JPH07320724A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPH07320724A
JPH07320724A JP6131429A JP13142994A JPH07320724A JP H07320724 A JPH07320724 A JP H07320724A JP 6131429 A JP6131429 A JP 6131429A JP 13142994 A JP13142994 A JP 13142994A JP H07320724 A JPH07320724 A JP H07320724A
Authority
JP
Japan
Prior art keywords
solid electrolyte
polymer
negative electrode
electrolyte
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6131429A
Other languages
Japanese (ja)
Inventor
Seiji Yoshimura
精司 吉村
Masahisa Fujimoto
正久 藤本
Yoshihiro Shoji
良浩 小路
Mikiya Yamazaki
幹也 山崎
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6131429A priority Critical patent/JPH07320724A/en
Publication of JPH07320724A publication Critical patent/JPH07320724A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To reduce the contact resistance on the interface between a negative electrode and a solid electrolyte and increase high rate discharge capacity. CONSTITUTION:A solid electrolyte battery has a positive electrode, a negative electrode using a carbon material capable of absorbing/desorbing lithium, and a polymer solid electrolyte or a polymer gelled electrolyte. The carbon material having a crystallite size in the direction of (c) axis (Lc) of 300Angstrom or more and a spacing of (002) planes (d002) of 3.37Angstrom or less is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固体電解質電池に係わ
り、詳しくは高率(大電流)での放電容量(高率放電容
量)が大きい固体電解質電池を得ることを目的とした、
負極材料の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte battery, and more specifically, to obtain a solid electrolyte battery having a high discharge capacity (high rate discharge capacity) at a high rate (large current).
The present invention relates to improvements in negative electrode materials.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
固体電解質電池が、漏液の心配が無いためにポジション
フリーであること、電解液の注液を必要としないために
電池の組立が容易であることなどの液体電解質電池には
無い利点があることから、注目されている。
2. Description of the Related Art In recent years,
There are advantages that liquid electrolyte batteries do not have, such as solid electrolyte batteries that are position-free because there is no risk of liquid leakage, and battery assembly is easy because electrolyte injection is not required. It has been attracting attention.

【0003】しかしながら、固体電解質のイオン伝導性
(導電率)が液体電解質のそれに比べて低く、また固体
電解質と負極の界面の接触抵抗が液体電解質と負極のそ
れに比べて大きいため、従来の固体電解質電池には、高
率放電(大電流放電)した場合、容量が低下するという
問題があった。このため、現在実用化されている固体電
解質電池は、心臓のペースメーカーの電源用に使用され
ているリチウム電池のみである。
However, the ionic conductivity (conductivity) of the solid electrolyte is lower than that of the liquid electrolyte, and the contact resistance at the interface between the solid electrolyte and the negative electrode is higher than that of the liquid electrolyte and the negative electrode. The battery has a problem that its capacity decreases when it is discharged at a high rate (large current discharge). Therefore, the only solid electrolyte battery that has been put into practical use at present is the lithium battery used for the power supply of the pacemaker of the heart.

【0004】固体電解質そのもののイオン伝導性につい
ては、例えば電解質塩の他にイオン伝導性に優れた非プ
ロトン性溶媒(液体)を高分子重合体に含有せしめてゲ
ル化することなどによりある程度改善することができる
が、固体電解質と負極の界面の接触抵抗については、有
効な解決手段が見出されていないのが実情である。
The ionic conductivity of the solid electrolyte itself is improved to some extent by, for example, adding an aprotic solvent (liquid) having excellent ionic conductivity to the high molecular weight polymer in addition to the electrolyte salt to cause gelation. However, as for the contact resistance at the interface between the solid electrolyte and the negative electrode, no effective solution has been found.

【0005】本発明は、かかる実情に鑑みなされたもの
であって、その目的とするところは、固体電解質と負極
の界面の接触抵抗の小さい、すなわち高率放電容量の大
きい固体電解質電池を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a solid electrolyte battery having a small contact resistance at the interface between the solid electrolyte and the negative electrode, that is, a large high rate discharge capacity. It is in.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る固体電解質電池(以下、「本発明電池」
と称する。)は、正極と、リチウムを吸蔵及び放出する
ことが可能な炭素材料を用いた負極と、高分子固体電解
質又は高分子ゲル状電解質とを備える固体電解質電池で
あって、前記炭素材料のc軸方向の結晶子の大きさ(L
c)が300Å以上であり、且つ格子面(002)面に
おけるd値(d002 )が3.37Å以下であるものであ
る。なお、高分子ゲル状電解質を用いた電池は、厳密に
はゲル状電解質電池とすべきかも知れないが、高分子ゲ
ル状電解質は見掛け上固形であるので、本明細書ではこ
れをも固体電解質電池に含める。
Means for Solving the Problems A solid electrolyte battery according to the present invention for achieving the above object (hereinafter referred to as "the present battery")
Called. ) Is a solid electrolyte battery comprising a positive electrode, a negative electrode using a carbon material capable of inserting and extracting lithium, and a polymer solid electrolyte or a polymer gel electrolyte, wherein the c-axis of the carbon material is Size of crystallite in the direction (L
c) is 300 Å or more, and the d value (d 002 ) on the lattice plane (002) plane is 3.37 Å or less. The battery using the polymer gel electrolyte may be strictly a gel electrolyte battery, but since the polymer gel electrolyte is apparently solid, this is also referred to as a solid electrolyte in this specification. Include in battery.

【0007】本発明電池においては、負極材料として、
c軸方向の結晶子の大きさ(Lc)が300Å以上であ
り、且つ格子面(002)面におけるd値(d002 )が
3.37Å以下である炭素材料が用いられる。Lcが3
00Å未満又はd002 が3.37Åを越えると、固体電
解質と負極との接合性が悪くなるため、両者の界面の接
触抵抗が大きくなり、高率放電容量が低下する。
In the battery of the present invention, as the negative electrode material,
A carbon material having a crystallite size (Lc) in the c-axis direction of 300 Å or more and a d value (d 002 ) of 3.37 Å or less on the lattice plane (002) plane is used. Lc is 3
If it is less than 00 Å or d 002 exceeds 3.37 Å, the bondability between the solid electrolyte and the negative electrode deteriorates, so that the contact resistance at the interface between the two increases and the high rate discharge capacity decreases.

【0008】高分子固体電解質としては、リチウムイオ
ン及び強酸のアニオンからなる電解質塩(イオン性物
質)と、酸素又は窒素を含有する高分子重合体とからな
るものが好ましい。リチウムイオン及び強酸のアニオン
からなる電解質塩の具体例としては、過塩素酸リチウム
(LiClO4 )、トリフルオロメタンスルホン酸リチ
ウム(LiCF3 SO3 )、六フッ化リン酸リチウム
(LiPF6 )、四フッ化ホウ酸リチウム(LiB
4 )、六フッ化ヒ酸リチウム(LiAsF6 )、六フ
ッ化アンチモン酸リチウム(LiSbF6 )、リチウム
トリフルオロメタンスルホン酸イミド〔LiN(CF3
SO2 2 〕が、また酸素又は窒素を含有する高分子重
合体の具体例としては、ポリエチレンオキシド、ポリプ
ロピレンオキシド、ポリエチレンイミンが、それぞれ挙
げられる。
The solid polymer electrolyte is preferably composed of an electrolyte salt (ionic substance) composed of a lithium ion and an anion of a strong acid, and a polymer polymer containing oxygen or nitrogen. Specific examples of the electrolyte salt composed of lithium ions and anions of strong acids include lithium perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium hexafluorophosphate (LiPF 6 ), and tetrafluoride. Lithium borate (LiB
F 4), lithium hexafluoroarsenate (LiAsF 6), lithium hexafluoro antimonate (LiSbF 6), lithium trifluoromethanesulfonate imide [LiN (CF 3
SO 2 ) 2 ], and specific examples of the high molecular weight polymer containing oxygen or nitrogen include polyethylene oxide, polypropylene oxide, and polyethyleneimine.

【0009】高分子ゲル状電解質としては、リチウムイ
オン及び強酸のアニオンからなる電解質塩と、酸素又は
窒素を含有する高分子重合体と、非プロトン性溶媒とか
らなるものが好ましい。電解質塩、及び、酸素又は窒素
を含有する高分子重合体としては、先に挙げたものが例
示される。また、非プロトン性溶媒としては、エチレン
カーボネート(EC)、プロピレンカーボネート(P
C)、ブチレンカーボネート(BC)、γ−ブチロラク
トン(γ−BL)、スルホラン(SL)、1,2−ジメ
トキシエタン(DME)、1,2−ジエトキシエタン
(DEE)、エトキシメトキシエタン(EMC)、テト
ラヒドロフラン(THF)、2−メチルテトラヒドロフ
ラン(2M−THF)、1,3−ジオキソラン(DOX
L)、4−メチル−1,3−ジオキソラン(4M−DO
XL)が例示される。
The polymer gel electrolyte is preferably composed of an electrolyte salt containing a lithium ion and an anion of a strong acid, a polymer containing oxygen or nitrogen, and an aprotic solvent. Examples of the electrolyte salt and the high molecular weight polymer containing oxygen or nitrogen include those mentioned above. Further, as the aprotic solvent, ethylene carbonate (EC), propylene carbonate (P
C), butylene carbonate (BC), γ-butyrolactone (γ-BL), sulfolane (SL), 1,2-dimethoxyethane (DME), 1,2-diethoxyethane (DEE), ethoxymethoxyethane (EMC) , Tetrahydrofuran (THF), 2-methyltetrahydrofuran (2M-THF), 1,3-dioxolane (DOX)
L), 4-methyl-1,3-dioxolane (4M-DO
XL) is illustrated.

【0010】[0010]

【作用】一般に高率放電においては、正極側に近い負極
の表面の炭素材料のみが充放電に関与し、極板内部の炭
素材料は充放電に関与しにくい。しかし、本発明電池に
おいては、Lc及びd002 が特定の範囲にある炭素材料
が負極材料として用いられているので、理由は定かでな
いが固体電解質と負極との接合性が向上して両者の界面
の接触抵抗が小さくなり、高率放電時の負極の利用率の
低下が抑制されて、高率放電容量が低下しにくくなる。
In general, in high-rate discharge, only the carbon material on the surface of the negative electrode near the positive electrode side participates in charging / discharging, and the carbon material inside the electrode plate hardly participates in charging / discharging. However, in the battery of the present invention, a carbon material having Lc and d 002 in a specific range is used as the negative electrode material, so the reason why the solid electrolyte and the negative electrode are improved in bonding property is not clear. The contact resistance becomes low, the decrease in the utilization factor of the negative electrode during high-rate discharge is suppressed, and the high-rate discharge capacity is less likely to decrease.

【0011】[0011]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0012】〔正極の作製〕正極活物質としてのコバル
ト酸リチウム(LiCoO2 )粉末と、導電剤としての
黒鉛粉末と、結着剤としてのPTFE(ポリテトラフル
オロエチレン)とを重量比8:1:1で混合して正極合
剤を調製し、これを円板状に成形し、100°Cで真空
乾燥して、正極を作製した。
[Production of Positive Electrode] Lithium cobalt oxide (LiCoO 2 ) powder as a positive electrode active material, graphite powder as a conductive agent, and PTFE (polytetrafluoroethylene) as a binder in a weight ratio of 8: 1. 1 to prepare a positive electrode mixture, which was molded into a disk shape and vacuum dried at 100 ° C. to prepare a positive electrode.

【0013】〔負極の作製〕種々のLc及びd002 を有
する負極材料としての黒鉛粉末と、結着剤としてのPT
FEとを重量比9:1で混合して負極合剤を調製し、こ
れを円板状に成形し、100°Cで真空乾燥して、負極
を作製した。
[Production of Negative Electrode] Graphite powder as a negative electrode material having various Lc and d 002 , and PT as a binder.
A negative electrode mixture was prepared by mixing FE with a weight ratio of 9: 1, formed into a disk shape, and vacuum dried at 100 ° C. to prepare a negative electrode.

【0014】〔固体電解質の作製〕80°Cで予め真空
乾燥した平均分子量60000のポリエチレンオキシド
と、LiClO4 (ポリエチレンオキシド中のエチレン
オキシド単位10モル部に対して1モル部)とをアセト
ニトリルに溶かして溶液を調製し、この溶液をステンレ
ス鋼製のシャーレ上にキャストし、減圧乾燥してアセト
ニトリルを除去した後、100°Cで加熱乾燥して、高
分子固体電解質を作製した。
[Preparation of Solid Electrolyte] Polyethylene oxide having an average molecular weight of 60,000 previously vacuum-dried at 80 ° C. and LiClO 4 (1 part by mole with respect to 10 parts by mole of ethylene oxide unit in polyethylene oxide) were dissolved in acetonitrile. A solution was prepared, cast on a stainless steel petri dish, dried under reduced pressure to remove acetonitrile, and then dried by heating at 100 ° C. to prepare a polymer solid electrolyte.

【0015】〔固体電解質電池の組立〕上記の正極、各
負極及び固体電解質を用いて、直径20mm、厚さ2.
5mmの扁平型固体電解質電池A1〜A14(理論容
量:90mAh)を組み立てた。各固体電解質電池の負
極に用いた炭素材料のLc及びd002 を表1に示す。
[Assembly of Solid Electrolyte Battery] Using the above positive electrode, each negative electrode and the solid electrolyte, the diameter was 20 mm and the thickness was 2.
5 mm flat type solid electrolyte batteries A1 to A14 (theoretical capacity: 90 mAh) were assembled. Table 1 shows Lc and d 002 of the carbon material used for the negative electrode of each solid electrolyte battery.

【0016】[0016]

【表1】 [Table 1]

【0017】〈高率放電容量〉固体電解質電池A1〜A
14について、室温(25°C)下にて、10mAで
4.2Vまで充電した後、10mAで2Vまで放電し
て、高率放電容量を求めた。結果を図1に示す。
<High rate discharge capacity> Solid electrolyte batteries A1 to A
Regarding No. 14, at room temperature (25 ° C.), it was charged to 4.2 V at 10 mA and then discharged to 2 V at 10 mA to obtain a high rate discharge capacity. The results are shown in Fig. 1.

【0018】図1は、縦軸に放電容量(mAh)を、ま
た横軸にd002 (Å)をとって示したグラフであり、同
図より、Lc及びd002 が本発明で規制する範囲内にあ
る炭素材料を負極に使用した固体電解質電池A1〜A6
(本発明電池)は、Lc及びd002 が上記範囲を外れる
炭素材料を負極に使用した固体電解質電池A7〜A14
と比較して、高率放電容量が格段大きいことが分かる。
FIG. 1 is a graph in which the vertical axis represents discharge capacity (mAh) and the horizontal axis represents d 002 (Å). From the figure, the ranges in which Lc and d 002 are regulated by the present invention are shown. Solid electrolyte batteries A1 to A6 using the carbon material therein as a negative electrode
(Invention battery) is a solid electrolyte battery A7 to A14 in which a carbon material having Lc and d 002 out of the above range is used for the negative electrode.
It can be seen that the high rate discharge capacity is much larger than that of

【0019】[0019]

【発明の効果】負極と固体電解質の界面の接触抵抗が小
さいので、高率放電容量が大きい。
Since the contact resistance at the interface between the negative electrode and the solid electrolyte is small, the high rate discharge capacity is large.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製した各固体電解質電池の放電容量
を示したグラフである。
FIG. 1 is a graph showing the discharge capacity of each solid electrolyte battery produced in an example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 幹也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mikiya Yamazaki 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5 Keihan-hondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】正極と、リチウムを吸蔵及び放出すること
が可能な炭素材料を用いた負極と、高分子固体電解質又
は高分子ゲル状電解質とを備える固体電解質電池であっ
て、前記炭素材料のc軸方向の結晶子の大きさ(Lc)
が300Å以上であり、且つ格子面(002)面におけ
るd値(d002 )が3.37Å以下であることを特徴と
する固体電解質電池。
1. A solid electrolyte battery comprising a positive electrode, a negative electrode using a carbon material capable of inserting and extracting lithium, and a polymer solid electrolyte or a polymer gel electrolyte, which comprises: Crystallite size in the c-axis direction (Lc)
Is 300 Å or more, and the d value (d 002 ) on the lattice plane (002) plane is 3.37 Å or less.
【請求項2】前記高分子固体電解質が、リチウムイオン
及び強酸のアニオンからなる電解質塩と、酸素又は窒素
を含有する高分子重合体とからなる請求項1記載の固体
電解質電池。
2. The solid electrolyte battery according to claim 1, wherein the polymer solid electrolyte comprises an electrolyte salt composed of a lithium ion and an anion of a strong acid, and a polymer polymer containing oxygen or nitrogen.
【請求項3】前記高分子ゲル状電解質が、リチウムイオ
ン及び強酸のアニオンからなる電解質塩と、酸素又は窒
素を含有する高分子重合体と、非プロトン性溶媒とから
なる請求項1記載の固体電解質電池。
3. The solid according to claim 1, wherein the polymer gel electrolyte comprises an electrolyte salt composed of a lithium ion and a strong acid anion, a polymer containing oxygen or nitrogen, and an aprotic solvent. Electrolyte battery.
【請求項4】前記高分子重合体が、ポリエチレンオシキ
ド、ポリプロピレンオシキド又はポリエチレンイミンで
ある請求項2又は3記載の固体電解質電池。
4. The solid electrolyte battery according to claim 2 or 3, wherein the high molecular polymer is polyethylene osquid, polypropylene osquid or polyethylene imine.
JP6131429A 1994-05-20 1994-05-20 Solid electrolyte battery Pending JPH07320724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6131429A JPH07320724A (en) 1994-05-20 1994-05-20 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131429A JPH07320724A (en) 1994-05-20 1994-05-20 Solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPH07320724A true JPH07320724A (en) 1995-12-08

Family

ID=15057758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131429A Pending JPH07320724A (en) 1994-05-20 1994-05-20 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPH07320724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0729194A3 (en) * 1995-02-02 1996-09-18 Hitachi Ltd

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0729194A3 (en) * 1995-02-02 1996-09-18 Hitachi Ltd

Similar Documents

Publication Publication Date Title
JP4412778B2 (en) Polymer electrolyte battery
JP3439082B2 (en) Non-aqueous electrolyte secondary battery
JP3213459B2 (en) Non-aqueous electrolyte secondary battery
JP2000215884A (en) Positive electrode for nonaqueous electrolyte battery, its manufacture, nonaqueous electrolyte battery using the positive electrode, and manufacture of the battery
JPH10312826A (en) Nonaqueous electrolyte battery and charging method therefor
JP3416265B2 (en) Solid electrolyte secondary battery
JP5995014B2 (en) Nonaqueous electrolyte secondary battery
JPWO2012120895A1 (en) Battery with terminal
JP2004303437A (en) Nonaqueous electrolyte secondary battery
JPH06302320A (en) Nonaqueous electrolyte secondary battery
JPH07320780A (en) Solid electrolytic secondary battery
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP2000294291A (en) Polymer electrolyte battery
JP3268924B2 (en) Non-aqueous electrolyte battery
JPH07320781A (en) Solid electrolytic secondary battery
JP3107300B2 (en) Lithium secondary battery
JP3732063B2 (en) Lithium polymer secondary battery
JPH0997617A (en) Solid electrolytic battery
JPH07320724A (en) Solid electrolyte battery
JP3670895B2 (en) Lithium secondary battery
JPH06111820A (en) Nonaqueous battery
JPH08124597A (en) Solid electrolytic secondary cell
JPH07105977A (en) Non-aqueous electrolyte secondary battery
JP3199427B2 (en) Lithium secondary battery
JP2004200122A (en) Manufacturing method of non-aqueous electrolyte secondary battery