JPH08138635A - Cylindrical manganese dry battery - Google Patents

Cylindrical manganese dry battery

Info

Publication number
JPH08138635A
JPH08138635A JP29387594A JP29387594A JPH08138635A JP H08138635 A JPH08138635 A JP H08138635A JP 29387594 A JP29387594 A JP 29387594A JP 29387594 A JP29387594 A JP 29387594A JP H08138635 A JPH08138635 A JP H08138635A
Authority
JP
Japan
Prior art keywords
zinc
heat
positive electrode
resin tube
terminal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP29387594A
Other languages
Japanese (ja)
Inventor
Makoto Urade
誠 浦出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP29387594A priority Critical patent/JPH08138635A/en
Publication of JPH08138635A publication Critical patent/JPH08138635A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

PURPOSE: To provide a cylindrical manganese dry battery excellent in shelf life by preventing the intrusion of oxygen in the atmosphere into a battery even in the case of an occurrence of a pinhole. CONSTITUTION: A sealing body 7 in the center through hole 7a of which a carbon rod 6 is interposed is arranged in the opening of a zinc can 1 in which a positive electrode mixture 3 and a separator 2 are filled, while a negative electrode terminal plate 9 and the insulation ring 10 of a negative electrode side are arranged in the bottom of the can 1. A heat contractive resin tube 11 is arranged on the periphery of the zinc can 1, the heat contractive resin tube 11 is heat-contracted, a positive electrode terminal plate 12 is fitted on the upper end portion of the carbon rod 6, and the insulation ring 13 of a positive electrode side is arranged on the periphery of the positive electrode terminal plate 12 and is clamped in an axial direction by a metal armor can 14 so as to seal the opening portion of the zinc can 1. In this cylindrical manganese dry battery, volatile resistant or nonvolatile fluid organic substance such as machine oil, liquid paraffin or the like is interposed on the whole faces or a part between the zinc can 1 and the heat contractive resin tube 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、筒形マンガン乾電池に
関するものであり、さらに詳しくは、未使用または使用
中のオフ(OFF)状態での貯蔵で亜鉛缶に局部的な腐
食が生じて亜鉛缶の側面にピンホールが発生した場合で
も、そのピンホールからの大気中の酸素の電池内への侵
入を防止して、貯蔵性能を高めた筒形マンガン乾電池に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cylindrical manganese dry battery, and more particularly, to a zinc can which is locally corroded during storage in an unused or off state. The present invention relates to a cylindrical manganese dry battery that has improved storage performance by preventing oxygen in the atmosphere from penetrating into the battery even if a pinhole is generated on the side surface of the can.

【0002】[0002]

【従来の技術】従来、筒形マンガン乾電池では、水銀を
電解液中に溶解させて亜鉛を水銀でアマルガム化して亜
鉛缶の腐食を防止したり、あるいは亜鉛をカドミウムで
合金化して亜鉛缶の腐食を防止して、貯蔵性能を高める
ことが行われていた。
2. Description of the Related Art Conventionally, in a cylindrical manganese dry battery, mercury is dissolved in an electrolytic solution and zinc is amalgamated with mercury to prevent corrosion of the zinc can, or zinc is alloyed with cadmium to corrode the zinc can. And the storage performance has been improved.

【0003】しかし、最近は環境汚染防止などの観点か
ら、水銀やカドミウムなどの有害物質は使用することが
できなくなり、その結果、貯蔵中に亜鉛缶の局部腐食が
生じ、それが進行して亜鉛缶を貫通し、亜鉛缶にピンホ
ールが発生することになる。このようなピンホールが発
生しただけでは、ただちに放電特性に異常を来すことは
ないが、そのピンホールから大気中の酸素が電池内(こ
こでは、特に亜鉛缶の内部の発電要素部分を意味する)
に侵入し、ピンホール部分が酸素と亜鉛の局部電池とな
り、亜鉛缶の腐食の進行をさらに進行させ、ピンホール
が拡がって大きな孔になる。
However, recently, from the viewpoint of preventing environmental pollution, harmful substances such as mercury and cadmium cannot be used, and as a result, local corrosion of the zinc can occurs during storage, which promotes zinc. A pinhole will be created in the zinc can through the can. The occurrence of such pinholes does not immediately lead to abnormal discharge characteristics, but oxygen in the atmosphere from the pinholes inside the battery (in this case, especially in the power generation element inside the zinc can means Do)
And the pinhole portion becomes a local battery of oxygen and zinc, further promoting the corrosion of the zinc can, and the pinhole expands to become a large hole.

【0004】すなわち、筒形マンガン乾電池では、図3
に示すように、亜鉛缶1の外周部を熱収縮性樹脂チュー
ブ11で覆い、亜鉛缶1の開口部は封口体7と炭素棒6
で封口する構造を採用しているが、放電中に発生するガ
スや誤使用による逆装填での充電により発生するガスに
よって、電池にふくれが生じたり、破裂が生じるのを防
止するため、筒形マンガン乾電池では完全に密閉する構
造を採用せず、電池内に発生したガスは、亜鉛缶1と封
口体7との間、あるいは封口体7と炭素棒6との間を通
過し、さらに熱収縮性樹脂チューブ11の下端部と絶縁
リング10との間や、あるいは正極端子板12と絶縁リ
ング13との間を通って電池外部に抜け出るようにして
いるので、特に熱収縮性樹脂チューブ11の下端部と絶
縁リング10との間を経て大気中の酸素が亜鉛缶1と熱
収縮性樹脂チューブ11との間に侵入し、亜鉛缶1にピ
ンホールがあると、前記のように、そのピンホールから
亜鉛缶1の内部の発電要素部分に侵入し、そのピンホー
ル部分が酸素と亜鉛の局部電池となり、亜鉛缶の腐食が
さらに進行し、ピンホールが拡がって大きな孔となるの
である。
That is, in the cylindrical manganese dry battery, as shown in FIG.
As shown in FIG. 1, the outer periphery of the zinc can 1 is covered with a heat-shrinkable resin tube 11, and the opening of the zinc can 1 has a sealing body 7 and a carbon rod 6.
However, the cylindrical shape is used to prevent the battery from swelling or bursting due to gas generated during discharge or gas generated by charging by reverse loading due to misuse. The manganese dry battery does not adopt a completely sealed structure, and the gas generated in the battery passes between the zinc can 1 and the sealing body 7 or between the sealing body 7 and the carbon rod 6 to cause further heat shrinkage. Since it is designed to escape to the outside of the battery between the lower end of the heat-shrinkable resin tube 11 and the insulating ring 10 or between the positive electrode terminal plate 12 and the insulating ring 13, the lower end of the heat-shrinkable resin tube 11 is particularly preferable. Oxygen in the atmosphere enters between the zinc can 1 and the heat-shrinkable resin tube 11 through the gap between the insulating ring 10 and the insulating ring 10, and if there is a pinhole in the zinc can 1, as described above, the pinhole From inside the zinc can 1 Conductive element portion penetrates, the pin hole portion becomes local cell of oxygen and zinc, corrosion of the zinc can is further advanced, it is of a major hole pinhole spreads.

【0005】その結果、セパレータ2に塗付した糊材が
乾燥したり、酸素と亜鉛の反応で生じた塩基性酸化亜鉛
が亜鉛缶1とセパレータ2との間に析出して堆積し、内
部抵抗を増加させるため、放電特性が大幅に低下するこ
とになる。
As a result, the paste material applied to the separator 2 is dried, and basic zinc oxide produced by the reaction of oxygen and zinc is deposited and deposited between the zinc can 1 and the separator 2 to cause internal resistance. Therefore, the discharge characteristics are significantly reduced.

【0006】そこで、これまでの筒形マンガン乾電池の
多くは、ピンホールの発生を抑制するインヒビターの添
加を行っているが、いまだ水銀やカドミウムに匹敵する
性能を有するものが見つかっていない。
Therefore, most of the cylindrical manganese dry batteries to date have added an inhibitor for suppressing the generation of pinholes, but none of them has a performance comparable to that of mercury or cadmium.

【0007】また、端子部分を除いて電池全体を外装体
で密閉することにより、ピンホールが発生した場合で
も、大気中の酸素の電池内への侵入を防止することが提
案されているが、この場合は放電中に発生するガスや、
あるいは誤使用の充電で発生するガスを逃がすことがで
きないため、電池がふくれたり、破裂する原因になる。
Further, it has been proposed to prevent oxygen in the atmosphere from entering the battery by sealing the entire battery with the outer casing except for the terminal portion, even if a pinhole occurs. In this case, gas generated during discharge,
Alternatively, the gas generated by incorrect charging cannot escape, which may cause the battery to swell or burst.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来の筒形
マンガン乾電池が持っていた亜鉛缶に発生するピンホー
ルにより貯蔵性能が低下するという問題点を解決し、亜
鉛缶にピンホールが発生した場合でも、ガス抜き性を損
なうことなく、大気中の酸素の電池内への侵入を防止し
て、貯蔵性能が優れた筒形マンガン乾電池を提供するこ
とを目的とする。
SUMMARY OF THE INVENTION The present invention solves the problem that the conventional cylindrical manganese dry battery has a problem that the storage performance is deteriorated due to the pinhole generated in the zinc can, and the pinhole is generated in the zinc can. Even in such a case, it is an object of the present invention to provide a cylindrical manganese dry battery having excellent storage performance by preventing oxygen in the atmosphere from entering the battery without impairing the degassing property.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
の本発明の構成を、その実施例に対応する図1〜2を用
いて説明すると、本発明は、亜鉛缶1と熱収縮性樹脂チ
ューブ11との間の全面または一部にマシンオイルや流
動パラフィンなどの難揮発性または非揮発性の流動性有
機物15を介在させたものである。
The structure of the present invention for solving the above problems will be described with reference to FIGS. 1 and 2 corresponding to the embodiments. The present invention is based on a zinc can 1 and a heat-shrinkable resin. A refractory or non-volatile liquid organic substance 15 such as machine oil or liquid paraffin is interposed on the entire surface or a part of the tube 11.

【0010】亜鉛缶1と熱収縮性樹脂チューブ11との
間は、熱収縮性樹脂チューブ11を熱収縮させて亜鉛缶
1に密接させるので、通常の条件下では、両者は隙間な
く接している。そこで、その亜鉛缶1と熱収縮性樹脂チ
ューブ11との間に流動性有機物15を介在させると、
極少量の流動性有機物15でも全面に拡がり、その表面
張力で拡がった状態が保持される。
Between the zinc can 1 and the heat-shrinkable resin tube 11, the heat-shrinkable resin tube 11 is heat-shrinked and brought into close contact with the zinc can 1. Therefore, under normal conditions, the two are in close contact with each other. . Therefore, when the fluid organic substance 15 is interposed between the zinc can 1 and the heat-shrinkable resin tube 11,
Even a very small amount of the fluid organic substance 15 spreads over the entire surface, and the spread state is maintained by the surface tension.

【0011】したがって、使用する流動性有機物15
は、亜鉛缶1の表面を薄く濡らす程度の少量でもよい。
上記流動性有機物15を亜鉛缶1と熱収縮性樹脂チュー
ブ11との間に介在させるにあたって、両者の間の全面
にわたって介在させるのが好ましいが、その一部でもよ
い。その際の一部としては、亜鉛缶1と熱収縮性樹脂チ
ューブ11との間で下端部または両端部が好ましく、ま
た、下端部が密閉構造となっているものでは、上端部で
あってもよい。実際には、それらの部分に流動性有機物
15を介在させると、熱収縮性樹脂チューブ11の熱収
縮により、上記の流動性有機物15が亜鉛缶1と熱収縮
性樹脂チューブ11との間のほぼ全面に行きわたる。
Therefore, the fluid organic substance 15 to be used
May be a small amount that wets the surface of the zinc can 1 thinly.
When the fluid organic substance 15 is interposed between the zinc can 1 and the heat-shrinkable resin tube 11, it is preferable that the fluid organic substance 15 is interposed between the zinc can 1 and the heat-shrinkable resin tube 11, but a part thereof may be used. As a part in that case, the lower end portion or both end portions between the zinc can 1 and the heat-shrinkable resin tube 11 is preferable, and in the case where the lower end portion has a closed structure, even the upper end portion Good. In practice, when the flowable organic substance 15 is interposed between these portions, the heat-shrinkable resin tube 11 is heat-shrinked, so that the above-mentioned flowable organic substance 15 is almost between the zinc can 1 and the heat-shrinkable resin tube 11. Spread all over.

【0012】上記のように亜鉛缶1と熱収縮性樹脂チュ
ーブ11との間に流動性有機物15を介在させておく
と、亜鉛缶1にピンホールが発生した場合でも、上記の
流動性有機物15によって、亜鉛缶1のピンホールがあ
いた部分と熱収縮性樹脂チューブ11との間に大気中の
酸素が侵入してくることがないので、亜鉛と酸素との間
で局部電池が形成されることがなく、したがって、ピン
ホールの拡がりがなくなり、大きな放電特性の低下が生
じなくなって、貯蔵性能が優れた筒形マンガン乾電池が
得られるようになる。
If the fluid organic substance 15 is interposed between the zinc can 1 and the heat-shrinkable resin tube 11 as described above, even if a pinhole is generated in the zinc can 1, the fluid organic substance 15 is used. As a result, oxygen in the atmosphere does not enter between the portion where the pinhole of the zinc can 1 was and the heat-shrinkable resin tube 11, so that a local battery is formed between zinc and oxygen. Therefore, the expansion of the pinhole is prevented, the large deterioration of the discharge characteristic does not occur, and the cylindrical manganese dry battery having excellent storage performance can be obtained.

【0013】また、亜鉛缶1と熱収縮性樹脂チューブ1
1との間に介在する流動性有機物15により、亜鉛缶1
のピンホールがあいた部分に接触していたセパレータ2
の糊材の乾燥が防止されるので、この面からも、放電特
性の低下が防止される。
Further, the zinc can 1 and the heat-shrinkable resin tube 1
The zinc can 1 can be
Separator 2 that was in contact with the part where the pinhole of
Since the drying of the sizing material is prevented, the deterioration of the discharge characteristics can be prevented also from this aspect.

【0014】亜鉛缶1と熱収縮性樹脂チューブ11との
間に介在させる流動性有機物15は極少量で足りるの
で、放電中にガスが発生したり、誤使用による逆装填で
の充電によってガスが発生した場合には、そのガスで熱
収縮性樹脂チューブ11がふくれて、ガス逃げのために
は充分の隙間ができるので、電池のふくれや破裂などが
生じない。
Since a very small amount of the fluid organic substance 15 interposed between the zinc can 1 and the heat-shrinkable resin tube 11 is sufficient, gas is generated during discharge, or gas is generated by charging by reverse loading due to misuse. When the gas is generated, the heat-shrinkable resin tube 11 is swollen by the gas, and a sufficient gap is formed for the gas to escape, so that the battery is not swollen or ruptured.

【0015】上記の流動性有機物15としては、難揮発
性または非揮発性のものであることを要するが、これは
流動性有機物15が容易に揮発して消失してしまったの
では、その役割を果たすことができないためである。そ
して、その難揮発性または非揮発性という要件を備えた
流動性有機物15の具体例としては、例えば、マシン油
(特にマシン油2号が好ましい)、流動パラフィンなど
が挙げられ、また、ポリブデン、シリコーン油などの低
粘度合成高分子、オリーブ油、ヒマシ油などの油脂、ス
コアロールなどの界面活性剤なども用いることができる
が、特にマシン油と流動パラフィンとの重量比1:1〜
9:1の混合物が適度な流動性を有し、かつ容易に流失
しないことから好ましい。
The above-mentioned liquid organic substance 15 is required to be a substance which is hardly volatile or non-volatile, which is its role if the liquid organic substance 15 is easily volatilized and disappears. It is because it cannot fulfill. Then, specific examples of the fluid organic substance 15 having the requirement of being hardly volatile or non-volatile include machine oil (particularly machine oil No. 2 is preferable), liquid paraffin, and polybutene. Low-viscosity synthetic polymers such as silicone oil, oils and fats such as olive oil and castor oil, and surfactants such as score rolls can be used, but in particular, the weight ratio of machine oil to liquid paraffin is 1: 1 to 1: 1.
A 9: 1 mixture is preferred because it has suitable flowability and does not easily wash off.

【0016】[0016]

【実施例】つぎに、本発明の実施例を図面を参照しつつ
説明する。ただし、本発明は実施例に例示のもののみに
限定されることはない。もとより、各構成部材の材料な
ども例示のものに限られることはない。
Embodiments of the present invention will now be described with reference to the drawings. However, the present invention is not limited to the examples illustrated in the embodiments. Needless to say, the material of each component is not limited to the examples.

【0017】図1は本発明の筒形マンガン乾電池の一実
施例を示す部分断面図である。図2は図1のA部拡大図
である。
FIG. 1 is a partial sectional view showing an embodiment of the cylindrical manganese dry battery of the present invention. FIG. 2 is an enlarged view of part A of FIG.

【0018】図中、1は亜鉛缶、2はセパレータ、3は
正極合剤、4は底紙、5は上蓋紙、6は炭素棒、7は封
口体、8は密封材、9は負極端子板、10は負極側の絶
縁リング、11は熱収縮性樹脂チューブ、12は正極端
子板、13は正極側の絶縁リング、14は金属外装缶、
15は流動性有機物である。
In the figure, 1 is a zinc can, 2 is a separator, 3 is a positive electrode mixture, 4 is bottom paper, 5 is top lid paper, 6 is a carbon rod, 7 is a sealing body, 8 is a sealing material, and 9 is a negative electrode terminal. Plate, 10 is a negative side insulating ring, 11 is a heat-shrinkable resin tube, 12 is a positive terminal plate, 13 is a positive side insulating ring, 14 is a metal outer can,
15 is a fluid organic substance.

【0019】亜鉛缶1は、金属亜鉛板をコップ状に成形
したものからなり、負極活物質として作用するものであ
る。セパレータ2はクラフト紙からなり、このセパレー
タ2の亜鉛缶1と接触する側の面には糊材が塗付され、
セパレータ2はその糊材が亜鉛缶1に接触するようにし
て正極合剤3と亜鉛缶1との間に配置されている。
The zinc can 1 is made of a metal zinc plate formed into a cup shape and acts as a negative electrode active material. The separator 2 is made of kraft paper, and a paste material is applied to the surface of the separator 2 that contacts the zinc can 1.
The separator 2 is arranged between the positive electrode mixture 3 and the zinc can 1 such that the paste material contacts the zinc can 1.

【0020】正極合剤3は、正極活物質の二酸化マンガ
ンとアセチレンブラックの混合物に電解液を添加して混
合したものからなり、電解液としては濃度34%の塩化
亜鉛水溶液が使用されている。
The positive electrode mixture 3 comprises a mixture of manganese dioxide as a positive electrode active material and acetylene black to which an electrolytic solution is added and mixed. As the electrolytic solution, a zinc chloride aqueous solution having a concentration of 34% is used.

【0021】底紙4は、板紙からなり、亜鉛缶1の底部
内面側に配置され、上蓋紙5は板紙からなり、炭素棒6
が挿通する中心孔を有し、正極合剤3の上部に配置され
ている。炭素棒6は、カーボン粉末を固めたものからな
り、封口体7の透孔7aおよび上蓋紙5の中心孔を貫通
し、その下端は正極合剤3の最下部近くにまで達し、上
端部は正極端子板12と接触していて、正極側の集電体
として作用する。
The bottom paper 4 is made of paperboard and is arranged on the inner surface of the bottom of the zinc can 1, the top paper 5 is made of paperboard, and the carbon rod 6 is used.
Has a center hole through which the positive electrode mixture 3 is inserted. The carbon rod 6 is made by solidifying carbon powder, penetrates the through hole 7a of the sealing body 7 and the central hole of the upper lid paper 5, the lower end thereof reaches near the lowermost portion of the positive electrode mixture 3, and the upper end portion thereof It is in contact with the positive electrode terminal plate 12 and acts as a current collector on the positive electrode side.

【0022】封口体7は、ポリエチレン、ポリプロピレ
ンなどのポリオレフィン系樹脂やナイロンなどのポリア
ミド系樹脂などを成形したものからなり、中央部には炭
素棒6が挿入される透孔7aが設けられ、その外周部に
は亜鉛缶1の開口端部が当接している。密封材8はポリ
ブデンとアスファルトピッチとの混合物からなり、封口
体7の下部で炭素棒6の周囲に形成されている。
The sealing body 7 is formed by molding a polyolefin resin such as polyethylene or polypropylene, or a polyamide resin such as nylon, and has a through hole 7a for inserting the carbon rod 6 in the center thereof. The open end of the zinc can 1 is in contact with the outer peripheral portion. The sealing material 8 is made of a mixture of polybutene and asphalt pitch, and is formed around the carbon rod 6 below the sealing body 7.

【0023】負極端子板9は、ブリキ板からなり、外周
部は平板状になっている。負極側の絶縁リング10は、
パラフィンを含浸した板紙をリング状に打ち抜いたもの
からなり、負極端子板9の平板状の外周部の外面側(図
では、下部側)に接触した状態で配置されている。
The negative electrode terminal plate 9 is made of a tin plate, and the outer peripheral portion thereof has a flat plate shape. The insulating ring 10 on the negative electrode side is
It is made of punched paperboard impregnated with paraffin in a ring shape, and is arranged in contact with the outer surface side (lower side in the figure) of the flat plate-shaped outer peripheral portion of the negative electrode terminal plate 9.

【0024】熱収縮性樹脂チューブ11は、熱収縮性を
有する塩化ビニル樹脂フィルムなどからなり、亜鉛缶1
との間に流動性有機物15を介在させ、その上端部は封
口体7の外周部上面を覆い、その下端部は絶縁リング1
0の下面の一部を覆っている。
The heat-shrinkable resin tube 11 is made of a heat-shrinkable vinyl chloride resin film or the like, and the zinc can 1
The liquid organic substance 15 is interposed between the insulating ring 1 and the upper part of the insulating ring 1.
It covers a part of the lower surface of 0.

【0025】正極端子板12は、ブリキ板からなり、そ
の中央部は炭素棒6の上端部に嵌合されるキャップ状を
しており、外周部は平板状になっている。正極側の絶縁
リング13は、塩化ビニル樹脂板をリング状に打ち抜い
たものからなり、上記正極端子板12の平板状の外周部
上に配置されている。
The positive electrode terminal plate 12 is made of a tin plate, and its central portion has a cap shape fitted to the upper end portion of the carbon rod 6, and its outer peripheral portion has a flat plate shape. The insulating ring 13 on the positive electrode side is formed by punching a vinyl chloride resin plate into a ring shape, and is arranged on the flat outer peripheral portion of the positive electrode terminal plate 12.

【0026】金属外装缶14は、ブリキ板を筒状に丸め
たものからなり、熱収縮性樹脂チューブ11の外周側に
配置されていて、その下端部は内側に折り曲げられ、そ
の上端部は内方にカールされ、その先端が絶縁リング1
3に当接して、絶縁リング13、正極端子板12の平板
状の外周部、熱収縮性樹脂チューブ11の上端部、封口
体7の外周部、亜鉛缶1の開口端部および熱収縮性樹脂
チューブ11の下端部、絶縁リング10、負極端子板9
をそれぞれ軸方向に押圧して、それらをそれぞれ所定位
置に固定している。
The metal outer can 14 is formed by rolling a tin plate into a cylindrical shape, is arranged on the outer peripheral side of the heat-shrinkable resin tube 11, has its lower end bent inward, and its upper end inward. Curled in one direction, the tip of which is an insulating ring 1
3, the insulating ring 13, the flat plate-shaped outer periphery of the positive electrode terminal plate 12, the upper end of the heat-shrinkable resin tube 11, the outer periphery of the sealing body 7, the open end of the zinc can 1, and the heat-shrinkable resin. Lower end of tube 11, insulating ring 10, negative electrode terminal plate 9
Are pressed in the axial direction to fix them in predetermined positions.

【0027】流動性有機物15は、前記のように、マシ
ン油、流動パラフィン、ポリブデン、シリコーン油など
の低粘度合成高分子、オリーブ油、ヒマシ油などの油
脂、スコアロールなどの界面活性剤などからなり、亜鉛
缶1と熱収縮性樹脂チューブ11との間に介在してい
る。図1〜2では、この流動性有機物15を図面上から
も視認しやすいように実際より厚く図示しているが、こ
の流動性有機物15は、厚さが0.001〜10μm程
度の薄いものでも充分な作用を有している。
As described above, the fluid organic substance 15 comprises low viscosity synthetic polymer such as machine oil, liquid paraffin, polybutene and silicone oil, fats and oils such as olive oil and castor oil, and a surfactant such as score roll. It is interposed between the zinc can 1 and the heat-shrinkable resin tube 11. 1 and 2 show the fluid organic substance 15 thicker than it actually is so that it can be easily seen from the drawings, but the fluid organic substance 15 may be thin such as about 0.001 to 10 μm. It has a sufficient function.

【0028】つぎに、上記実施例の電池と図3に示す従
来電池(従来品)について常温で1年間および2年間貯
蔵し、その貯蔵後の放電特性を調べた。
Next, the batteries of the above examples and the conventional battery (conventional product) shown in FIG. 3 were stored at room temperature for 1 year and 2 years, and the discharge characteristics after the storage were examined.

【0029】電池はいずれも外径14mm、総高50.
5mmのR6形の筒形マンガン乾電池であり、試験に供
した電池個数は各電池とも100個ずつである。
Each battery has an outer diameter of 14 mm and a total height of 50.
It is a 5 mm R6 type cylindrical manganese dry battery, and the number of batteries used in the test is 100 for each battery.

【0030】そして、実施例の電池では、亜鉛缶1の上
端部と熱収縮性樹脂チューブ11との間に、マシン油
(2号)と流動パラフィンとの重量比3:1の混合物を
流動性有機物15として滴下し、熱収縮性樹脂チューブ
11の熱収縮と上記流動性有機物15の毛管現象を利用
して、流動性有機物15を亜鉛缶1と熱収縮性樹脂チュ
ーブとの間のほぼ全面に行きわらせ、流動性有機物15
を亜鉛缶1と熱収縮性樹脂チューブ11との間に介在さ
せているが、従来電池ではそのような流動性有機物15
を亜鉛缶1と熱収縮性樹脂チューブ11との間に介在さ
せず、亜鉛缶1の周囲に熱収縮性樹脂チューブ11が直
接被覆している。
In the battery of the embodiment, a mixture of machine oil (No. 2) and liquid paraffin having a weight ratio of 3: 1 is fluidized between the upper end of the zinc can 1 and the heat-shrinkable resin tube 11. The liquid organic substance 15 is dripped as the organic substance 15 and the heat shrinkage of the heat shrinkable resin tube 11 and the capillarity of the liquid organic substance 15 are used to spread the liquid organic substance 15 on almost the entire surface between the zinc can 1 and the heat shrinkable resin tube. Distribute, liquid organic matter 15
Is interposed between the zinc can 1 and the heat-shrinkable resin tube 11, but in the conventional battery, such a fluid organic substance 15 is used.
Is not interposed between the zinc can 1 and the heat-shrinkable resin tube 11, but the heat-shrinkable resin tube 11 is directly coated around the zinc can 1.

【0031】貯蔵後の亜鉛間1の自己腐食でのピンホー
ル発生を1年間および2年間貯蔵後にそれぞれ50個ず
つの電池について調べた結果、1年間で4%、2年間で
16%ピンホールが発生していた。
As a result of investigating the generation of pinholes due to self-corrosion between zinc 1 after storage for 1 year and 50 years after storage for 2 years, 4% in one year and 16% in 2 years Had occurred.

【0032】実施例の電池と従来電池でピンホールが発
生したものと、従来電池でピンホールが発生していない
ものについて放電試験を行った。放電性能は、1年間お
よび2年間貯蔵後の電池を20℃、5Ωで終止電圧0.
9Vまで連続放電させて、放電持続時間を測定し、組立
直後のピンホールが発生していない電池の放電持続時間
を100とした指数を求めた。その結果を表1に示す。
なお、組立直後の電池の放電時間は実施例、従来電池と
も150分であり、表1では、従来電池を従来品と表示
した。
A discharge test was carried out on the battery of the example and the conventional battery in which pinholes were generated, and the conventional battery in which no pinholes were generated. The discharge performance of the battery after storage for 1 year and 2 years was 20 ° C, 5Ω, and the final voltage was 0.
The battery was continuously discharged to 9 V, the discharge duration was measured, and an index was determined with the discharge duration of the battery having no pinhole immediately after assembly taken as 100. Table 1 shows the results.
The discharge time of the battery immediately after assembly was 150 minutes for both the example and the conventional battery, and in Table 1, the conventional battery is indicated as the conventional product.

【0033】[0033]

【表1】 [Table 1]

【0034】表1に示す結果から明らかなように、本発
明の実施例の電池は、亜鉛缶にピンホールが発生した場
合でも、従来電池の亜鉛缶にピンホールが発生していな
いものと大差なく、ピンホールの発生したもの同士の比
較では、実施例の電池は従来電池に比べて、性能が大幅
に向上しており、また、本発明の実施例の電池は、貯蔵
中の自己腐食により亜鉛缶にピンホールが発生した場合
でも、ピンホールの発生がないものと同等の放電性能を
有していて、貯蔵性能が優れていた。
As is clear from the results shown in Table 1, the batteries of the examples of the present invention are significantly different from the conventional batteries in which no zinc pinholes are generated, even when the zinc cans are pinholes. However, in the comparison of the ones in which pinholes were generated, the performance of the battery of the example was significantly improved as compared with the conventional battery, and the battery of the example of the present invention showed self-corrosion during storage. Even when a pinhole was generated in the zinc can, it had the same discharge performance as that in which no pinhole was generated, and the storage performance was excellent.

【0035】[0035]

【発明の効果】以上説明したように、本発明では、貯蔵
中での亜鉛缶の自己腐食により亜鉛缶にピンホールが発
生した場合でも、そのピンホールからの大気中の酸素の
電池内への侵入を防止して、貯蔵性能が優れた筒形マン
ガン乾電池を提供することができた。
As described above, according to the present invention, even when a pinhole is generated in a zinc can due to self-corrosion of the zinc can during storage, oxygen in the atmosphere from the pinhole is transferred to the battery. It has been possible to provide a cylindrical manganese dry battery with excellent storage performance by preventing intrusion.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の筒形マンガン乾電池の一実施例を示す
部分断面図である。
FIG. 1 is a partial sectional view showing an embodiment of a cylindrical manganese dry battery of the present invention.

【図2】図1のA部拡大図である。FIG. 2 is an enlarged view of a portion A in FIG.

【図3】従来の筒形マンガン乾電池を示す部分断面図で
ある。
FIG. 3 is a partial cross-sectional view showing a conventional cylindrical manganese dry battery.

【符号の説明】[Explanation of symbols]

1 亜鉛缶 2 セパレータ 3 正極合剤 4 底紙 5 上蓋紙 6 炭素棒 7 封口体 7a 透孔 9 負極端子板 10 絶縁リング 11 熱収縮性樹脂チューブ 12 正極端子板 13 絶縁リング 14 金属外装缶 15 流動性有機物 1 Zinc Can 2 Separator 3 Positive Electrode Mixture 4 Bottom Paper 5 Top Cover Paper 6 Carbon Rod 7 Sealing Body 7a Through Hole 9 Negative Electrode Terminal Plate 10 Insulation Ring 11 Heat Shrinkable Resin Tube 12 Positive Electrode Terminal Plate 13 Insulation Ring 14 Metal Outer Can 15 Flow Organic matter

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 正極合剤3とセパレータ2を内填した亜
鉛缶1の開口部に、中央の透孔7aに炭素棒6を挿入し
た封口体7を配設し、亜鉛缶1の底部に負極端子板9お
よび負極側の絶縁リング10を配設し、かつ亜鉛缶1の
外周部に熱収縮性樹脂チューブ11を配設し、上記熱収
縮性樹脂チューブ11を熱収縮させ、上記炭素棒6の上
端部に正極端子板12を嵌合し、上記正極端子板12の
外周部上に正極側の絶縁リング13を配設し、金属外装
缶14で軸方向に締め付けて、亜鉛缶1の開口部を封口
する筒形マンガン乾電池において、亜鉛缶1と熱収縮性
樹脂チューブ11との間の全面または一部に難揮発性ま
たは非揮発性の流動性有機物15を介在させたことを特
徴とする筒形マンガン乾電池。
1. A zinc can 1 having a positive electrode mixture 3 and a separator 2 filled therein is provided with a sealing body 7 in which a carbon rod 6 is inserted into a central through hole 7a, and the bottom of the zinc can 1 is provided. The negative electrode terminal plate 9 and the insulating ring 10 on the negative electrode side are arranged, and the heat-shrinkable resin tube 11 is arranged on the outer peripheral portion of the zinc can 1, and the heat-shrinkable resin tube 11 is heat-shrinked to form the carbon rod. The positive electrode terminal plate 12 is fitted to the upper end portion of 6, and the insulating ring 13 on the positive electrode side is disposed on the outer peripheral portion of the positive electrode terminal plate 12, and the metal outer can 14 is axially tightened to fix the zinc can 1. In a cylindrical manganese dry battery with an opening sealed, a non-volatile or non-volatile liquid organic substance 15 is interposed between the zinc can 1 and the heat-shrinkable resin tube 11 in whole or in part. A cylindrical manganese dry battery.
【請求項2】 流動性有機物が、マシン油と流動パラフ
ィンとの混合物である請求項1記載の筒形マンガン乾電
池。
2. The cylindrical manganese dry battery according to claim 1, wherein the fluid organic substance is a mixture of machine oil and liquid paraffin.
JP29387594A 1994-11-02 1994-11-02 Cylindrical manganese dry battery Withdrawn JPH08138635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29387594A JPH08138635A (en) 1994-11-02 1994-11-02 Cylindrical manganese dry battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29387594A JPH08138635A (en) 1994-11-02 1994-11-02 Cylindrical manganese dry battery

Publications (1)

Publication Number Publication Date
JPH08138635A true JPH08138635A (en) 1996-05-31

Family

ID=17800290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29387594A Withdrawn JPH08138635A (en) 1994-11-02 1994-11-02 Cylindrical manganese dry battery

Country Status (1)

Country Link
JP (1) JPH08138635A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014591C2 (en) * 2000-03-09 2001-09-11 Corus Staal Bv Battery of the type comprising a zinc canister and a carbon collector for the cathode.
US6586912B1 (en) 2002-01-09 2003-07-01 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
US6891353B2 (en) 2001-11-07 2005-05-10 Quallion Llc Safety method, device and system for an energy storage device
US7443136B2 (en) 2002-01-09 2008-10-28 Quallion Llc Method and device employing heat absorber for limiting battery temperature spikes
JP2009032539A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Solid battery
US7592776B2 (en) 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
JP2013080719A (en) * 2012-12-27 2013-05-02 Toyota Motor Corp Method for manufacturing solid lithium secondary battery
KR101333204B1 (en) * 2012-01-20 2013-11-26 김연덕 Magnesium battery
KR101430578B1 (en) * 2005-01-06 2014-08-14 룻거스, 더 스테이트 유니버시티 오브 뉴저지 Electrochemically self assembled batteries
US9640793B2 (en) 2012-07-24 2017-05-02 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
US10326135B2 (en) 2014-08-15 2019-06-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes
US11557756B2 (en) 2014-02-25 2023-01-17 Quantumscape Battery, Inc. Hybrid electrodes with both intercalation and conversion materials

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001075995A1 (en) * 2000-03-09 2001-10-11 Corus Staal Bv Battery of the type comprising a zinc can and a collector consisting of carbon for the cathode
NL1014591C2 (en) * 2000-03-09 2001-09-11 Corus Staal Bv Battery of the type comprising a zinc canister and a carbon collector for the cathode.
US6891353B2 (en) 2001-11-07 2005-05-10 Quallion Llc Safety method, device and system for an energy storage device
US7592776B2 (en) 2001-11-07 2009-09-22 Quallion Llc Energy storage device configured to discharge energy in response to unsafe conditions
US7893659B2 (en) 2002-01-09 2011-02-22 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
US6586912B1 (en) 2002-01-09 2003-07-01 Quallion Llc Method and apparatus for amplitude limiting battery temperature spikes
US7443136B2 (en) 2002-01-09 2008-10-28 Quallion Llc Method and device employing heat absorber for limiting battery temperature spikes
KR101430578B1 (en) * 2005-01-06 2014-08-14 룻거스, 더 스테이트 유니버시티 오브 뉴저지 Electrochemically self assembled batteries
US9331357B2 (en) 2005-01-06 2016-05-03 Rutgers, The State University Of New Jersey Electrochemically self assembled batteries
JP4656102B2 (en) * 2007-07-27 2011-03-23 トヨタ自動車株式会社 Solid battery
US8481204B2 (en) 2007-07-27 2013-07-09 Toyota Jidosha Kabushiki Kaisha Solid-state battery
JP2009032539A (en) * 2007-07-27 2009-02-12 Toyota Motor Corp Solid battery
KR101333204B1 (en) * 2012-01-20 2013-11-26 김연덕 Magnesium battery
US9640793B2 (en) 2012-07-24 2017-05-02 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
US9692039B2 (en) 2012-07-24 2017-06-27 Quantumscape Corporation Nanostructured materials for electrochemical conversion reactions
US10511012B2 (en) 2012-07-24 2019-12-17 Quantumscape Corporation Protective coatings for conversion material cathodes
JP2013080719A (en) * 2012-12-27 2013-05-02 Toyota Motor Corp Method for manufacturing solid lithium secondary battery
US11557756B2 (en) 2014-02-25 2023-01-17 Quantumscape Battery, Inc. Hybrid electrodes with both intercalation and conversion materials
US10326135B2 (en) 2014-08-15 2019-06-18 Quantumscape Corporation Doped conversion materials for secondary battery cathodes

Similar Documents

Publication Publication Date Title
US4963446A (en) Inwardly indented edge electrode assembly
US7923138B2 (en) Housing for a sealed electrochemical battery cell
US5079108A (en) Dry cell seal closure
JPH08138635A (en) Cylindrical manganese dry battery
US4329405A (en) Electrochemical cell having a safety vent closure
JP3475527B2 (en) Cylindrical air battery
JP3016065B2 (en) Manufacturing method of cylindrical nickel-hydrogen secondary battery
WO2000030191A1 (en) Electrochemical cell having a moisture barrier
US4437231A (en) Method of making an electrochemical cell having a safety vent closure
JPS5918564A (en) 2-member cover sealed structure for battery
US4988585A (en) Liquid cathode electrochemical cells having insured anode to tab contact
US3082285A (en) Leak resistant dry cell
JP2952033B2 (en) Alkaline batteries
JPH0560233B2 (en)
CA1050610A (en) Leak-resistant dry cells
DE1950359C3 (en) Hermetically sealed cylindrical element with a cup-shaped outer electrode surrounded by a plastic housing
JPH07320704A (en) Cylindrical manganese dry battery
JPH11339738A (en) Cylindrical manganese dry battery
JP2007048534A (en) Manganese dry cell
JPH01320769A (en) Manufacture of organic electrolyte battery
JP2007157585A (en) Alkaline battery
JP2008140748A (en) Manganese dry battery
GB1603552A (en) Dry batteries
JPS6321092Y2 (en)
JP3106807B2 (en) Mercury-free manganese dry cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020115