 is output from the adder A2.
The operator 8 proportionally integrates and outputs an accelerator pedal stroke correction command θ C to the adder A 3 of the control circuit A to correct the accelerator pedal stroke command θ A to θ S.
【0040】以上のように、車両の伝達関数の逆数をフ
ィードフォワード伝達関数とする車両モデル規範形フィ
ードフォワード制御回路Aに車両モデル補償制御回路B
とを組み合わせた結果、D演算器5からの車速指令
VS′の微分による加速度指令フォーシングが非常に有
効に作用する。As described above, the vehicle model compensating control circuit B is added to the vehicle model reference feedforward control circuit A whose feedforward transfer function is the reciprocal of the vehicle transfer function.
As a result, the acceleration command forcing by the differentiation of the vehicle speed command V S ′ from the D calculator 5 acts very effectively.
【0041】それは車速指令VS′と車速Vの微分演算
出力はそれぞれD演算回路5及び7の出力であり、速度
指令VSと車速Vの加速が同じになると互いに相殺され
る。また、応答遅れを考慮した速度指令VS′と車速V
が一致していればP演算器6の出力は0になるので、P
I演算器8の入力は0となり、PI演算器8の出力は一
定となる。That is, the differential operation outputs of the vehicle speed command V S ′ and the vehicle speed V are outputs of the D operation circuits 5 and 7, respectively, and they are canceled out when the acceleration of the speed command V S and the vehicle speed V become the same. Further, the speed command V S ′ and the vehicle speed V S in consideration of the response delay
If the two match, the output of the P calculator 6 becomes 0, so P
The input of the I calculator 8 becomes 0, and the output of the PI calculator 8 becomes constant.
【0042】つまり車両の伝達関数の逆関数MG(S)
-1に誤差がなければ、PI演算器8の出力は0で一定と
なるので、制御回路Aのフィードフォワード制御の外乱
にはならない。逆関数MG(S)-1に誤差があった場合
は、その誤差分のアクセルストローク指令のみPI演算
器8に蓄積され、補償されることになる。That is, the inverse function MG (S) of the transfer function of the vehicle
If there is no error in -1 , the output of the PI calculator 8 is constant at 0, so that it is not a disturbance of the feedforward control of the control circuit A. If the inverse function MG (S) −1 has an error, only the accelerator stroke command corresponding to the error is accumulated in the PI calculator 8 and compensated.
【0043】また、D演算器5と7の速度指令VS′の
速度Vの加速度の相殺効果により加速中も速度指令
VS′と速度Vは偏差を生じることなく加速から定常に
車速指令VSが変化した時にもオーバーシュートを生じ
ることがないので、車速指令VSに対して追従性の良
い、理想的な制御が可能である。Further, due to the canceling effect of the acceleration of the speed V of the speed command V S ′ of the D calculators 5 and 7, there is no deviation between the speed command V S ′ and the speed V even during acceleration, and the vehicle speed command V is steady after acceleration. Since overshoot does not occur even when S changes, ideal control with good followability with respect to the vehicle speed command V S is possible.
【0044】これは車両の伝達関数の逆関数MG(S)
-1に誤差がなく理論通りの時の、図6のフィードフォワ
ード制御回路で得られる応答と同じことを意味する。実
際の制御では車両の伝達関数の逆関数MG(S)-1の誤
差を修正するための応答時間が必要であるので、図6の
フィードフォワード制御のみの場合と少し異なる。This is the inverse function MG (S) of the transfer function of the vehicle.
This means the same response as that obtained by the feedforward control circuit of FIG. 6 when there is no error in −1 and it is as in theory. In the actual control, a response time for correcting the error of the inverse function MG (S) −1 of the transfer function of the vehicle is required, so that it is slightly different from the case of only the feedforward control of FIG.
【0045】図9は図6の回路において変速機の変速時
間0秒とした場合のシュミレーションにおける応答波形
を示す。この波形によれば、車速制御遅れが約0.4
秒,制御遅れによる車速偏差が約0.3Km/hあるこ
とがわかる。FIG. 9 shows a response waveform in the simulation when the shift time of the transmission is 0 second in the circuit of FIG. According to this waveform, the vehicle speed control delay is about 0.4.
It can be seen that the vehicle speed deviation due to the control delay is about 0.3 Km / h.
【0046】図10,図11,図12に図6,図1,図
8の回路において変速機の変速時間1秒とした場合のシ
ュミレーションにおける応答波形を示す。このシュミレ
ーション結果実施例(図1)のものは、図6,図8のも
のに比し、車速指令VSと(検出)車速Vとの偏差が小
さくなっていることがわかる。FIGS. 10, 11, and 12 show response waveforms in the simulation when the shift time of the transmission is 1 second in the circuits of FIGS. 6, 1, and 8. In the simulation result embodiment (FIG. 1), the deviation between the vehicle speed command V S and the (detected) vehicle speed V is smaller than that in FIGS. 6 and 8.
【0047】[0047]
【発明の効果】本発明は、上述のとおり構成されている
ので、次に記載する効果を奏する。Since the present invention is configured as described above, it has the following effects.
【0048】(1)MG(S)-1,GO(S),MG
(S)の伝達関数は一つの入力値に対して一つの出力値
しか存在しないので、フィードフォワード系は必ず安定
である。(1) MG (S) -1 , G O (S), MG
Since the transfer function of (S) has only one output value for one input value, the feedforward system is always stable.
【0049】(2)フィードフォワード系により最速の
制御系が得られる。(2) The feedforward system provides the fastest control system.
【0050】(3)車両の伝達関数の逆関数MG(S)
-1を正確にすることにより、フィードバック補償ループ
は作動量が小さくなり、θC→0となるので制御にオー
バーシュートやふらつきが生じない。(3) Inverse function MG (S) of the transfer function of the vehicle
By making -1 accurate, the feedback compensation loop has a smaller operation amount and becomes θ C → 0, so that overshoot or fluctuation does not occur in control.
【0051】(4)逆関数MG(S)-1を演算で求める
ため、人手による制御ゲイン調整の箇所がなく、制御ゲ
イン調整が不要である。(4) Since the inverse function MG (S) -1 is obtained by calculation, there is no place for manual control gain adjustment, and control gain adjustment is unnecessary.
【0052】(5)上記(4)の理由により車両が替わ
っても制御ゲイン調整が不要である。(5) Due to the reason (4) above, the control gain adjustment is unnecessary even if the vehicle is changed.
【0053】(6)車両モデル補償制御回路により加速
中も車速偏差を零にすることができる。かつオーバーシ
ュートが生じない。(6) The vehicle model compensation control circuit can reduce the vehicle speed deviation to zero even during acceleration. And no overshoot occurs.
【0054】(7)車両モデル補償制御においても車両
諸元よりトランスミッション比,デフ比,タイヤ半径,
車重等のデータより制御ゲインを演算により可変にすれ
ば、手動の調整は車両が替わっても不要となる。(7) In the vehicle model compensation control, the transmission ratio, differential ratio, tire radius,
If the control gain is made variable by calculation from data such as vehicle weight, manual adjustment becomes unnecessary even if the vehicle changes.
【0055】(8)従って常に安定して高精度な追従性
能が容易に得られる。(8) Therefore, stable and highly accurate tracking performance can always be easily obtained.
【図1】本発明の実施例にかかる車両速度制御方式を示
すブロック図。FIG. 1 is a block diagram showing a vehicle speed control system according to an embodiment of the present invention.
【図2】実施例及び先願例にかかる車両の伝達関数を示
すブロック図。FIG. 2 is a block diagram showing a transfer function of the vehicle according to the embodiment and the prior application example.
【図3】実施例及び先願例にかかる車両の伝達関数の逆
関数を示すブロック図。FIG. 3 is a block diagram showing an inverse function of a transfer function of the vehicle according to the embodiment and the prior application example.
【図4】実施例及び先願例にかかるシーマックによる学
習方式を示すブロック図。FIG. 4 is a block diagram showing a learning system using seamac according to the embodiment and the prior application.
【図5】実施例及び先願例にかかるシーマックによるダ
イナミック運転方式を示すブロック図。FIG. 5 is a block diagram showing a dynamic driving system using seamac according to the embodiment and the prior application.
【図6】先願例にかかる車両速度制御方式を示すブロッ
ク図。FIG. 6 is a block diagram showing a vehicle speed control system according to a prior application example.
【図7】従来例にかかるPID速度制御方式を示すブロ
ック図。FIG. 7 is a block diagram showing a PID speed control method according to a conventional example.
【図8】従来例にかかる加速度マイナー付速度制御方式
を示すブロック図。FIG. 8 is a block diagram showing a speed control system with an acceleration minor according to a conventional example.
【図9】図6の回路のシュミレーション応答波形(変速
時間0秒)を示す波形図。9 is a waveform diagram showing a simulation response waveform (shift time 0 seconds) of the circuit of FIG.
【図10】図6の回路のシュミレーション応答波形(変
速時間1秒)を示す波形図。10 is a waveform diagram showing a simulation response waveform (shift time 1 second) of the circuit of FIG.
【図11】実施例のシュミレーション応答波形を示す波
形図。FIG. 11 is a waveform diagram showing a simulation response waveform of the example.
【図12】図8の回路のシュミレーション応答波形を示
す波形図。12 is a waveform diagram showing a simulation response waveform of the circuit of FIG.
A…車両モデル規範形フィードフォワード制御回路 B…車両モデル補償制御回路 GO(S)…アクセルアクチュエータストローク制御伝
達関数 MG(S)…車両の伝達関数 MG(S)-1…車両の伝達関数の逆関数 4…車両制御モデル伝達関数回路 5,7,13…D演算器 6,12…I演算器 8,14…PI演算器 11…PID演算器 41,45…シーマック学習回路 42,46…荷重テーブルA ... Vehicle model reference feedforward control circuit B ... Vehicle model compensation control circuit G O (S) ... Accelerator actuator stroke control transfer function MG (S) ... Vehicle transfer function MG (S) -1 ... Vehicle transfer function Inverse function 4 ... Vehicle control model transfer function circuit 5, 7, 13 ... D calculator 6, 12 ... I calculator 8, 14 ... PI calculator 11 ... PID calculator 41, 45 ... Seamac learning circuit 42, 46 ... Load table
Claims (1)
ワードの伝達関数に用いて車速指令から直接アクセルの
開度を演算出力し、そのアクセル操作により車速を車速
指令に一致させるフィードフォワード制御回路と、 前記制御回路と同じ伝達関数を有し前記車速指令が入力
する車両制御モデル伝達関数回路と、この回路の出力を
補償制御の速度指令として前記フィードフォワード制御
による誤差分を補償するフィードバック制御回路と、か
らなることを特徴とした車両制御装置。1. A feedforward control circuit for calculating and outputting an accelerator opening directly from a vehicle speed command by using an inverse function of a vehicle transfer function as a feedforward transfer function, and for matching the vehicle speed with the vehicle speed command by the accelerator operation. A vehicle control model transfer function circuit having the same transfer function as that of the control circuit and to which the vehicle speed command is input; and a feedback control circuit for compensating an error amount due to the feedforward control by using an output of this circuit as a speed command for compensation control. A vehicle control device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11797694A JP3503187B2 (en) | 1994-05-31 | 1994-05-31 | Vehicle speed control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11797694A JP3503187B2 (en) | 1994-05-31 | 1994-05-31 | Vehicle speed control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH07325019A true JPH07325019A (en) | 1995-12-12 |
JP3503187B2 JP3503187B2 (en) | 2004-03-02 |
Family
ID=14724943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11797694A Expired - Fee Related JP3503187B2 (en) | 1994-05-31 | 1994-05-31 | Vehicle speed control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3503187B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007093223A (en) * | 2005-09-27 | 2007-04-12 | Meidensha Corp | Chassis dynamometer |
JP2009025064A (en) * | 2007-07-18 | 2009-02-05 | Meidensha Corp | Driving force characteristic recording method in vehicle speed control |
JP2009068929A (en) * | 2007-09-12 | 2009-04-02 | Meidensha Corp | Method for including drive force property of vehicle speed control |
EP1586885A3 (en) * | 2004-04-15 | 2009-11-11 | Kabushiki Kaisha Meidensha | Vehicle speed control system for a vehicle on a chassis dynamometer |
JP2016008925A (en) * | 2014-06-25 | 2016-01-18 | 株式会社明電舎 | Vehicle speed command production system and vehicle speed command production method |
KR20200104405A (en) * | 2018-02-15 | 2020-09-03 | 메이덴샤 코포레이션 | Vehicle speed control device and vehicle speed control method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62148831A (en) * | 1985-12-24 | 1987-07-02 | Nissan Motor Co Ltd | Speed controller |
JPH0325505A (en) * | 1989-06-22 | 1991-02-04 | Toyo Electric Mfg Co Ltd | Multifunction controller |
JPH04248735A (en) * | 1991-02-05 | 1992-09-04 | Hitachi Ltd | Communication control processing system |
JPH04249735A (en) * | 1990-12-30 | 1992-09-04 | Horiba Ltd | Controlling method of automatic drive robot of automobile |
JPH0534245A (en) * | 1991-02-06 | 1993-02-09 | Honda Motor Co Ltd | Method for controlling road simulator |
JPH05181503A (en) * | 1991-12-27 | 1993-07-23 | Toyo Electric Mfg Co Ltd | Stablized feedback control method |
JPH05312685A (en) * | 1992-05-09 | 1993-11-22 | Horiba Ltd | Method for controlling automobile automatic driving robot |
-
1994
- 1994-05-31 JP JP11797694A patent/JP3503187B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62148831A (en) * | 1985-12-24 | 1987-07-02 | Nissan Motor Co Ltd | Speed controller |
JPH0325505A (en) * | 1989-06-22 | 1991-02-04 | Toyo Electric Mfg Co Ltd | Multifunction controller |
JPH04249735A (en) * | 1990-12-30 | 1992-09-04 | Horiba Ltd | Controlling method of automatic drive robot of automobile |
JPH04248735A (en) * | 1991-02-05 | 1992-09-04 | Hitachi Ltd | Communication control processing system |
JPH0534245A (en) * | 1991-02-06 | 1993-02-09 | Honda Motor Co Ltd | Method for controlling road simulator |
JPH05181503A (en) * | 1991-12-27 | 1993-07-23 | Toyo Electric Mfg Co Ltd | Stablized feedback control method |
JPH05312685A (en) * | 1992-05-09 | 1993-11-22 | Horiba Ltd | Method for controlling automobile automatic driving robot |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1586885A3 (en) * | 2004-04-15 | 2009-11-11 | Kabushiki Kaisha Meidensha | Vehicle speed control system for a vehicle on a chassis dynamometer |
US7693641B2 (en) | 2004-04-15 | 2010-04-06 | Kabushiki Kaisha Meidensha | Vehicle speed control system |
JP2007093223A (en) * | 2005-09-27 | 2007-04-12 | Meidensha Corp | Chassis dynamometer |
JP4699848B2 (en) * | 2005-09-27 | 2011-06-15 | 株式会社明電舎 | Chassis dynamometer |
JP2009025064A (en) * | 2007-07-18 | 2009-02-05 | Meidensha Corp | Driving force characteristic recording method in vehicle speed control |
JP2009068929A (en) * | 2007-09-12 | 2009-04-02 | Meidensha Corp | Method for including drive force property of vehicle speed control |
JP2016008925A (en) * | 2014-06-25 | 2016-01-18 | 株式会社明電舎 | Vehicle speed command production system and vehicle speed command production method |
KR20200104405A (en) * | 2018-02-15 | 2020-09-03 | 메이덴샤 코포레이션 | Vehicle speed control device and vehicle speed control method |
Also Published As
Publication number | Publication date |
---|---|
JP3503187B2 (en) | 2004-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4349187B2 (en) | Vehicle speed control device | |
JP3873584B2 (en) | Automatic driving device for vehicles | |
JP5098736B2 (en) | Vehicle speed control device | |
KR940002216B1 (en) | Electronic throttle valve opening control apparatus | |
US7150263B2 (en) | Engine speed control apparatus; engine system, vehicle and engine generator each having the engine speed control apparatus; and engine speed control method | |
JPH058660A (en) | Vehicle speed control device | |
JPH07325019A (en) | Vehicle speed controlling apparatus | |
JPH0666682A (en) | Control method for brake dynamo system | |
JP4061908B2 (en) | Vehicle speed control device | |
JP3301388B2 (en) | Transmission control device for continuously variable transmission | |
KR100307575B1 (en) | Continuously variable transmission with control system | |
EP1027633B1 (en) | Method and apparatus for phase compensation in a vehicle control system | |
WO2021106290A1 (en) | Vehicle speed command generation device and vehicle speed command generation method | |
JPH10153611A (en) | Acceleration estimating device | |
JP3092444B2 (en) | Constant-speed cruise control device for vehicles | |
JP3358546B2 (en) | Transmission control device for continuously variable transmission | |
JP2912965B2 (en) | Electric inertia compensation control method for driving test machine | |
JP3608388B2 (en) | Travel resistance estimation device and vehicle travel control device | |
JP3407661B2 (en) | Transmission control device for continuously variable transmission | |
JP3427736B2 (en) | Transmission control device for continuously variable transmission | |
JP2020041866A (en) | Dynamometer control device | |
JP2002147258A (en) | Throttle valve control device of internal combustion engine | |
JPH1082719A (en) | Engine torque control device | |
JP2005299707A (en) | Start control device of torque transmission system | |
JP3310527B2 (en) | Control method for autonomous driving robot |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20031201 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081219 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091219 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101219 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |