JPH0732133B2 - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPH0732133B2
JPH0732133B2 JP62121599A JP12159987A JPH0732133B2 JP H0732133 B2 JPH0732133 B2 JP H0732133B2 JP 62121599 A JP62121599 A JP 62121599A JP 12159987 A JP12159987 A JP 12159987A JP H0732133 B2 JPH0732133 B2 JP H0732133B2
Authority
JP
Japan
Prior art keywords
pressure
gas
semiconductor manufacturing
flow rate
purge gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62121599A
Other languages
Japanese (ja)
Other versions
JPS63285924A (en
Inventor
芳紹 堤
新次郎 上田
隆夫 川那部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62121599A priority Critical patent/JPH0732133B2/en
Publication of JPS63285924A publication Critical patent/JPS63285924A/en
Publication of JPH0732133B2 publication Critical patent/JPH0732133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、油回転ポンプなどの真空ポンプを設けた半導
体製造装置に係り、特に被排気側の油による汚染を防止
するのに好適な半導体製造装置に関する。
Description: TECHNICAL FIELD The present invention relates to a semiconductor manufacturing apparatus provided with a vacuum pump such as an oil rotary pump, and particularly to a semiconductor suitable for preventing contamination by oil on the exhausted side. Manufacturing equipment

〔従来の技術〕[Conventional technology]

油を使用する真空ポンプを設けた半導体製造装置におい
て、真空ポンプからの油の逆拡散による真空容器の油の
汚染を防止するパージ方法が、「真空技術」(共立出
版、1985年7月)の「D.きれいなあらびき系」(203〜2
07頁)の項に記載されている。この公知文献によるパー
ジ方法は、前記油による汚染がパージガス圧力13Pa(0.
1Torr)を境として、それより低圧側では急激に高まる
ので、油回転ポンプの吸込口側に乾燥窒素のパージを設
けて油回転ポンプの吸込口圧力が13〜40Pa(0.1〜0.3To
rr)より低くならないようにしたものである。
In semiconductor manufacturing equipment equipped with a vacuum pump that uses oil, a purging method that prevents oil contamination of the vacuum container due to back diffusion of oil from the vacuum pump is described in "Vacuum Technology" (Kyoritsu Shuppan, July 1985). "D. A clean system" (203-2
Page 07). In the purging method according to this known document, the contamination with the oil causes a purge gas pressure of 13 Pa (0.
1 Torr), the pressure rises sharply on the low pressure side, so dry nitrogen purge is provided on the suction side of the oil rotary pump, and the suction pressure of the oil rotary pump is 13-40 Pa (0.1-0.3To
rr).

第8図は上述の公知のパージ方法を適用した従来の真空
装置である。まず真空チャンバ50を大気圧状態から排気
するには、粗引バルブ51および油回転ポンプバルブ52を
開いて油回転ポンプ53により粗引を始める。このとき真
空チャンバ50に油回転ポンプ53の油が逆拡散しないよう
に真空チャンバパージバルブ55を開き、パージガス源
(図示せず)からのパージガスを配管56を通して真空チ
ャンバ50にパージし、真空チャンバ50の圧力が40Pa(0.
3Torr)以下にならないようにする。40Pa近傍の圧力で
油回転ポンプバルブ52、真空チャンバパージバルブ55を
閉じ、ソープションポンプバルブ58を開いてソープショ
ンポンプ59によりさらに低い圧力まで粗引を行なう。
FIG. 8 shows a conventional vacuum device to which the above-mentioned known purging method is applied. First, in order to evacuate the vacuum chamber 50 from the atmospheric pressure state, the roughing valve 51 and the oil rotary pump valve 52 are opened, and the roughing by the oil rotary pump 53 is started. At this time, the vacuum chamber purge valve 55 is opened so that the oil of the oil rotary pump 53 does not back-diffuse into the vacuum chamber 50, the purge gas from the purge gas source (not shown) is purged into the vacuum chamber 50 through the pipe 56, and the vacuum chamber 50 Pressure is 40Pa (0.
3Torr) Do not fall below. At a pressure near 40 Pa, the oil rotary pump valve 52 and the vacuum chamber purge valve 55 are closed, the sorption pump valve 58 is opened, and the sorption pump 59 performs roughing to a lower pressure.

そして配管60により真空チャンバ50に連通する主排気ポ
ンプ(図示せず)の作動圧力領域となったら粗引バルブ
51を閉じて配管60を通して主排気ポンプから排気をする
というものである。さらにバルブ等の誤操作により油回
転ポンプ53の油が逆拡散して真空チャンバ50を汚染しな
いように、油回転ポンプパージ配管61よりパージガスを
流しておいて油回転ポンプ53の吸込口圧力が13Pa(0.1T
orr)以上になるようにしておくことが望ましい。なお
第8図において、62はポンプ吐出管である。
When the working pressure range of the main exhaust pump (not shown) communicating with the vacuum chamber 50 through the pipe 60 is reached, the roughing valve
51 is closed and the main exhaust pump is exhausted through the pipe 60. Further, in order to prevent the oil of the oil rotary pump 53 from back-diffusing due to an erroneous operation of the valve or the like and contaminating the vacuum chamber 50, a purge gas is caused to flow from the oil rotary pump purge pipe 61 so that the suction port pressure of the oil rotary pump 53 is 13 Pa ( 0.1T
It is desirable to be more than orr). In FIG. 8, 62 is a pump discharge pipe.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

ところで近時半導体の高集積度化に伴って半導体製造装
置において、真空チャンバ内の排気に用いる真空ポンプ
の油の逆拡散によるウエハの汚染に起因する不良が問題
になっている。特に到達圧力近傍で作動している油回転
ポンプでは、油の逆拡散が激しく発生している。この油
汚染の発生源である油回転ポンプの油の逆拡散の量を低
減させれば、油汚染による半導体の不良率を低減させる
ことができる。しかし上記従来のパージ方法では、油回
転ポンプ53の油の真空チャンバ50内への逆拡散による油
汚染を抑えるということで油回転ポンプ53の吸込口圧力
をパージにより13Pa(0.1Torr)以上と高くしている。
これでは半導体製造プロセスにおいて、不必要なガスを
排除した後の真空チャンバ50内の圧力が高くなり、油回
転ポンプ53を使用して真空チャンバ50内を13Pa(0.1Tor
r)より低い高清浄な環境にすることができないという
問題があった。
In recent years, as semiconductors have become highly integrated, a problem has arisen in semiconductor manufacturing equipment due to wafer contamination due to back diffusion of oil in a vacuum pump used for exhausting a vacuum chamber. In particular, in an oil rotary pump operating near the ultimate pressure, oil back diffusion is severely generated. If the amount of back diffusion of oil in the oil rotary pump, which is the source of this oil pollution, is reduced, it is possible to reduce the defective rate of semiconductors due to oil pollution. However, in the above conventional purging method, by suppressing the oil contamination due to the reverse diffusion of the oil of the oil rotary pump 53 into the vacuum chamber 50, the suction port pressure of the oil rotary pump 53 is as high as 13 Pa (0.1 Torr) or more by purging. is doing.
With this, in the semiconductor manufacturing process, the pressure in the vacuum chamber 50 after removing unnecessary gas becomes high, and the oil rotary pump 53 is used to set the pressure in the vacuum chamber 50 to 13 Pa (0.1 Torr).
r) There was a problem that a lower and higher clean environment could not be created.

本発明の目的は、油回転ポンプなどの真空ポンプの吸込
口側より微量のパージガスを処理室の圧力を0.1Torr以
下に維持しつつパージし、油の逆拡散を抑えるようにし
た半導体製造装置を提供することにある。
An object of the present invention is to purify a small amount of purge gas from the suction port side of a vacuum pump such as an oil rotary pump while maintaining the pressure of the processing chamber at 0.1 Torr or less, and to suppress the back diffusion of oil in a semiconductor manufacturing apparatus. To provide.

〔問題点を解決するための手段〕[Means for solving problems]

かかる目的達成のため、本発明は、油回転ポンプなどの
真空ポンプを真空排気系とする半導体製造装置におい
て、処理室を到達圧力に排気する過程時に微量のパージ
ガスを前記処理室の圧力を0.1Torr以下に維持しつつ前
記真空ポンプの上流側よりパージするパージガス微少流
量供給機構を設けたものである。
To achieve such an object, the present invention, in a semiconductor manufacturing apparatus using a vacuum pump such as an oil rotary pump as a vacuum exhaust system, traces a small amount of purge gas to 0.1 Torr during the process of exhausting the processing chamber to the ultimate pressure. A purge gas micro flow rate supply mechanism for purging from the upstream side of the vacuum pump while maintaining the following is provided.

〔作用〕[Action]

上述の構成によれば、処理室を油回転ポンプなどの真空
ポンプで到達圧力まで排気する過程時に、真空ポンプに
使われている油の吸込口側への逆拡散を抑えるのに十分
な最小量のパージガスが、処理室の圧力を0.1Torr以下
に維持しつつ真空ポンプ上流側より微少流量供給機構を
通ってパージされる。このときのパージ量は従来のパー
ジ量の約数十分の一程度となり、真空排気系の到達圧力
にほとんど影響を与えず、清浄な真空が得られる。これ
により被排気系の油の汚染の少ない半導体製造装置が得
られる。
According to the above configuration, when the process chamber is evacuated to the ultimate pressure with a vacuum pump such as an oil rotary pump, the minimum amount sufficient to prevent the back diffusion of oil used in the vacuum pump to the suction port side. Is purged from the upstream side of the vacuum pump through the minute flow rate supply mechanism while maintaining the pressure of the processing chamber at 0.1 Torr or less. The purge amount at this time is about several tenths of the conventional purge amount, and the ultimate pressure of the vacuum exhaust system is hardly affected, and a clean vacuum can be obtained. As a result, a semiconductor manufacturing apparatus in which the oil in the exhaust system is less contaminated can be obtained.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて説明する。 Hereinafter, the present invention will be described based on embodiments shown in the drawings.

第1図は本発明に係る半導体製造装置1をバッチ減圧CV
D装置に適用した第1実施例を示したもので、半導体製
造装置1は、処理室である反応管2と、真空ポンプであ
る油回転ポンプ3と、ガス供給部5と、パージガス微少
流量供給機構6とを備えている。
FIG. 1 shows a semiconductor manufacturing apparatus 1 according to the present invention in a batch depressurization CV.
1 shows the first embodiment applied to the D apparatus. The semiconductor manufacturing apparatus 1 includes a reaction tube 2 that is a processing chamber, an oil rotary pump 3 that is a vacuum pump, a gas supply unit 5, and a purge gas micro flow rate supply. And a mechanism 6.

反応管2は、一端開口部をシール部材8を介してカバー
9により閉塞しており、内部にウエハ10を導入するよう
に構成されている。油回転ポンプ3は排気管11により反
応管2の他端に連結されており、排気管11には上流側か
ら下流側に向って順次冷却トラップ12、主排気バルブ13
およびメカニカルブースタ15が配置されている。また冷
却トラップ12、主排気バルブ13間の排気管11Aから分岐
して主排気バルブ13、メカニカルブースタ15間の排気管
11Bに連結された分岐管16には補助排気バルブ18が配置
されている。ガス供給部5は配管19により反応管2の一
端に連結されており、配管19にはガスバルブ20が配置さ
れている。
The reaction tube 2 is closed at one end with a cover 9 via a seal member 8 and is configured to introduce the wafer 10 therein. The oil rotary pump 3 is connected to the other end of the reaction tube 2 by an exhaust pipe 11, and in the exhaust pipe 11, a cooling trap 12 and a main exhaust valve 13 are sequentially arranged from upstream to downstream.
And mechanical booster 15 is located. In addition, the exhaust pipe 11A between the cooling trap 12 and the main exhaust valve 13 branches off from the exhaust pipe 11 between the main exhaust valve 13 and the mechanical booster 15.
An auxiliary exhaust valve 18 is arranged in the branch pipe 16 connected to 11B. The gas supply unit 5 is connected to one end of the reaction tube 2 by a pipe 19, and a gas valve 20 is arranged in the pipe 19.

パージガス微少流量供給機構6は、パージガス源21と、
該パージガス源21と排気管11Bとを連結するパージガス
配管22と、該パージガス配管22に配置された微少流量供
給流量計23および微少流量供給パージバルブ25とからな
っている。
The purge gas micro flow rate supply mechanism 6 includes a purge gas source 21 and
It comprises a purge gas pipe 22 connecting the purge gas source 21 and the exhaust pipe 11B, a minute flow rate supply flow meter 23 and a minute flow rate supply purge valve 25 arranged in the purge gas pipe 22.

なお第1図において、配管11Aには、リークバルブ26お
よび圧力計28が連結されており、反応管2の外周面はヒ
ータ29により被覆されている。また油回転ポンプ3には
希釈ガスライン30および吐出管31がそれぞれ連結されて
いる。
In FIG. 1, a leak valve 26 and a pressure gauge 28 are connected to the pipe 11A, and the outer peripheral surface of the reaction tube 2 is covered with a heater 29. Further, a dilution gas line 30 and a discharge pipe 31 are connected to the oil rotary pump 3, respectively.

つぎに、本発明の第1実施例の作用を説明する。Next, the operation of the first embodiment of the present invention will be described.

バッチ式減圧CVDのサイクルは、ウエハ10を反応管2内
に導入した後、まず補助排気バルブ18を開き次いで主排
気バルブ13を開いて、反応管2内の空気を排気管11およ
び分岐管16を通してメカニカルブースタ15および油回転
ポンプ3により排気する。つぎにガスバルブ20を開きガ
ス供給部5から窒素ガスを配管19を通して反応管2内に
導入して空気と置換する。そして補助排気バルブ18のみ
を閉じてさらに排気を行ない、反応ガスをガス供給部5
から配管19を通して反応管2内に導入して反応を行なわ
せ、反応終了後再び窒素ガスを反応管2内に導入して反
応ガスとの置換を行なう。そして主排気バルブ13および
ガスバルブ20を閉じた後、リークバルブ26を開き大気を
反応管2内に導入して大気圧状態に戻し、ウエハ10を反
応管2外に搬出するというものである。
In the batch type low pressure CVD cycle, after the wafer 10 is introduced into the reaction tube 2, first the auxiliary exhaust valve 18 is opened and then the main exhaust valve 13 is opened to remove the air in the reaction tube 2 from the exhaust tube 11 and the branch tube 16. Through the mechanical booster 15 and the oil rotary pump 3. Next, the gas valve 20 is opened and nitrogen gas is introduced from the gas supply unit 5 into the reaction tube 2 through the pipe 19 and is replaced with air. Then, only the auxiliary exhaust valve 18 is closed to perform further exhaust, and the reaction gas is supplied to the gas supply unit 5.
Is introduced into the reaction tube 2 through the pipe 19 to cause the reaction, and after completion of the reaction, nitrogen gas is again introduced into the reaction tube 2 to replace the reaction gas. Then, after closing the main exhaust valve 13 and the gas valve 20, the leak valve 26 is opened to introduce the atmosphere into the reaction tube 2 to return it to the atmospheric pressure state, and the wafer 10 is carried out of the reaction tube 2.

ウエハ10を反応管2内に導入後反応管2内を大気圧状態
からメカニカルブースタ15および油回転ポンプ3により
排気する際、又は反応終了後反応ガスと窒素ガスとの置
換時に反応ガスの供給を停止して反応ガスを反応管2内
より排気する際に、到達圧力近傍で油の逆拡散が急激に
進展して反応管2内を油汚染するため、排気の始めより
パージガス微少流量供給機構6の微少流量供給パージバ
ルブ25を開きパージガス源21よりパージガス配管22を通
して微少流量供給流量計23によりパージガスの流量を確
認して微量のパージガスを流す。このときパージするガ
スは、反応に影響を与えることの少ない不活性ガスが好
ましいが、窒素ガスなどでも十分効果があり、実験の結
果では分子量の大きいガス程効果が大きいことが表1で
示すように立証されている。
After the wafer 10 is introduced into the reaction tube 2, when the reaction tube 2 is evacuated from the atmospheric pressure state by the mechanical booster 15 and the oil rotary pump 3, or when the reaction gas is replaced with the nitrogen gas, the reaction gas is supplied. When the reaction gas is stopped and the reaction gas is exhausted from the inside of the reaction tube 2, reverse diffusion of oil rapidly progresses in the vicinity of the ultimate pressure to contaminate the inside of the reaction tube 2, so that the purge gas micro flow rate supply mechanism 6 is provided from the beginning of exhaust. The minute flow rate supply purge valve 25 is opened, and the flow rate of the purge gas is confirmed by the minute flow rate supply flow meter 23 from the purge gas source 21 through the purge gas pipe 22 and a small amount of purge gas is flowed. As the gas to be purged at this time, an inert gas that does not affect the reaction is preferable, but nitrogen gas or the like is also sufficiently effective, and as a result of the experiment, a gas having a larger molecular weight is more effective, as shown in Table 1. Is proved by.

第2図は窒素ガスをパージしたときの反応管2内の到達
圧力近傍での四重極質量分析器で計測した残留ガススペ
クトルを示したもので、縦軸はイオン電流値、横軸は質
量数である。得られたスペクトルは、空気の残留ガスス
ペクトルで、きわめて清浄な状態が得られたことがわか
る。
FIG. 2 shows a residual gas spectrum measured by a quadrupole mass spectrometer in the vicinity of the ultimate pressure in the reaction tube 2 when purging with nitrogen gas, in which the vertical axis is the ion current value and the horizontal axis is the mass. Is a number. The obtained spectrum is the residual gas spectrum of air, and it can be seen that an extremely clean state was obtained.

第3図は微少流量のパージをやめたときの反応管2内の
残留ガススペクトルである。油回転ポンプ3に使用され
ている油の成分(炭化水素系)によるピークが質量数39
以上に多数検出されており、反応管2内の油汚染が著し
く進展していることがわかる。
FIG. 3 is a residual gas spectrum in the reaction tube 2 when the purging at the minute flow rate is stopped. The peak due to the component of the oil (hydrocarbon system) used in the oil rotary pump 3 is the mass number 39.
A large number are detected as described above, and it can be seen that the oil contamination in the reaction tube 2 is significantly advanced.

第4図は窒素ガスをパージしたときのパージガスの量と
残留ガス成分の検出ピークの変化、油回転ポンプ吸込口
圧力(以下、単に吸込口圧力という)の変化を示したも
のである。左側の縦軸は残留ガスの検出ピークに対する
イオン電流値で右側の縦軸は吸込口圧力、横軸はパージ
量を表わしている。
FIG. 4 shows changes in the amount of purge gas and residual gas component detection peaks when purging nitrogen gas, and changes in oil rotary pump suction port pressure (hereinafter simply referred to as suction port pressure). The left vertical axis represents the ion current value with respect to the residual gas detection peak, the right vertical axis represents the suction port pressure, and the horizontal axis represents the purge amount.

以上を比較すると、わずかな量のパージによって油の各
成分ごとにみると微少流量のパージを行なった場合のピ
ークは、パージを行なわない場合の約1/100程度とな
り、十分清浄な真空が得られていることがわかる。この
ときパージを合なった量と従来のパージ量を比較する
と、本発明のパージ量が極めてわずかの量となることが
わかる。一例として排気速度が240l/minの油回転ポンプ
3についてパージ量を従来の方法によるものと本発明に
よるものとを比較する。
Comparing the above, when looking at each component of oil by a slight amount of purge, the peak when a minute flow rate is purged is about 1/100 of that when no purge is performed, and a sufficiently clean vacuum is obtained. You can see that it is being done. At this time, when the total amount of purging and the conventional purging amount are compared, it can be seen that the purging amount of the present invention is extremely small. As an example, the purging amount of the oil rotary pump 3 having an evacuation speed of 240 l / min will be compared between the conventional method and the present invention.

油回転ポンプ3の排気速度をS、排気量をQ、吸込口圧
力をPとすると、各々の関係は次式で与えられる。
When the exhaust speed of the oil rotary pump 3 is S, the exhaust amount is Q, and the suction port pressure is P, the respective relationships are given by the following equations.

Q=SP ………(1) S=240l/minとし、従来方法によるパージ量Q1は、P=
0.1Torrとすると式(1)より Q1=0.4Torrl/S≒32SCCM となり、本発明によるパージ量Q2は第4図によると0.6S
CCM(到達圧力7×10-3Torrのとき)でも十分に効果が
あることからQ2=0.6SCCMとすると従来の約1/53とな
る。このため真空排気系の到達圧力は従来のパージ方法
による圧力0.1Torrよりも低くなり、かつ清浄な真空が
得られる。従って本実施例によれば、比較的少ない装置
の改造により油汚染の少ない真空が得られる。
Q = SP ... (1) S = 240 l / min, and the purge amount Q 1 by the conventional method is P =
Assuming that 0.1 Torr, Q 1 = 0.4 Torrl / S≈32 SCCM from equation (1), and the purge amount Q 2 according to the present invention is 0.6 S according to FIG.
Since CCM (at the ultimate pressure of 7 × 10 -3 Torr) is also sufficiently effective, setting Q 2 = 0.6 SCCM is about 1/53 of the conventional value. Therefore, the ultimate pressure of the vacuum exhaust system becomes lower than the pressure of 0.1 Torr by the conventional purging method, and a clean vacuum can be obtained. Therefore, according to the present embodiment, a vacuum with less oil contamination can be obtained by modifying the device with a relatively small number.

第5図は本発明の第2実施例に係り、半導体製造装置1
をバッチ式減圧CVD装置に適用した他の実施例である。
この実施例では、油回転ポンプ3の上流側の圧力に応じ
てパージを行なうパージガス微少流量供給機構6を自動
的に制御する微少流量供給制御機構35を設けてある。こ
の機構35は吸込口圧力をモニタする吸込口圧力モニタ真
空計36と、微少流量供給パージバルブ制御信号線38とか
らなっている。
FIG. 5 relates to a second embodiment of the present invention, which is a semiconductor manufacturing apparatus 1
Is another example in which is applied to a batch type low pressure CVD apparatus.
In this embodiment, a minute flow rate supply control mechanism 35 for automatically controlling the purge gas minute flow rate supply mechanism 6 for purging according to the pressure on the upstream side of the oil rotary pump 3 is provided. The mechanism 35 includes a suction port pressure monitor vacuum gauge 36 for monitoring the suction port pressure and a minute flow rate supply purge valve control signal line 38.

そして吸込口圧力が所定の圧力以下になると、吸込口圧
力モニタ真空計36がこれを検出し、微少流量供給パージ
バルブ25を開くための信号を微少流量供給パージバルブ
制御信号線38を通じて微少流量供給パージバルブ25へ伝
達し、該バルブ25は開の状態となりパージが行なわれ
る。また吸込口圧力が所定の圧力より高くなると、吸込
口圧力モニタ真空計36がこれを検出し、微少流量供給パ
ージバルブ25を閉じるための信号を微少流量供給パージ
バルブ制御信号線38を通じて微少流量供給パージバルブ
25に伝達し、これにより該バルブ25は閉状態となる。こ
のように第2実施例では、吸込口圧力に応じてパージを
自動的に行なうことができ装置の信頼性および経済性が
向上する。
When the suction port pressure becomes equal to or lower than a predetermined pressure, the suction port pressure monitor vacuum gauge 36 detects this, and outputs a signal for opening the minute flow rate supply purge valve 25 through the minute flow rate supply purge valve control signal line 38. Then, the valve 25 is opened and purging is performed. When the suction port pressure becomes higher than a predetermined pressure, the suction port pressure monitor vacuum gauge 36 detects this and sends a signal for closing the minute flow rate supply purge valve 25 through the minute flow rate supply purge valve control signal line 38.
25, which causes the valve 25 to close. As described above, in the second embodiment, purging can be automatically performed according to the suction port pressure, and the reliability and economy of the device are improved.

第6図は本発明の第3実施例に係り、半導体製造装置1
をバッチ減圧CVD装置に適用した他の実施例である。こ
の実施例ではパージガスをパージする機構において、パ
ージガス源がガス供給部5のガスの一部と共有になって
いる。このように本実施例では、パージガス微少流量供
給機構6はガス供給部5のガスの一部と共有になってお
り、構造が簡単となる。
FIG. 6 relates to a third embodiment of the present invention, which is a semiconductor manufacturing apparatus 1
Is another example in which is applied to a batch reduced pressure CVD apparatus. In this embodiment, in the mechanism for purging the purge gas, the purge gas source is shared with a part of the gas in the gas supply unit 5. As described above, in this embodiment, the purge gas micro flow rate supply mechanism 6 is shared with a part of the gas in the gas supply section 5, and the structure is simplified.

第7図は本発明の第4実施例に係り、半導体製造装置1
をバッチ式減圧CVD装置に適用した他の実施例である。
この実施例ではパージガス微少流量供給機構6の構成要
素のうち、微少流量供給パージバルブ25と微少流量供給
流量計23とを一体化した微少流量供給マスフローコント
ローラ39を用いている(この構造および原理は「計測技
術」86,増刊号55頁〜62頁に記載されている)。これに
よってパージガス微少流量供給機構6の構造が簡単にな
る。
FIG. 7 relates to a fourth embodiment of the present invention and relates to a semiconductor manufacturing apparatus 1
Is another example in which is applied to a batch type low pressure CVD apparatus.
In this embodiment, among the constituent elements of the purge gas micro flow rate supply mechanism 6, a micro flow rate supply mass flow controller 39 in which a micro flow rate supply purge valve 25 and a micro flow rate supply flow meter 23 are integrated is used (this structure and principle are Measurement Technology "86, Special Issue, pages 55-62). This simplifies the structure of the purge gas micro flow rate supply mechanism 6.

〔発明の効果〕〔The invention's effect〕

上述のとおり、本発明によれば、処理室を油回転ポンプ
などの真空ポンプで到達圧力まで排気する過程時、微量
のパージガスが前記処理室の圧力を0.1Torr以下に維持
しつつ前記真空ポンプの上流側よりパージされる。従っ
て真空ポンプに使われている油の吸込口側への逆拡散が
抑えられるので、処理室内は清浄な真空状態となり、こ
れによって被排気系の油の汚染の少ない半導体製造装置
が得られる。
As described above, according to the present invention, during the process of exhausting the processing chamber to the ultimate pressure with a vacuum pump such as an oil rotary pump, a slight amount of purge gas maintains the pressure of the processing chamber below 0.1 Torr and Purged from the upstream side. Therefore, the back diffusion of the oil used in the vacuum pump to the suction port side is suppressed, so that the inside of the processing chamber is in a clean vacuum state, whereby a semiconductor manufacturing apparatus in which the exhaust system oil is less contaminated can be obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図から第4図は本発明の第1実施例に係り、第1図
は本発明に係る半導体製造装置をバッチ式減圧CVD装置
に適用した構成図、第2図は反応管内の残留ガススペク
トル、第3図はパージを行なわないときの反応管内の残
留ガススペクトル、第4図はパージガスの量と残留ガス
の成分の検出ピークの変化とポンプ吸込口圧力の変化と
の関係図、第5図から第7図は本発明の第2実施例から
第4実施例に係り、本発明に係る半導体製造装置をバッ
チ式減圧CVD装置に適用した他の実施例の構成図、第8
図は従来例のパージ方法を適用した真空装置の構成図で
ある。 1……半導体製造装置、2……処理室である反応管、3
……真空ポンプの一例である油回転ポンプ、6……パー
ジガス微少流量供給機構、36……圧力検出器である吸込
口圧力モニタ真空計。
1 to 4 relate to the first embodiment of the present invention, FIG. 1 is a configuration diagram in which a semiconductor manufacturing apparatus according to the present invention is applied to a batch type low pressure CVD apparatus, and FIG. 2 is a residual gas in a reaction tube. FIG. 3 is a spectrum, FIG. 3 is a spectrum of residual gas in the reaction tube when purging is not performed, and FIG. 4 is a relationship diagram between the amount of purge gas, changes in the detection peak of residual gas components, and changes in pump suction port pressure. FIG. 7 to FIG. 7 relate to the second to fourth embodiments of the present invention, and are configuration diagrams of other embodiments in which the semiconductor manufacturing apparatus according to the present invention is applied to a batch type low pressure CVD apparatus, and FIG.
FIG. 1 is a block diagram of a vacuum device to which the conventional purging method is applied. 1 ... Semiconductor manufacturing equipment, 2 ... reaction tube which is a processing chamber, 3
…… Oil rotary pump, which is an example of a vacuum pump, 6 …… Purge gas micro flow rate supply mechanism, 36 …… Suction port pressure monitor vacuum gauge, which is a pressure detector.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】油回転ポンプなどの真空ポンプを真空排気
系とする半導体製造装置において、処理室を到達圧力に
排気する過程時に微量のパージガスを前記処理室の圧力
を0.1Torr以下に維持しつつ前記真空ポンプの上流側よ
りパージするパージガス微少流量供給機構を設けた半導
体製造装置。
1. In a semiconductor manufacturing apparatus using a vacuum pump such as an oil rotary pump as a vacuum exhaust system, a slight amount of purge gas is maintained at a pressure of 0.1 Torr or less during the process of exhausting the process chamber to the ultimate pressure. A semiconductor manufacturing apparatus provided with a purge gas micro flow rate supply mechanism for purging from the upstream side of the vacuum pump.
【請求項2】前記パージガス微少流量供給機構は、前記
真空ポンプの上流側圧力を検出する圧力検出器を有し、
該圧力検出器により前記真空ポンプの上流側圧力が、所
定圧力以下になればパージを行ない、所定圧力以上にな
ればパージを停止する特許請求の範囲第1項記載の半導
体製造装置。
2. The purge gas micro flow rate supply mechanism has a pressure detector for detecting the upstream pressure of the vacuum pump,
2. The semiconductor manufacturing apparatus according to claim 1, wherein purging is performed when the pressure on the upstream side of the vacuum pump falls below a predetermined pressure by the pressure detector, and purging is stopped when the pressure rises above a predetermined pressure.
【請求項3】前記パージガス微少流量供給機構の一部が
前記処理室に反応ガスを供給する機構と共有した特許請
求の範囲第1項記載の半導体製造装置。
3. The semiconductor manufacturing apparatus according to claim 1, wherein a part of the purge gas minute flow rate supply mechanism is shared with a mechanism for supplying a reaction gas to the processing chamber.
【請求項4】前記パージを行なうパージガス種が、不活
性ガスまたは窒素ガスである特許請求の範囲第1項記載
の半導体製造装置。
4. The semiconductor manufacturing apparatus according to claim 1, wherein the purge gas species for performing the purging is an inert gas or a nitrogen gas.
JP62121599A 1987-05-19 1987-05-19 Semiconductor manufacturing equipment Expired - Fee Related JPH0732133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62121599A JPH0732133B2 (en) 1987-05-19 1987-05-19 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62121599A JPH0732133B2 (en) 1987-05-19 1987-05-19 Semiconductor manufacturing equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP10034496A Division JPH08279471A (en) 1996-04-22 1996-04-22 Manufacturing for semiconductor device

Publications (2)

Publication Number Publication Date
JPS63285924A JPS63285924A (en) 1988-11-22
JPH0732133B2 true JPH0732133B2 (en) 1995-04-10

Family

ID=14815242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62121599A Expired - Fee Related JPH0732133B2 (en) 1987-05-19 1987-05-19 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0732133B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2607572B2 (en) * 1987-12-23 1997-05-07 株式会社日立製作所 Analysis device and method using charged particles
JPH0715131Y2 (en) * 1989-01-20 1995-04-10 古河電気工業株式会社 Metalorganic vapor phase growth equipment
JPH08279471A (en) * 1996-04-22 1996-10-22 Hitachi Ltd Manufacturing for semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60158730U (en) * 1984-03-30 1985-10-22 沖電気工業株式会社 semiconductor manufacturing equipment
JPS60176545U (en) * 1984-04-28 1985-11-22 沖電気工業株式会社 Thin film manufacturing equipment

Also Published As

Publication number Publication date
JPS63285924A (en) 1988-11-22

Similar Documents

Publication Publication Date Title
US6432838B1 (en) Chemical vapor deposition apparatus for manufacturing semiconductor devices, its driving method, and method of optimizing recipe of cleaning process for process chamber
JP4112659B2 (en) Noble gas recovery method and apparatus
JPS63204726A (en) Vacuum treatment device
TW200532108A (en) Apparatus and method for control, pumping and abatement for vacuum process chambers
WO2006030849A1 (en) Semiconductor manufacturing equipment and semiconductor device manufacturing method
US20050142010A1 (en) Fore-line preconditioning for vacuum pumps
US5714011A (en) Diluted nitrogen trifluoride thermal cleaning process
JP2607572B2 (en) Analysis device and method using charged particles
JPH0732133B2 (en) Semiconductor manufacturing equipment
JPS6370428A (en) Plasma treating apparatus
JPH08279471A (en) Manufacturing for semiconductor device
JPS62142791A (en) Vacuum treatment device
JPH0476492B2 (en)
JP2507518B2 (en) Vacuum exhaust device
JPH04272643A (en) Device and method for ion implantation
JPH042147A (en) Preserver of semiconductor substrate
JPH11219908A (en) Substrate processor and method therefor
JP2002252261A (en) Semiconductor test system and semiconductor aligner
JP2520592Y2 (en) Decompression exhaust device
JPH06177073A (en) Etching apparatus
KR970003595Y1 (en) Plasma cvd apparatus having anti-reverse flow structure
JPH0845856A (en) Reduced pressure treatment method and apparatus
JP4490636B2 (en) Semiconductor manufacturing apparatus and semiconductor device manufacturing method
JP2002141291A (en) Pressure-reducing method for vacuum chamber
JPH0693427A (en) Formation of film in vacuum

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees