JPH07320704A - Cylindrical manganese dry battery - Google Patents

Cylindrical manganese dry battery

Info

Publication number
JPH07320704A
JPH07320704A JP6131252A JP13125294A JPH07320704A JP H07320704 A JPH07320704 A JP H07320704A JP 6131252 A JP6131252 A JP 6131252A JP 13125294 A JP13125294 A JP 13125294A JP H07320704 A JPH07320704 A JP H07320704A
Authority
JP
Japan
Prior art keywords
battery
sealing body
positive electrode
carbon rod
membrane valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6131252A
Other languages
Japanese (ja)
Inventor
Makoto Urade
誠 浦出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP6131252A priority Critical patent/JPH07320704A/en
Publication of JPH07320704A publication Critical patent/JPH07320704A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

PURPOSE:To provide such a cylindrical manganese dry battery as being excellent in leakage resistance and storage performance by promptly releasing gas pro duced in the battery during discharge to the outside and preventing the entry of oxygen gas in the atmosphere to the inside during storage. CONSTITUTION:A synthetic resin sealing 6 formed by inserting a carbon rod 4 into a transparent hole 61 at the center is arranged at the opening of a negative electrode zinc can 2 in which positive electrode composite agent 1 and a separator 3 are contained, and thrusted and fixed against the opening end 21 of the negative electrode zinc can 2 with a metal jacket 10 via the upper end of a resin tube 7, the outer periphery of a positive electrode terminal plate 8 and an insulating ring 9. The inner diameter of the transparent hole 61 in the sealing 6 is larger than the outer diameter of the carbon rod 4 and at least one annular membrane valve 6a with the inner diameter being smaller than the outer diameter of the carbon rod 4 is provided on the inner periphery of the transparent hole 61 in the sealing 6. The membrane valve 6a is preferably provided with high-viscosity oily fluid layer 14.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上に利用分野】本発明は、筒形マンガン乾電池に
関するものであり、さらに詳しくは、放電中に電池内部
に発生するガスを速やかに電池外部へ放出させ、かつ貯
蔵中に大気中の酸素ガスが電池内部に侵入するのを防止
して、耐漏液性が優れ、かつ貯蔵性能が良好な筒形マン
ガン乾電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical manganese dry battery, and more specifically, it quickly discharges gas generated inside the battery to the outside of the battery during discharge and oxygen in the atmosphere during storage. The present invention relates to a cylindrical manganese dry battery that prevents gas from entering the inside of the battery, has excellent liquid leakage resistance, and has good storage performance.

【0002】[0002]

【従来の技術】従来、マンガン乾電池では、水銀を電解
液中に溶解させて、亜鉛を水銀でアマルガム化して亜鉛
の腐食を防止したり、あるいは亜鉛をカドミウムで合金
化して亜鉛の腐食を防止して、放電性能を高めることが
行われていた。
2. Description of the Related Art Conventionally, in a manganese dry battery, mercury is dissolved in an electrolytic solution and zinc is amalgamated with mercury to prevent zinc corrosion, or zinc is alloyed with cadmium to prevent zinc corrosion. Therefore, the discharge performance has been improved.

【0003】このような水銀やカドミウムを含有したマ
ンガン乾電池では、放電時に亜鉛が水銀やカドミウムの
作用により電解液中に均一に溶解し、放電中のガス発生
が抑制されていたが、最近は環境汚染防止などの観点か
ら、水銀やカドミウムなどの有害物質は使用することが
できなくなり、その結果、亜鉛の電解液への溶解が不均
一になり、放電に伴い、その不均一部分から水素ガスが
発生し、その発生ガスによって電解液の漏出が誘発され
るという問題があった。
In such a manganese dry battery containing mercury or cadmium, zinc was uniformly dissolved in the electrolytic solution by the action of mercury or cadmium at the time of discharge, and the generation of gas during discharge was suppressed. From the viewpoint of pollution prevention, harmful substances such as mercury and cadmium cannot be used, and as a result, zinc is not dissolved in the electrolyte solution uniformly, and due to discharge, hydrogen gas is generated from the uneven part. There is a problem that the generated gas causes leakage of the electrolyte solution.

【0004】そこで、これまでの筒形マンガン乾電池の
多くは、放電中に発生したガスを電池内部に封じ込める
ことによって、電解液の漏出を防止するようにしてい
た。
Therefore, most of the cylindrical manganese dry batteries so far have been designed to prevent leakage of the electrolytic solution by enclosing the gas generated during the discharge inside the battery.

【0005】しかしながら、放電により負極亜鉛缶が消
耗して、負極亜鉛缶に孔があき、その負極亜鉛缶の孔か
ら、電池内部に封じ込められていたガスが電池外部に噴
き出すと、それに伴って電解液も電池外部に噴き出し、
電解液の漏出が生じるという問題があった。
However, when the negative electrode zinc can is consumed by the discharge and a hole is formed in the negative electrode zinc can, and the gas contained in the battery is ejected from the hole of the negative electrode zinc can to the outside of the battery, electrolysis is accompanied with it. Liquid also spouts outside the battery,
There was a problem that the electrolyte leaked out.

【0006】[0006]

【発明が解決しようとする課題】本発明は、従来の筒形
マンガン乾電池が持っていた放電中のガス発生に基づき
電解液が漏出するという問題点を解決し、放電中に電池
内部に発生するガスを速やかに電池外部へ放出させ、か
つ大気中の酸素の電池内部への侵入を防止して、耐漏液
性が優れ、かつ貯蔵性能が良好な筒形マンガン乾電池を
提供することを目的とする。
DISCLOSURE OF THE INVENTION The present invention solves the problem that the conventional cylindrical manganese dry battery has a problem that the electrolytic solution leaks out due to the gas generation during discharging, and occurs inside the battery during discharging. An object of the present invention is to provide a cylindrical manganese dry battery that releases gas rapidly to the outside of the battery and prevents oxygen in the atmosphere from entering the inside of the battery, has excellent leakage resistance and good storage performance. .

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成を、その実施例に対応する図1〜3を用
いて説明すると、本発明は、封口体6の透孔61の内径
を炭素棒4の外径より大きくし、該封口体6の透孔61
の内周側に、上記炭素棒4の外径より小さい内径を有す
る環状の膜弁6aを設けたものである。そして、好まし
くは、上記膜弁6aの縦断面形状をハの字状にし、その
膜弁6aの正極端子板8側に高粘性の油性流体層14を
配設したものである。
The structure of the present invention for solving the above-mentioned problems will be described with reference to FIGS. 1 to 3 corresponding to the embodiment. The inner diameter is made larger than the outer diameter of the carbon rod 4, and the through hole 61 of the sealing body 6 is formed.
An annular membrane valve 6a having an inner diameter smaller than the outer diameter of the carbon rod 4 is provided on the inner peripheral side of the. Further, preferably, the membrane valve 6a has a vertical cross-section, and the highly viscous oily fluid layer 14 is disposed on the positive electrode terminal plate 8 side of the membrane valve 6a.

【0008】上記構成からなる本発明の筒形マンガン乾
電池では、封口体6の透孔61の内周側に膜弁6aを設
けているので、封口体6と炭素棒4とは上記膜弁6aで
のみ接触する。
In the cylindrical manganese dry battery of the present invention having the above structure, since the membrane valve 6a is provided on the inner peripheral side of the through hole 61 of the sealing body 6, the sealing body 6 and the carbon rod 4 are provided with the above membrane valve 6a. Contact only at.

【0009】したがって、電池内部にガスが発生した場
合には、その圧力で膜弁6aが押し上げられ、封口体6
の透孔61の内周面と炭素棒4の外周面との間に隙間が
できて、電池内部のガスは上記隙間を通過し、さらに正
極端子板8と樹脂チューブ7との間を通過して、電池外
部へ放出される。
Therefore, when gas is generated inside the battery, the membrane valve 6a is pushed up by the pressure and the sealing body 6 is closed.
A gap is formed between the inner peripheral surface of the through hole 61 and the outer peripheral surface of the carbon rod 4, and the gas inside the battery passes through the above gap, and further passes between the positive electrode terminal plate 8 and the resin tube 7. And then released to the outside of the battery.

【0010】そして、電池内部の圧力が外気圧より低く
なると、膜弁6aの先端が下りてきて、再び炭素棒4の
外周面に接触するので、大気中の酸素が電池内部に侵入
するのが防止される。したがって、大気中の酸素が電池
内部に侵入してきて活物質と反応し自己放電を引き起こ
すのが防止され、その結果、貯蔵性能が良好に保たれ
る。
When the pressure inside the battery becomes lower than the atmospheric pressure, the tip of the membrane valve 6a descends and comes into contact with the outer peripheral surface of the carbon rod 4 again, so that oxygen in the atmosphere may enter the inside of the battery. To be prevented. Therefore, oxygen in the atmosphere is prevented from entering the inside of the battery and reacting with the active material to cause self-discharge, and as a result, good storage performance is maintained.

【0011】膜弁6aは、上記作用をするものであれ
ば、その形状は特に限定されることはないが、図示のよ
うに、正極端子板8側を上側にした時に、その縦断面形
状がハの字状のものが上記作用を行うのに適していて好
ましい。ただし、膜弁6aの内径を炭素棒4の外径より
小さくしているので、炭素棒4を封口体6の透孔61に
その下側から挿入すると、膜弁6aの内周側部分が押し
上げられ、膜弁6aは縦断面形状がハの字状になるの
で、膜弁6aは必ずしも最初からハの字状にしていなく
てもよい。
The shape of the membrane valve 6a is not particularly limited as long as it has the above-mentioned action, but as shown in the drawing, when the positive electrode terminal plate 8 side is placed on the upper side, the vertical cross-sectional shape thereof is The V-shape is suitable for performing the above-mentioned action and is preferable. However, since the inner diameter of the membrane valve 6a is smaller than the outer diameter of the carbon rod 4, when the carbon rod 4 is inserted into the through hole 61 of the sealing body 6 from below, the inner peripheral side portion of the membrane valve 6a is pushed up. However, since the membrane valve 6a has a vertical cross-sectional shape, the membrane valve 6a does not necessarily have to have the V-shape from the beginning.

【0012】電池外部からの酸素の侵入の防止は、上記
膜弁6aの正極端子板8側(つまり、電池内部のガスの
電池外部への出口側)に、高粘性の油性流体層14を配
設することによって、その効果を高めることができる。
To prevent the invasion of oxygen from the outside of the battery, a highly viscous oily fluid layer 14 is provided on the positive electrode terminal plate 8 side of the membrane valve 6a (that is, the outlet side of the gas inside the battery to the outside of the battery). By installing it, the effect can be enhanced.

【0013】上記のように油性流体層14を配設する場
合、酸素の侵入を防止する電池内部の圧力や上記電池内
部のガスの放出速度は、上記油性流体層14の粘度で調
整が可能である。
When the oily fluid layer 14 is arranged as described above, the pressure inside the battery for preventing oxygen from entering and the gas release rate inside the battery can be adjusted by the viscosity of the oily fluid layer 14. is there.

【0014】ただし、上記電池内圧およびガスの放出速
度は、放電条件や発電要素でガスの発生速度が異なるの
で、油性流体層14の好適な粘度範囲を決めることが困
難であり、また実際に使用した油性流体の粘度測定も困
難なので、その油性流体層14の形成材料の粘度で判断
することが実用上適している。
However, since the gas generation rate of the battery internal pressure and the gas release rate differs depending on the discharge condition and the power generation element, it is difficult to determine a suitable viscosity range of the oily fluid layer 14, and it is actually used. Since it is difficult to measure the viscosity of the oily fluid, it is practically suitable to judge the viscosity by the viscosity of the material forming the oily fluid layer 14.

【0015】上記油性流体層14を形成するための高粘
度の油性流体としては、たとえばポリブテン、ピッチ、
ワックスなどが用いられる。
Examples of the highly viscous oily fluid for forming the oily fluid layer 14 include polybutene, pitch, and
Wax or the like is used.

【0016】上記膜弁6aは、少なくとも1個あればよ
いが、できれば、複数個設けるのが好ましい。また、こ
の膜弁6aの大きさは、封口体6の材質の硬度によって
も異なるが、封口体6が低密度ポリエチレン製の場合、
その膜厚が0.1〜0.3mmの均一厚みか、あるいは
先端(つまり、内周側)に行くにしたがって厚みが次第
に薄くなるテーパー状で、内周方向への幅が炭素棒4の
外周面と封口体6の透孔61の内周面との隙間の1.2
〜2倍程度が好ましい。
At least one membrane valve 6a may be provided, but it is preferable to provide a plurality of membrane valves 6a if possible. Although the size of the membrane valve 6a varies depending on the hardness of the material of the sealing body 6, when the sealing body 6 is made of low density polyethylene,
The film thickness is a uniform thickness of 0.1 to 0.3 mm, or has a taper shape in which the thickness gradually decreases toward the tip (that is, the inner circumference side), and the width in the inner circumference direction is the outer circumference of the carbon rod 4. 1.2 of the gap between the surface and the inner peripheral surface of the through hole 61 of the sealing body 6.
It is preferably about 2 times.

【0017】[0017]

【実施例】つぎに、本発明の実施例を図面を参照しつつ
説明する。ただし、本発明は実施例に例示のものに限定
されることはなく、もとより、各構成部材の材料なども
例示のものに限られることはない。
Embodiments of the present invention will now be described with reference to the drawings. However, the present invention is not limited to the examples illustrated in the embodiments, and the materials of each component are not limited to those illustrated.

【0018】図1は本発明の筒形マンガン乾電池の一実
施例を示す部分断面図であり、図2は図1に示す電池に
使用されている封口体を拡大して示す断面図で、図3は
図1に示す電池の要部拡大断面図である。なお、電池を
示す図1や図3などの断面部分では、切断面より背面側
の部分を図示するとかえって繁雑化するので、切断面の
みを図示している。
FIG. 1 is a partial sectional view showing an embodiment of the cylindrical manganese dry battery of the present invention, and FIG. 2 is an enlarged sectional view showing a sealing body used in the battery shown in FIG. 3 is an enlarged cross-sectional view of a main part of the battery shown in FIG. It should be noted that in the cross-sectional portion of the battery shown in FIG. 1 and FIG. 3, the portion on the back side of the cut surface is rather complicated, so that only the cut surface is shown.

【0019】図中、1は正極合剤、2は負極亜鉛缶、3
はセパレータ、4は炭素棒、5は上蓋紙、6は封口体、
7は樹脂チューブ、8は正極端子板、9は絶縁リング、
10は金属ジャケット、11は負極端子板、12は絶縁
パッキング、13は底紙、14は高粘度の油性流体層で
ある。
In the figure, 1 is a positive electrode mixture, 2 is a negative electrode zinc can, 3
Is a separator, 4 is a carbon rod, 5 is a cover paper, 6 is a sealing body,
7 is a resin tube, 8 is a positive terminal plate, 9 is an insulating ring,
10 is a metal jacket, 11 is a negative electrode terminal plate, 12 is an insulating packing, 13 is a bottom paper, and 14 is a highly viscous oily fluid layer.

【0020】正極合剤1は、二酸化マンガンとアセチレ
ンブラックと電解液とを混合して調製した粉末状のもの
からなり、負極亜鉛缶2は、金属亜鉛をコップ状に成形
したものからなり、上記正極合剤1やセパレータ3など
がその内部に充填されている。
The positive electrode mixture 1 is made of a powder prepared by mixing manganese dioxide, acetylene black and an electrolytic solution, and the negative electrode zinc can 2 is made of a metal zinc molded into a cup shape. The positive electrode mixture 1 and the separator 3 are filled in the inside thereof.

【0021】セパレータ3は、クラフト紙の一方の面に
加工でんぷんを主材とする糊材を塗布したものからな
り、その糊材を塗布した面が負極亜鉛缶2に対向するよ
うにして配置され、正極合剤1と負極亜鉛缶2とを隔離
している。
The separator 3 is made of kraft paper with one side coated with a sizing material containing processed starch as a main material. The separator 3 is arranged so that the sizing material coated surface faces the negative electrode zinc can 2. The positive electrode mixture 1 and the negative electrode zinc can 2 are separated from each other.

【0022】炭素棒4は、カーボン粉末を固めたものか
らなり、その下部は封口体6の透孔61および上蓋紙5
の中心孔を貫通し、その下端は正極合剤1の最下部近く
にまで達し、上部は正極端子板8と接触していて、正極
側の集電体として作用する。
The carbon rod 4 is made by solidifying carbon powder, and the lower portion thereof has the through hole 61 of the sealing body 6 and the upper lid paper 5.
Of the positive electrode mixture 1, the lower end thereof reaches the vicinity of the lowermost part of the positive electrode mixture 1, and the upper part thereof is in contact with the positive electrode terminal plate 8 to act as a current collector on the positive electrode side.

【0023】封口体6は、ポリエチレン、ポリプロピレ
ンなどのポリオレフィン系樹脂やナイロンなどを成形し
たものからなり、図2に示すように、中央部には炭素棒
4が挿入される透孔61が設けられ、その透孔61の内
周側には環状で縦断面形状がハの字状の膜弁6aが設け
られている。
The sealing body 6 is formed by molding a polyolefin resin such as polyethylene or polypropylene or nylon, and has a through hole 61 into which the carbon rod 4 is inserted, as shown in FIG. On the inner peripheral side of the through hole 61, a ring-shaped membrane valve 6a having a vertical cross-section is provided.

【0024】上記環状の膜弁6aの大きさは、封口体6
の材質の硬度によっても異なるが、封口体6が低密度ポ
リエチレン製の場合、前記したように、膜厚が0.1〜
0.3mmの均一厚みまたはテーパー状で、内周方向へ
の幅が炭素棒4の外周面と封口体6の透孔61の内周面
との隙間の1.2〜2倍程度が好ましい。
The size of the annular membrane valve 6a is the same as the sealing body 6.
When the sealing body 6 is made of low-density polyethylene, the film thickness is 0.1 to 0.1, although it depends on the hardness of the material.
It is preferable that the thickness is 0.3 mm or a taper shape, and the width in the inner peripheral direction is about 1.2 to 2 times the gap between the outer peripheral surface of the carbon rod 4 and the inner peripheral surface of the through hole 61 of the sealing body 6.

【0025】本実施例で例示の封口体6は、低密度ポリ
エチレン製で、その膜弁6aは膜厚が0.2mmの均一
厚みで、炭素棒4の外径が8mm、封口体6の透孔61
の内径が9mmで、膜弁6aの内径は7.5mm、その
内周方向への幅は0.75mmであり、この膜弁6aの
内周方向への幅は炭素棒4の外周面と封口体6の透孔6
1の内周面との隙間の1.5倍にされている。そして、
本実施例では、この膜弁6aは上下2段に(つまり、2
個)設けられている。
The sealing body 6 exemplified in this embodiment is made of low density polyethylene, and the membrane valve 6a has a uniform thickness of 0.2 mm, the outer diameter of the carbon rod 4 is 8 mm, and the sealing body 6 is transparent. Hole 61
Has an inner diameter of 9 mm, the inner diameter of the membrane valve 6a is 7.5 mm, and the width in the inner circumferential direction is 0.75 mm. The inner circumferential width of this membrane valve 6a is the outer circumferential surface of the carbon rod 4 and the sealing. Through hole 6 in body 6
1 is 1.5 times the gap between the inner peripheral surface and the inner peripheral surface. And
In the present embodiment, the membrane valve 6a is divided into upper and lower two stages (that is, 2
It is provided).

【0026】高粘度の油性流体層14は、たとえば、ポ
リブテン、ピッチ、ワックスなどを加熱し、溶融したも
のを封口体6の透孔61の内周側に設けた環状の膜弁6
a上に注入し、冷却することによって形成されるもので
あり、本実施例ではポリブテンで形成されている。
The high-viscosity oily fluid layer 14 is formed by heating polybutene, pitch, wax, etc. and melting it, and the melted material is provided on the inner peripheral side of the through hole 61 of the sealing body 6 to form an annular membrane valve 6.
It is formed by pouring it on a and cooling it, and is made of polybutene in this embodiment.

【0027】上蓋紙5は、板紙を中心孔を有する環状に
打ち抜いたものからなり、樹脂チューブ7は、熱収縮性
を有する樹脂フィルムで形成されていて、負極亜鉛缶2
の外周側に配置され、その上端部は封口体6の外周部上
面を覆い、その下端部は絶縁パッキング12の下面を覆
っている。
The upper lid paper 5 is formed by punching a paperboard in an annular shape having a central hole, and the resin tube 7 is formed of a heat-shrinkable resin film.
Is arranged on the outer peripheral side, and the upper end covers the outer peripheral upper surface of the sealing body 6, and the lower end covers the lower surface of the insulating packing 12.

【0028】正極端子板8は、ブリキ板からなり、その
中央部は炭素棒4の上端部に被せるキャップ状をしてお
り、外周部は平板状になっている。絶縁リング9は、塩
化ビニル樹脂板をリング状に打ち抜いたものからなり、
上記正極端子板8の平板状の外周部上に配置されてい
る。底紙13は、板紙を円形に打ち抜いたものからな
り、負極亜鉛缶2の底部内面側に配置されている。
The positive electrode terminal plate 8 is made of a tin plate, and its central portion has a cap shape for covering the upper end portion of the carbon rod 4, and its outer peripheral portion has a flat plate shape. The insulating ring 9 is made by punching a vinyl chloride resin plate into a ring shape,
The positive electrode terminal plate 8 is arranged on the flat outer peripheral portion. The bottom paper 13 is formed by punching a paper board in a circular shape and is arranged on the inner surface side of the bottom of the negative electrode zinc can 2.

【0029】負極端子板11は、ブリキ板からなり、外
周部は平板状になっている。絶縁パッキング12は、パ
ラフィンを含浸した板紙をリング状に打ち抜いたものか
らなり、負極端子板11の平板状の外周部の外面側(図
では、下部側)に接触した状態で配置されている。
The negative electrode terminal plate 11 is made of a tin plate, and the outer peripheral portion thereof has a flat plate shape. The insulating packing 12 is formed by punching a paraffin-impregnated paperboard in a ring shape, and is arranged in contact with the outer surface side (lower side in the figure) of the flat plate-shaped outer peripheral portion of the negative electrode terminal plate 11.

【0030】金属ジャケット10は、ブリキ板を筒状に
丸めたものからなり、上記樹脂チューブ7の外周側に配
置されていて、その下端部は内側に折り曲げられ、上端
部は内方にカールされ、その先端が絶縁リング9に当接
して絶縁リング9、正極端子板8の外周部、樹脂チュー
ブ7の上端部、封口体6の外周部、負極亜鉛缶2の開口
端部21および樹脂チューブ7の下端部、絶縁パッキン
グ12、負極端子板11を軸方向に押圧して、それらを
それぞれ所定位置に固定している。また、通常、この金
属ジャケット10の筒状部の外周面にはデザイン印刷が
施される。
The metal jacket 10 is formed by rolling a tin plate into a tubular shape, is arranged on the outer peripheral side of the resin tube 7, has its lower end bent inward, and its upper end curled inward. The tip of the insulating ring 9 contacts the insulating ring 9, the outer peripheral portion of the positive electrode terminal plate 8, the upper end portion of the resin tube 7, the outer peripheral portion of the sealing body 6, the open end portion 21 of the negative electrode zinc can 2, and the resin tube 7. The lower end portion, the insulating packing 12, and the negative electrode terminal plate 11 are pressed in the axial direction to fix them to predetermined positions. Further, usually, design printing is applied to the outer peripheral surface of the cylindrical portion of the metal jacket 10.

【0031】つぎに、上記実施例の電池と図4に示す従
来構造の電池(従来例の電池)の10Ω連続放電により
発生するガスの電池外部への放出量および10Ω連続放
電時の漏液性を調べた。また、上記実施例の電池および
図4に示す従来構造の電池を常温で1年間および2年間
貯蔵した後の放電性能を調べた。なお、図4に示す従来
構造の電池は、封口体6の透孔の内径が8mmであっ
て、その内周面が全面的に炭素棒4の外周面に接触して
いて、膜弁6aを設けていない点や高粘性の油性流体層
14を配設していない点を除いては、実施例の電池と同
様の構成からなる筒形マンガン乾電池である。
Next, the amount of the gas generated by the 10 Ω continuous discharge of the battery of the above-mentioned embodiment and the battery of the conventional structure shown in FIG. 4 (battery of the conventional example) released to the outside of the battery and the liquid leakage property during the 10 Ω continuous discharge. I checked. Further, the discharge performance of the battery of the above-mentioned example and the battery of the conventional structure shown in FIG. 4 after being stored at room temperature for 1 year and 2 years was examined. In the battery having the conventional structure shown in FIG. 4, the inner diameter of the through hole of the sealing body 6 is 8 mm, the inner peripheral surface is entirely in contact with the outer peripheral surface of the carbon rod 4, and the membrane valve 6a is It is a cylindrical manganese dry battery having the same configuration as the battery of the embodiment except that it is not provided or the highly viscous oily fluid layer 14 is not provided.

【0032】電池はいずれも外径34mm、総高61.
5mmのR20形の筒形マンガン乾電池であり、ガスの
電池外部への放出量の測定は、両電池を10個ずつ20
℃、10Ωで所定期間連続放電させ、電池から放出する
ガスを流動パラフィン中に導き、蓄積するガス量を測定
することによって行った。表1に放電開始から1日後、
2日後、3日後および4日後の蓄積ガス量をガス放出量
として示す。
Each battery had an outer diameter of 34 mm and a total height of 61.
It is a 5 mm R20 type cylindrical manganese dry battery, and the amount of gas released to the outside of the battery was measured by measuring 20 of each of the two batteries.
It was carried out by continuously discharging at a temperature of 10 Ω for a predetermined period, introducing gas released from the battery into liquid paraffin, and measuring the amount of accumulated gas. In Table 1, one day after the start of discharge,
The accumulated gas amount after 2 days, 3 days, and 4 days is shown as the gas release amount.

【0033】漏液試験は両電池を20個ずつ20℃、1
0Ωで所定期間放電して電解液の漏出が生じるか否かを
調べることによって行った。表2に放電開始から3日
後、5日後、10日後、20日後、40日後および80
日後の漏液発生電池個数を示す。ただし、表2では、試
験に供した電池個数を分母に、漏液の発生した電池個数
を分子に示す態様で漏液発生電池個数を示している。
The leak test was carried out at 20 ° C. for each of two batteries at 20 ° C.
It was carried out by discharging at 0Ω for a predetermined period to examine whether or not electrolyte leakage occurred. In Table 2, 3 days, 5 days, 10 days, 20 days, 40 days and 80 days after the start of discharge.
The number of leak-generating batteries after a day is shown. However, in Table 2, the number of leaked batteries is shown in a mode in which the number of batteries used in the test is used as a denominator and the number of leaked batteries is shown in the numerator.

【0034】また、貯蔵後の放電性能は、1年間および
2年間貯蔵後の両電池を20℃、10Ωで終止電圧0.
9Vまで連続放電させて、放電持続時間を測定し、組立
直後の放電持続期間を100とした指数を求めた。その
結果を表3に示す。なお、組立直後の電池の放電持続時
間は実施例、従来例とも56時間である。また、表1〜
表3においては、図4に示す従来構造の電池を簡略化し
て「従来例」と表示した。
Regarding the discharge performance after storage, both batteries after storage for 1 year and 2 years had a final voltage of 0.
The discharge duration was measured by continuously discharging to 9 V, and an index was obtained with the discharge duration immediately after assembly as 100. The results are shown in Table 3. The discharge duration of the battery immediately after assembly was 56 hours in both the example and the conventional example. In addition, Table 1
In Table 3, the battery having the conventional structure shown in FIG. 4 is simplified and referred to as “conventional example”.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】表1に示す結果から明らかなように、本発
明の実施例の電池では、電池内部に発生したガスを放電
開始後1日目から電池外部へ放出することができたのに
対し、従来例の電池では、3日目からガスの放出がはじ
まった。このように従来例の電池において、3日目から
ガスの放出がはじまったのは、放電開始から3日目に負
極亜鉛缶に孔があいたためであると考えられる。
As is clear from the results shown in Table 1, in the battery of the example of the present invention, the gas generated inside the battery could be discharged to the outside of the battery from the first day after the start of discharge. In the battery of the conventional example, gas was released from the third day. In this way, in the battery of the conventional example, the reason why the gas was released from the third day is considered to be that there was a hole in the negative electrode zinc can on the third day from the start of the discharge.

【0039】また、表2に示す結果から明らかなよう
に、本発明の実施例の電池は、電解液の漏出がまったく
なく、従来例の電池に比べて、耐漏液性が優れていた。
Further, as is clear from the results shown in Table 2, the batteries of the examples of the present invention had no leakage of the electrolytic solution and were excellent in the leakage resistance as compared with the batteries of the conventional example.

【0040】そして、表3に示すように、本発明の実施
例の電池は、貯蔵後の放電性能が従来例の電池と変わら
ず、大気中の酸素の侵入が防止されていて、膜弁6aで
炭素棒4と接触させたことによる放電性能の大きな低下
が認められず、貯蔵性能が良好であった。
As shown in Table 3, the batteries of the examples of the present invention have the same discharge performance after storage as the batteries of the conventional example, the invasion of oxygen in the atmosphere is prevented, and the membrane valve 6a. No significant decrease in discharge performance due to contact with the carbon rod 4 was observed, and the storage performance was good.

【0041】[0041]

【発明の効果】以上説明したように、本発明では、放電
に伴って電池内部に発生するガスを速やかに電池外部へ
放出でき、かつ大気中の酸素の電池内部への侵入を防止
して、耐漏液性が優れ、かつ貯蔵性能が良好な筒形マン
ガン乾電池を提供することができた。
As described above, according to the present invention, the gas generated inside the battery due to discharge can be quickly released to the outside of the battery, and oxygen in the atmosphere can be prevented from entering the inside of the battery. It was possible to provide a cylindrical manganese dry battery having excellent liquid leakage resistance and good storage performance.

【0042】すなわち、本発明の筒形マンガン乾電池で
は、封口体6の透孔61の内周側に設けられた環状の膜
弁6aが、放電に伴って電池内部に発生するガスを電池
外部に徐々に放出させるので、電池内部のガス圧が常に
低く保たれ、放電の結果、負極亜鉛缶2に孔があいたと
きでも、ガスが電池外部に噴き出さないので、電池内部
の電解液も電池外部へ漏出せず、耐漏液性が優れてい
る。また、膜弁6aが大気中の酸素の電池内部への侵入
を防止するので、貯蔵による放電性能の低下が抑制さ
れ、貯蔵性能も良好である。
That is, in the cylindrical manganese dry battery of the present invention, the annular membrane valve 6a provided on the inner peripheral side of the through hole 61 of the sealing body 6 causes the gas generated inside the battery due to the discharge to the outside of the battery. Since the gas pressure inside the battery is kept low at all times because the gas is discharged gradually, even if there is a hole in the negative electrode zinc can 2 as a result of discharging, the gas does not blow out to the outside of the battery. It does not leak to and has excellent leakage resistance. Further, since the membrane valve 6a prevents the oxygen in the atmosphere from entering the inside of the battery, the deterioration of the discharge performance due to storage is suppressed and the storage performance is also good.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の筒形マンガン乾電池の一実施例を示す
部分断面図である。
FIG. 1 is a partial sectional view showing an embodiment of a cylindrical manganese dry battery of the present invention.

【図2】図1に示す電池に使用された封口体の拡大断面
図である。
FIG. 2 is an enlarged cross-sectional view of a sealing body used in the battery shown in FIG.

【図3】図1に示す電池の要部拡大断面図である。FIG. 3 is an enlarged cross-sectional view of a main part of the battery shown in FIG.

【図4】従来の筒形マンガン乾電池を示す部分断面図で
ある。
FIG. 4 is a partial cross-sectional view showing a conventional cylindrical manganese dry battery.

【符号の説明】[Explanation of symbols]

1 正極合剤 2 負極亜鉛缶 3 セパレータ 4 炭素棒 6 封口体 61 透孔 6a 膜弁 7 樹脂チューブ 8 正極端子板 9 絶縁リング 10 金属ジャケット 14 油性流体層 DESCRIPTION OF SYMBOLS 1 Positive electrode mixture 2 Negative electrode zinc can 3 Separator 4 Carbon rod 6 Sealing body 61 Through hole 6a Membrane valve 7 Resin tube 8 Positive electrode terminal plate 9 Insulation ring 10 Metal jacket 14 Oily fluid layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 正極合剤1およびセパレータ3を収容し
た負極亜鉛缶2の開口部に、中央部の透孔61に炭素棒
4を挿入した合成樹脂製の封口体6を配設し、樹脂チュ
ーブ7の上端部、正極端子板8の外周部および絶縁リン
グ9を介して金属ジャケット10で上記封口体6を負極
亜鉛缶2の開口端部21に押圧固定してなる筒形マンガ
ン乾電池において、封口体6の透孔61の内径を炭素棒
4の外径より大きくし、該封口体6の透孔61の内周側
に上記炭素棒4の外径より小さい内径を有する環状の膜
弁6aを少なくとも1個以上設けたことを特徴とする筒
形マンガン乾電池。
1. A synthetic resin sealing body 6 in which a carbon rod 4 is inserted into a through hole 61 in a central portion is provided at an opening portion of a negative electrode zinc can 2 accommodating a positive electrode mixture 1 and a separator 3, In a cylindrical manganese dry battery in which the sealing body 6 is pressed and fixed to the open end 21 of the negative electrode zinc can 2 with the metal jacket 10 via the upper end of the tube 7, the outer periphery of the positive electrode terminal plate 8 and the insulating ring 9. The inner diameter of the through hole 61 of the sealing body 6 is made larger than the outer diameter of the carbon rod 4, and an annular membrane valve 6a having an inner diameter smaller than the outer diameter of the carbon rod 4 on the inner peripheral side of the through hole 61 of the sealing body 6. A cylindrical manganese dry battery, characterized in that at least one or more are provided.
【請求項2】 封口体6の透孔61の内周側に設けた膜
弁6aの縦断面形状が、正極端子板8側を上側にした
時、ハの字状である請求項1記載の筒形マンガン乾電
池。
2. The vertical cross-sectional shape of the membrane valve 6a provided on the inner peripheral side of the through hole 61 of the sealing body 6 is a V-shape when the positive electrode terminal plate 8 side is facing upward. Cylindrical manganese battery.
【請求項3】 封口体6の透孔61の内周側に設けた膜
弁6aの正極端子板8側に、高粘性の油性流体層14を
配設した請求項1記載の筒形マンガン乾電池。
3. The cylindrical manganese dry battery according to claim 1, wherein a highly viscous oily fluid layer 14 is disposed on the positive electrode terminal plate 8 side of the membrane valve 6a provided on the inner peripheral side of the through hole 61 of the sealing body 6. .
JP6131252A 1994-05-20 1994-05-20 Cylindrical manganese dry battery Withdrawn JPH07320704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6131252A JPH07320704A (en) 1994-05-20 1994-05-20 Cylindrical manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6131252A JPH07320704A (en) 1994-05-20 1994-05-20 Cylindrical manganese dry battery

Publications (1)

Publication Number Publication Date
JPH07320704A true JPH07320704A (en) 1995-12-08

Family

ID=15053569

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6131252A Withdrawn JPH07320704A (en) 1994-05-20 1994-05-20 Cylindrical manganese dry battery

Country Status (1)

Country Link
JP (1) JPH07320704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157635A (en) * 2005-12-08 2007-06-21 Fdk Energy Co Ltd Cylindrical battery
JP2022523858A (en) * 2019-08-16 2022-04-26 エルジー エナジー ソリューション リミテッド Cylindrical battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157635A (en) * 2005-12-08 2007-06-21 Fdk Energy Co Ltd Cylindrical battery
JP2022523858A (en) * 2019-08-16 2022-04-26 エルジー エナジー ソリューション リミテッド Cylindrical battery
US11894511B2 (en) 2019-08-16 2024-02-06 Lg Energy Solution, Ltd. Cylindrical battery

Similar Documents

Publication Publication Date Title
US5079108A (en) Dry cell seal closure
CA1172693A (en) Electrochemical cell having a safety vent closure
JPH08138635A (en) Cylindrical manganese dry battery
CA1090875A (en) Galvanic cell having a high pressure vent closure
JP4080131B2 (en) Manganese battery
US3338750A (en) Leak-resistant dry cell
US6270918B1 (en) Low profile ventable seal for an electrochemical cell
JPH07320704A (en) Cylindrical manganese dry battery
US4052533A (en) Pressure relief flapper vent valve for galvanic cells
KR950011246B1 (en) Vent liner & cover construction for galvanic cells
US4074023A (en) Primary dry cell with masked separator
JP2952033B2 (en) Alkaline batteries
EP3930072A1 (en) Alkaline secondary battery
US3575724A (en) Cylindrical primary dry cells
US2790022A (en) Washer for use in primary cells
KR970007516B1 (en) Injection molded top
JPH047062B2 (en)
KR101253359B1 (en) Nonaqueous cell with improved thermoplastic sealing member
JPS5836822B2 (en) magnesium dry battery
JPH07320703A (en) Cylindrical manganese dry battery
US3214298A (en) Leak-resistant dry cell
US2794060A (en) Leakproof dry cell
JPH0415581B2 (en)
US6300006B1 (en) Electrochemical cell having seal and cover assembly
JPH05821B2 (en)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010731