JPH0415581B2 - - Google Patents
Info
- Publication number
- JPH0415581B2 JPH0415581B2 JP57142899A JP14289982A JPH0415581B2 JP H0415581 B2 JPH0415581 B2 JP H0415581B2 JP 57142899 A JP57142899 A JP 57142899A JP 14289982 A JP14289982 A JP 14289982A JP H0415581 B2 JPH0415581 B2 JP H0415581B2
- Authority
- JP
- Japan
- Prior art keywords
- hole
- battery
- negative electrode
- sealing body
- current collector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000007789 sealing Methods 0.000 claims description 56
- 230000002093 peripheral effect Effects 0.000 claims description 46
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 9
- 230000007423 decrease Effects 0.000 claims description 7
- 238000010248 power generation Methods 0.000 claims description 4
- 238000005452 bending Methods 0.000 claims description 3
- 229920005989 resin Polymers 0.000 description 13
- 239000011347 resin Substances 0.000 description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 239000010426 asphalt Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- 230000006835 compression Effects 0.000 description 7
- 238000007906 compression Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 5
- 238000000465 moulding Methods 0.000 description 5
- -1 polyethylene Polymers 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- 229920000571 Nylon 11 Polymers 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 238000001746 injection moulding Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229910001369 Brass Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000010951 brass Substances 0.000 description 2
- 230000009172 bursting Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 238000000748 compression moulding Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000010734 process oil Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 229910001923 silver oxide Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/148—Lids or covers characterised by their shape
- H01M50/154—Lid or cover comprising an axial bore for receiving a central current collector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/317—Re-sealable arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/30—Arrangements for facilitating escape of gases
- H01M50/317—Re-sealable arrangements
- H01M50/325—Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
- H01M50/333—Spring-loaded vent valves
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Gas Exhaust Devices For Batteries (AREA)
- Connection Of Batteries Or Terminals (AREA)
Description
本発明は正極活物質として二酸化マンガン、酸
化銀、酸化水銀、酸化ニツケルなどの金属酸化物
を用いる筒形アルカリ電池の改良に係り、電池内
部の圧力が異常上昇したときにガスを速やかに外
部へ逃散させ、内圧の異常上昇による電池の破裂
を防止する安全性の高い筒形アルカリ電池を提供
することを目的とする。
アルカリ電池は電解液に強アルカリを使用する
関係上、過放電や負極活物質中の不純物により多
量のガスが急激に発生して電池内部の圧力が異常
に高くなることがある。
そこで、正極缶の開口部を封口する合成樹脂製
の封口体をたとえば第7図に示すように部分的に
薄肉にし、電池内の圧力が異常に高まつた際に
は、該薄肉部63bが破れてガスを外部に逃散さ
せ、電池が破裂して電解液が飛び散るのを防止す
るなどの安全対策が講じられている。
しかしながら、小さな封口体を部分的に一定の
ガス圧で破れるような薄肉に成形することは非常
にむつかしく、厚さにバラツキが生じて、設定圧
力で破れないで危険を招いたり、あるいは設定圧
力以下の圧力で破れて使用不能になるなどの問題
がある。
本発明は、そのような問題を解消するためにな
されたものであり、負極集電棒を挿入する透孔を
中心とする厚肉環状部と、正極缶の開口端部と接
する外周縁部と、該厚肉環状部と外周縁部とを連
結する連結部とからなり、該厚肉環状部に環状支
持体を外嵌し、透孔に負極集電棒を挿入して前記
厚肉環状部を負極集電棒と環状支持体との間で締
め付けた封口体で正極缶の開口部を封口し、封口
体の外周縁部を正極缶の開口端部の内方への締め
付けまたは金属外装缶の端部の内方への折り曲げ
により押え電池外部側への移動を防止し、負極集
電棒と負極端子板との間の空間部に配置したばね
により負極集電棒の頭部を軸方向に押圧する筒形
アルカリ電池において、封口体の厚肉環状部の透
孔周辺部分とその他の部分とを別々に成形し、か
つ透孔周辺部分の外周側でその他の部分の内周面
と接する面は発電要素側に向つて漸次径が縮小す
るテーパー状に形成し、その他の部分の内周面は
前記透孔周辺部分の外周側接面に対応して発電要
素側に向つて漸次径が縮小するテーパー状に形成
し、透孔周辺部分をその他の部分に挿入して封口
体を構成することにより、電池内の圧力が設定圧
力に達すると封口体の透孔周辺部分とその他の部
分が離間して内部のガスを速やかに外部へ逃散さ
せ、それによつて電池破裂を防止する安全性の高
い筒形アルカリ電池を提供したものである。
つぎに本発明の実施例を図面に基づいて説明す
る。
第1図は本発明の筒形アルカリ電池の一実施例
を示す半截断面図であり、第2図は第1図に示す
電池の要部拡大断面図である。
まず、本実施例において用いる封口体について
説明すると、封口体6は負極集電棒5を挿入する
透孔64を中心としその周囲に形成された厚肉環
状部61と、正極缶4の開口端部の内周面と接す
る環状の外周縁部62と、V字状部63aを有し
該厚肉環状部61と外周縁部62とを連結する連
結部63からなり、該厚肉環状部61の外側には
鉄製の環状支持体7が嵌め込まれ、透孔64には
真鍮製の負極集電棒5が挿入され、厚肉環状部6
1は負極集電棒5と環状支持体7との間で圧縮さ
れる。
なお、本実施例において用いる環状支持体7は
中間部を内周側に向つて徐々に高くした中高状
で、その外周側が封口体6の外周縁部62の内周
部に達するものである。封口体6の厚肉環状部6
1における透孔周辺部分6aと、その他の部分6
bすなわち厚肉環状部61の透孔周辺部分6a以
外の部分、連結部63および外周縁部62からな
る部分6bとは別々に成形され、該透孔周辺部分
6aの外周側でその他の部分の内周面に接する面
6c(第3図参照)は発電要素側、すなわち図面
における下側に向つて漸次径が縮小するテーパー
状に形成され、その他の部分6bの内周面6dは
前記透孔周辺部分6aの外周側接面6cに対応し
て発電要素側に向つて漸次径が縮小するテーパー
状に形成されている。なお前記のように、これら
透孔周辺部分6aとその他の部分6bとは別々に
成形され、使用に際し、透孔周辺部分6aをその
他の部分6bに挿入して封口体6が構成される。
第1図は上記のごとき封口体6を使用した筒形
アルカリ電池を示すもので、1は二酸化マンガン
85部(重量部、以下同様)、りん状黒鉛12部およ
び酸化亜鉛を溶解させた濃度30重量%の水酸化カ
リウム水溶液3部とを混合した顆粒状の正極合剤
の加圧成形体よりなる正極で、2は汞化亜鉛粉末
60部、カルボキシメチルセルロースのナトリウム
塩1部および酸化亜鉛を5.2重量%溶解させた35
重量%水酸化カリウム水溶液よりなる電解液39部
を混合してなるゲル状の負極であり、3は正極1
と負極2とを隔離するビニロン−レーヨン混抄紙
からなるセパレータである。なおセパレータ3と
正極1には電解液が含浸している。4は鉄製で表
面にニツケルメツキが施された正極缶であり、4
aは正極缶4の開口部に挿入された封口体6を受
けるために正極缶4の開口端近傍に形成された溝
であつて、この溝4aの底壁に、前記のように環
状支持体7を嵌入し負極集電棒5を挿入した封口
体6の一端が当接し、その状態で正極缶6の開口
端部が内方へ締め付けられ彎曲してその内周面が
封口体6の外周縁部62に圧接し正極缶6の開口
部の封口がなされている。8は鉄製で外面にニツ
ケルメツキが施された負極端子板であり、この負
極端子板8にはガス抜き孔8aが設けられてい
る。9は負極集電棒5と負極端子板8との間の空
間部に配置されたニツケルメツキを施した短形状
の炭素鋼板よりなる板ばねであり、この板ばね9
はその中央部で負極集電棒5の頭部を軸方向に押
圧し、その端部で負極端子板8の周縁部に接触し
ている。10は正極缶4と負極端子板8とを絶縁
する紙リング、11は樹脂チユーブ、12は鉄製
で表面にニツケルメツキを施した正極端子板、1
3はスズメツキ鋼板よりなる金属外装缶、14,
15は樹脂リングである。そして、封口体6と負
極集電棒5との接面、封口体6と正極缶4との接
面および封口体6の透孔周辺部分6aとその他の
部分6bとの接面には、アスフアルトコンパウン
ド(ブロンアスフアルトとプロセスオイルとの混
合物)よりなる液状パツキング材が介在してい
る。
この電池は、ガスの異常発生などにより電池内
の内圧が異常に高くなつた場合、第3図に示すよ
うに、封口体6の透孔周辺部分6aが負極集電棒
5と共に上昇して透孔周辺部分6aとその他の部
分6bとの間に隙間を生じ、正極缶4内に発生し
たガスをその隙間から速やかに外部へ逃散させう
る。なお、そのようにして正極缶4の外部へ出た
ガスは負極端子板8のガス抜き孔8aを通つて電
池外部へ出ていく。
そして、ガスが電池外部へ逃散したのちは、封
口体6の透孔周辺部分6aは負極集電棒5と共
に、板ばね9の復元力により押圧されて第1〜2
図に示すような元の状態に復帰する。
なお、上記の間、封口体6のその他の部分6b
は、封口時の締め付けにより彎曲した正極缶4の
開口端部によつて上方への移動が阻止されて動か
ない。また、板ばね9はその端部が負極端子板8
の周縁部、樹脂チユーブ11および樹脂リング1
4を介して金属外装缶13の折曲部で固定されて
いるので、内圧が上昇したときにはその中央部の
みが負極集電棒5や封口体6の透孔周辺部分6a
と共に持ち上がるが、ガスが外部へ出て内圧が下
がつたときには、復元力が働いて、負極集電棒5
および封口体6の透孔周辺部分6aを元の状態に
復帰させる。
本発明の電池は、封口体6が従来電池の封口体
のように薄肉部63bを設けるものではないので
その成形が容易であり、また後記第1表に示すよ
うに内部のガスを外部へ逃散させる圧力のバラツ
キが少ないという特徴を有する上に、上記のよう
に内部のガスが逃散して内圧が下がつたときには
板ばね9の復元力により、封口体6の透孔周辺部
分6aが負極集電棒5と共にもとの状態に復帰す
るので、そのまま継続使用できるという長所を有
する。
本発明において、封口体6の透孔周辺部分6a
を上昇させ、ガスを外部へ逃散させる圧力は通常
20〜35Kg/cm2に設定される。設定圧力に大きな影
響を与えるものは封口体6の材質(硬度)、封口
体6の厚肉環状部61の圧縮率、透孔周辺部分6
の外周面のテーパー角度、板ばね9の硬度などで
あるが、圧縮率は通常10〜25%、テーパーは通常
5〜10゜にされる。また板ばね9の硬度は通常ビ
ツカース硬度で200〜500にされる。なお、厚肉環
状部61の圧縮率は次式により求められる。
T−t/T×100
T:元の径方向の厚さ
t:環状支持体を外嵌し透孔に負極集電棒を
挿入した後の径方向の厚さ
本発明において、封口体6としてはたとえばポ
リエチレン、ポリプロピレン、ナイロンなどの合
成樹脂製のものが使用される。そして透孔周辺部
分6aとその他の部分6bとは同材質でもよい
し、また、透孔周辺部分6aをたとえばナイロン
6、ナイロン66、ナイロン610、ナイロン11、ナ
イロン12などのナイロンで成形し、その他の部分
6bをポリエチレン、ポリプロピレンなどで成形
してもよい。成形は射出成形、圧縮成形などの公
知の成形手段によつて行なわれる。
この電池はたとえば次に示すようにしてつくら
れる。
透孔周辺部分6aとその他の部分6bを別々に
成形する。成形は射出成形によつて行なわれ、使
用樹脂は透孔周辺部分6aはナイロン11、その他
の部分6bはナイロン66である。透孔周辺部分6
aの内径すなわち透孔64の直径は2.0mm、高さ
は4.0mmで、上端部外径は4.0mm、下端部外径は3.0
mmでテーパーは7゜であり、その他の部分6bの外
径すなわち外周縁部62の外径は30.7mmである。
板ばねの厚さは0.15mmで、ビツカース硬度は300
である。そして透孔周辺部分6aの外周面にアス
フアルトコンパウンドを塗布したのち、該透孔周
辺部分6aをその他の部分6bに挿入する。
上記のようにして構成された封口体6の厚肉環
状部61の外側に環状支持体7を嵌め、透孔64
にアスフアルトコンパウンドをその軸部上部に塗
布した負極集電棒5を挿入して、厚肉環状部61
を負極集電棒5と環状支持体7の間で締め付け
る。厚肉環状部61の環状支持体7との当接面に
おける外径は5.0mmで、環状支持体7の内径は5.1
mm、径方向の厚さは1.25mmである。負極集電棒5
の軸部の外径は2.6mmで、厚肉環状部61の圧縮
率は16.7%である。
これとは別に、正極缶4に正極1を充填したの
ち、正極缶4の開口端近傍に溝4aを形成し、溝
から先の部分の内面にアスフアルトコンパウンド
を塗布したのち、セパレータ3、電解液、負極2
などを充填し、前記の封口体6を正極缶4の開口
部に配置し、正極缶4の開口端部を内方へ締め付
け彎曲させてその内周面を封口体6の外周縁部6
2に圧接して正極缶4の開口部を封口する。
つぎに、前記のように彎曲させた正極缶4の開
口端部上に紙リング10を載置し、板ばね9、負
極端子板8を配置し、正極側に正極端子板12を
配置したのち、熱収縮性の塩化ビニル樹脂チユー
ブ11で覆い、加熱して該樹脂チユーブ11を収
縮させ、ついで樹脂リング14,15を配置した
のち金属外装缶13で外装する。この電池におけ
るガスを外部へ逃散させるための設定圧力は30
Kg/cm2である。
つぎの第1表は第1図に示すような構成からな
る本発明の電池Aおよび従来電池Bの電池内の圧
力とガスが外部に逃散する電池個数との関係を調
べた結果を示すものである。電池はいずれもJIS
C 8511のLR20形(直径34.2mm高さ59.5mm)の筒
形アルカリ・マンガン電池で、供試個数は電池
A,Bとも100個ずつであり、試験は各電池に
1000mAで充填して強制的にガスを発生させ、所
定圧まで内圧を上昇させたときにガスの外部逃散
が生じた電池個数を調べることによつて行なわれ
た。なお従来電池Bは第6図に示すような構成か
らなり、封口体6はナイロン11製で薄肉部63b
の設計厚は0.15mmであつてガスを外部へ逃散させ
るための設定圧力は30Kg/cm2で、環状支持体7に
はガス抜き用の孔7aが設けられている。
The present invention relates to the improvement of cylindrical alkaline batteries that use metal oxides such as manganese dioxide, silver oxide, mercury oxide, and nickel oxide as positive electrode active materials, and allows gas to be quickly released to the outside when the pressure inside the battery increases abnormally. It is an object of the present invention to provide a highly safe cylindrical alkaline battery that prevents the battery from bursting due to an abnormal increase in internal pressure. Because alkaline batteries use a strong alkali as an electrolyte, overdischarge or impurities in the negative electrode active material can cause a large amount of gas to suddenly be generated, causing the pressure inside the battery to become abnormally high. Therefore, the synthetic resin sealing body that seals the opening of the positive electrode can is partially thinned, for example, as shown in FIG. 7, and when the pressure inside the battery increases abnormally, the thinned part 63b Safety measures have been taken to prevent the battery from bursting and causing the electrolyte to splatter by allowing the gas to escape outside. However, it is very difficult to form a small sealing body into a thin wall that can be partially ruptured by a constant gas pressure, and the thickness may vary, causing danger because it does not rupture at the set pressure, or when the pressure is lower than the set pressure. There are problems such as tearing under the pressure and making it unusable. The present invention has been made to solve such problems, and includes a thick annular portion centered around a through hole into which a negative electrode current collector rod is inserted, an outer peripheral edge portion in contact with an open end of a positive electrode can, It consists of a connecting part connecting the thick annular part and the outer peripheral edge, an annular support is fitted onto the thick annular part, and a negative electrode current collector rod is inserted into the through hole to connect the thick annular part to the negative electrode. The opening of the positive electrode can is sealed with a sealing body tightened between the current collector rod and the annular support, and the outer periphery of the sealing body is tightened inward to the open end of the positive electrode can or the end of the metal exterior can. A cylindrical shape that prevents the presser from moving to the outside of the battery by bending inward, and presses the head of the negative electrode current collector rod in the axial direction by a spring placed in the space between the negative electrode current collector rod and the negative electrode terminal plate. In an alkaline battery, the area around the through hole and the other parts of the thick annular part of the sealing body are molded separately, and the surface that contacts the inner peripheral surface of the other area on the outer peripheral side of the area around the through hole is on the side of the power generation element. The inner peripheral surface of the other portion is formed into a tapered shape whose diameter gradually decreases toward the power generating element side, corresponding to the outer peripheral side contact surface of the peripheral portion of the through hole. By forming a sealing body by inserting the part around the through-hole into the other parts, when the pressure inside the battery reaches the set pressure, the part around the through-hole and the other parts of the sealing body are separated and the inside is closed. The present invention provides a highly safe cylindrical alkaline battery that allows gas to quickly escape to the outside, thereby preventing battery explosion. Next, embodiments of the present invention will be described based on the drawings. FIG. 1 is a half-cut sectional view showing one embodiment of the cylindrical alkaline battery of the present invention, and FIG. 2 is an enlarged sectional view of the main part of the battery shown in FIG. 1. First, the sealing body used in this embodiment will be described. The sealing body 6 includes a thick annular portion 61 formed around a through hole 64 into which the negative electrode current collector rod 5 is inserted, and an open end of the positive electrode can 4. It consists of an annular outer peripheral edge 62 in contact with the inner peripheral surface of An annular support 7 made of iron is fitted on the outside, and a negative electrode current collector rod 5 made of brass is inserted into the through hole 64.
1 is compressed between the negative electrode current collector rod 5 and the annular support 7. The annular support 7 used in this embodiment has a medium-high shape with its intermediate portion gradually raised toward the inner periphery, and its outer periphery reaches the inner periphery of the outer periphery 62 of the sealing body 6. Thick annular portion 6 of sealing body 6
Peripheral portion 6a of the through hole in 1 and other portions 6
b, that is, a portion of the thick annular portion 61 other than the through-hole peripheral portion 6a, a portion 6b consisting of the connecting portion 63 and the outer peripheral edge portion 62, is molded separately, and the other portions are formed on the outer peripheral side of the through-hole peripheral portion 6a. The surface 6c in contact with the inner circumferential surface (see FIG. 3) is formed in a tapered shape whose diameter gradually decreases toward the power generating element side, that is, toward the bottom in the drawing, and the inner circumferential surface 6d of the other portion 6b is formed into a tapered shape toward the power generation element side, that is, toward the bottom in the drawing. It is formed in a tapered shape whose diameter gradually decreases toward the power generating element side corresponding to the outer circumferential contact surface 6c of the peripheral portion 6a. As described above, the hole surrounding portion 6a and the other portion 6b are molded separately, and in use, the sealing body 6 is constructed by inserting the hole surrounding portion 6a into the other portion 6b. Figure 1 shows a cylindrical alkaline battery using the sealing body 6 as described above, where 1 is manganese dioxide.
85 parts by weight (the same applies hereinafter), 12 parts of phosphorous graphite, and 3 parts of a potassium hydroxide aqueous solution with a concentration of 30% by weight in which zinc oxide is dissolved. In the positive electrode, 2 is zinc chloride powder
35 in which 60 parts, 1 part of sodium salt of carboxymethyl cellulose and 5.2% by weight of zinc oxide were dissolved.
It is a gel-like negative electrode made by mixing 39 parts of an electrolyte consisting of an aqueous solution of potassium hydroxide at 3% by weight, and 3 is a positive electrode 1.
This is a separator made of vinylon-rayon mixed paper that separates the negative electrode 2 from the negative electrode 2. Note that the separator 3 and the positive electrode 1 are impregnated with an electrolyte. 4 is a positive electrode can made of iron with nickel plating on the surface;
A is a groove formed near the open end of the positive electrode can 4 to receive the sealing member 6 inserted into the opening of the positive electrode can 4, and the annular support is attached to the bottom wall of the groove 4a as described above. 7 and into which the negative electrode collector rod 5 is inserted, one end of the sealing body 6 comes into contact with the other, and in this state, the open end of the positive electrode can 6 is tightened inward and curved, so that its inner circumferential surface touches the outer circumferential edge of the sealing body 6. The opening of the positive electrode can 6 is sealed by pressure contact with the portion 62 . A negative terminal plate 8 is made of iron and has a nickel plated outer surface, and the negative terminal plate 8 is provided with a gas vent hole 8a. Reference numeral 9 denotes a leaf spring made of a short carbon steel plate plated with nickel and placed in the space between the negative electrode current collector rod 5 and the negative electrode terminal plate 8.
presses the head of the negative electrode current collector rod 5 in the axial direction at its center, and contacts the peripheral edge of the negative electrode terminal plate 8 at its end. 10 is a paper ring that insulates the positive electrode can 4 and the negative electrode terminal plate 8; 11 is a resin tube; 12 is a positive electrode terminal plate made of iron with a nickel-plated surface;
3 is a metal exterior can made of tin plated steel plate, 14,
15 is a resin ring. Asphalt compound is applied to the contact surfaces between the sealing body 6 and the negative electrode current collector rod 5, the contact surfaces between the sealing body 6 and the positive electrode can 4, and the contact surfaces between the through-hole peripheral portion 6a of the sealing body 6 and other portions 6b. A liquid packing material consisting of (a mixture of blown asphalt and process oil) is interposed. In this battery, when the internal pressure inside the battery becomes abnormally high due to abnormal gas generation, etc., as shown in FIG. A gap is created between the peripheral portion 6a and the other portion 6b, and the gas generated within the positive electrode can 4 can quickly escape to the outside through the gap. The gas thus discharged to the outside of the positive electrode can 4 passes through the gas vent hole 8a of the negative terminal plate 8 and exits to the outside of the battery. After the gas has escaped to the outside of the battery, the portion 6a around the through hole of the sealing body 6 is pressed together with the negative electrode current collector rod 5 by the restoring force of the leaf spring 9.
It returns to its original state as shown in the figure. In addition, during the above-mentioned period, other parts 6b of the sealing body 6
does not move because upward movement is prevented by the open end of the positive electrode can 4 which is curved due to tightening during sealing. Further, the leaf spring 9 has its end connected to the negative terminal plate 8.
, the resin tube 11 and the resin ring 1
4 at the bent part of the metal outer can 13, so when the internal pressure increases, only the central part is connected to the negative electrode current collector rod 5 and the part 6a around the through hole of the sealing body 6.
However, when the gas goes outside and the internal pressure drops, restoring force works and the negative electrode current collector rod 5
Then, the portion 6a around the through hole of the sealing body 6 is returned to its original state. The battery of the present invention is easy to mold because the sealing body 6 does not have a thin wall portion 63b unlike the sealing body of conventional batteries, and also allows internal gas to escape to the outside as shown in Table 1 below. In addition, when the internal gas escapes and the internal pressure drops as described above, the restoring force of the leaf spring 9 causes the area 6a around the through hole of the sealing body 6 to collect the negative electrode. Since it returns to its original state together with the electric rod 5, it has the advantage that it can be used continuously. In the present invention, the portion 6a around the through hole of the sealing body 6
The pressure that causes the gas to escape to the outside is usually
It is set at 20-35Kg/ cm2 . Things that have a major influence on the set pressure are the material (hardness) of the sealing body 6, the compression ratio of the thick annular portion 61 of the sealing body 6, and the area around the through hole 6.
The taper angle of the outer peripheral surface of the leaf spring 9, the hardness of the leaf spring 9, etc. are determined, but the compression ratio is usually 10 to 25% and the taper is usually 5 to 10 degrees. Further, the hardness of the leaf spring 9 is usually set to 200 to 500 on the Bitkers hardness scale. Note that the compression ratio of the thick annular portion 61 is determined by the following equation. T-t/T×100 T: Original radial thickness t: radial thickness after fitting the annular support body and inserting the negative electrode current collector rod into the through hole In the present invention, the sealing body 6 is For example, those made of synthetic resin such as polyethylene, polypropylene, and nylon are used. The hole surrounding portion 6a and the other portions 6b may be made of the same material, or the hole surrounding portion 6a may be made of nylon such as nylon 6, nylon 66, nylon 610, nylon 11, nylon 12, etc. The portion 6b may be molded from polyethylene, polypropylene, or the like. Molding is performed by known molding methods such as injection molding and compression molding. This battery is manufactured, for example, as shown below. The through-hole surrounding portion 6a and the other portion 6b are molded separately. The molding is carried out by injection molding, and the resin used is nylon 11 for the portion 6a surrounding the through hole, and nylon 66 for the other portion 6b. Peripheral area of the hole 6
The inner diameter of a, that is, the diameter of the through hole 64, is 2.0 mm, the height is 4.0 mm, the outer diameter of the upper end is 4.0 mm, and the outer diameter of the lower end is 3.0 mm.
The taper is 7° in mm, and the outer diameter of the other portion 6b, that is, the outer diameter of the outer peripheral edge 62 is 30.7 mm.
The thickness of the leaf spring is 0.15mm, and the Bitkers hardness is 300.
It is. After applying an asphalt compound to the outer circumferential surface of the through-hole surrounding portion 6a, the through-hole surrounding portion 6a is inserted into the other portion 6b. The annular support 7 is fitted on the outside of the thick annular portion 61 of the sealing body 6 configured as described above, and the through hole 64 is fitted into the annular support 7.
The negative electrode current collector rod 5 coated with asphalt compound on the upper part of its shaft is inserted into the thick annular part 61.
is tightened between the negative electrode current collector rod 5 and the annular support 7. The outer diameter of the thick annular portion 61 at the contact surface with the annular support 7 is 5.0 mm, and the inner diameter of the annular support 7 is 5.1 mm.
mm, and the radial thickness is 1.25 mm. Negative electrode current collector rod 5
The outer diameter of the shaft portion is 2.6 mm, and the compression ratio of the thick annular portion 61 is 16.7%. Separately, after filling the positive electrode can 4 with the positive electrode 1, a groove 4a is formed near the open end of the positive electrode can 4, and asphalt compound is applied to the inner surface of the part beyond the groove. , negative electrode 2
The sealing body 6 is placed in the opening of the positive electrode can 4, and the opening end of the positive electrode can 4 is tightened and bent inward, so that the inner circumferential surface of the positive electrode can 4 is connected to the outer peripheral edge 6 of the sealing body 6.
2 to seal the opening of the positive electrode can 4. Next, the paper ring 10 is placed on the open end of the positive electrode can 4 bent as described above, the leaf spring 9 and the negative electrode terminal plate 8 are placed, and the positive electrode terminal plate 12 is placed on the positive electrode side. , it is covered with a heat-shrinkable vinyl chloride resin tube 11 , heated to shrink the resin tube 11 , resin rings 14 and 15 are placed thereon, and then a metal exterior can 13 is used to package the tube. The set pressure for this battery to release gas to the outside is 30
Kg/ cm2 . The following Table 1 shows the results of investigating the relationship between the pressure inside the battery and the number of batteries from which gas escapes to the outside for Battery A of the present invention and Conventional Battery B having the configuration shown in Figure 1. be. All batteries are JIS
C 8511 LR20 type (diameter 34.2 mm height 59.5 mm) cylindrical alkaline manganese battery, the number of samples was 100 each for batteries A and B, and the test was conducted for each battery.
This was done by forcibly generating gas by filling it with 1000 mA, and then investigating the number of batteries in which gas escaped to the outside when the internal pressure was raised to a predetermined pressure. The conventional battery B has a structure as shown in FIG.
The designed thickness is 0.15 mm, the set pressure for escaping gas to the outside is 30 kg/cm 2 , and the annular support 7 is provided with a hole 7a for venting gas.
【表】
第1表に示すように、従来電池Bではガスが外
部へ逃散する圧力がかなりバラツイているが、本
発明の電池Aの場合はそのようなバラツキが少な
い。
つぎに前記と同様の本発明の電池Aおよび従来
電池Bを60℃、相対湿度90%の雰囲気中に40日間
貯蔵してその耐漏液性を調たところ、両電池とも
漏液の発生がなく、本発明の電池Aは従来電池B
と同程度の耐漏液性を有していた。このように、
封口体6の透孔周辺部分6aとその他の部分6b
とを別々に成形したことによる耐漏液性の低下は
認められず、本発明の電池Aはこの種の電池にお
いてはすぐれた耐漏液性を有しているといえる。
なお電池Bの厚肉環状部61の圧縮率は電池Aと
同様に16.7%である。
第4〜5図は本発明の筒形アルカリ電池の他の
実施例を示すもので、第4図に示す電池はその環
状支持体7が平板状で、かつその外周部が封口体
6の外周縁部62まで達していないものであるこ
とを除いては、前記第1図に示す電池とほぼ同様
の構成からなるものである。また第5図に示す電
池は、封口体6の透孔周辺部分6aの上端部が鍔
状になつていて、該鍔状部の外周面がその他の部
分6bの内周面には接触せず、その他の部分6b
の外周面のところまで広がつており、それに応じ
てその他の部分6bの高さが若干低くなつている
点を除いては第1図に示す電池とほぼ同様の構成
よりなるものであり、これら第4図および第5図
に示す電池は前記第1図に示す電池と同様の効果
を発揮するものである。
第8図は本発明の筒形アルカリ電池のさらに他
の実施例を示す半截断面図であり、第9図は第8
図に示す電池の要部拡大断面図である。
まず、この電池における封口体6について説明
すると、前記第1図に示す場合と同様に封口体6
は負極集電棒5を挿入する透孔64を中心とし、
その周囲に形成された厚肉環状部61と、正極缶
4の開口端部と接する外周縁部62と、該厚肉環
状部61と外周縁部62とを連結する連結部63
からなり、該厚肉環状部61の外側には鉄製の環
状支持体7が嵌め込まれ、透孔64には真鍮製の
負極集電棒5が挿入され、厚肉環状部61は負極
集電棒5と環状支持体7との間で圧縮されてい
る。封口体6の厚肉環状部61における透孔周辺
部分6aと、その他の部分6bすなわち厚肉環状
部61の透孔周辺部分6a以外の部分、連結部6
3および外周縁部62からなる部分6bとは別々
に成形され、該透孔周辺部分6aの外周側でその
他の部分の内周面に接する面6cは発電要素側に
向つて漸次径が縮小するテーパー状に形成され、
その他の部分6bの内周面6dは前記透孔周辺部
分6aの外周側接面6cに対応して発電要素側に
向つて漸次径が縮小するテーパー状に形成されて
いる。なおこれら透孔周辺部分6aとその他の部
分6bとは前記の場合と同様に別々に成形され、
使用に際し、透孔周辺部分6aをその他の部分6
bに挿入して封口体6が構成される。
第8図は上記のごとき封口体6を使用した筒形
アルカリ電池を示すものであるが、この電池がこ
れまでの実施例で述べてきた電池と特に異なる点
は、この電池では正極缶4の封口が正極缶4の開
口端部を内方側へカールして封口体6の外周縁部
62で断面逆三角形状の垂下部63cの外周側に
食い込ませることによつて行なわれていること
と、封口体6の外周縁部62が金属外装缶13の
負極側端部の折り曲げにより押えられていること
である。しかしながら、この第8〜9図で示す電
池は、上記のような相違を有するものの、これま
での実施例で述べてきた電池と同様に、電池内の
圧力が設定圧力に達すると封口体6の透孔周辺部
分6aとその他の部分6bが離間して内部のガス
を速やかに外部へ逃散させ電池破裂を防止すると
ともに、ガスが電池外部へ逃散して内圧が下がつ
たときには板ばね9の復元力により元の状態に復
帰するという効果を奏する。
上記電池はたとえば次に示すようにしてつくら
れる。
透孔周辺部分6aとその他の部分6bを別々に
成形する。成形は射出成形によつて行なわれ、使
用樹脂は透孔周辺部分6aはナイロン11、その他
の部分6bはポリエチレンである。透孔周辺部分
6aの内径すなわち透孔64の直径は2.0mm、高
さは4.0mmで、上端部外径は4.0mm、下端部外径は
3.0mmでテーパーは7゜であり、その他の部分6b
の外径すなわち外周縁部62の外径は30.7mmであ
る。板ばねの厚さは0.15mmで、ビツカース硬度は
300である。そして透孔周辺部分6aの外周面に
アスフアルトコンパウンドを塗布したのち、該透
孔周辺部分6aをその他の部分6bに挿入する。
上記のようにして構成された封口体6の厚肉環
状部6aの外側に環状支持体7を嵌め、透孔64
にアスフアルトコンパウンドをその軸部上部に塗
布した負極集電棒5を挿入して、厚肉環状部61
を負極集電棒5と環状支持体7の間で締め付け
る。厚肉環状部61の環状支持体7との当接面に
おける外径は5.0mmで、環状支持体7の内径は5.1
mm、径方向の厚さは1.25mmである。負極集電棒5
の軸部の外径は2.6mmで、厚肉環状部61の圧縮
率は16.7%である。
これとは別に、正極缶4に正極1を充填したの
ち、正極缶4の開口端部を内方へカールし、その
外周面にアスフアルトコンパウンドを塗布したの
ち、セパレータ3、電解液、負極2なを充填し、
前記の封口体6を正極缶4の開口部に配置し、正
極缶4の開口端を封口体6の外周縁部62で断面
逆三角形状の垂下部63cの外周側に食い込ませ
て正極缶4の開口部を封口する。
つぎに、封口体6の外周縁部62の上部に板ば
ね9、負極端子板8を配置し、正極側に正極端子
板12を配置したのち、熱収縮性の塩化ビニル樹
脂チユーブ11で覆い、加熱して該樹脂チユーブ
11を収縮させ、ついで樹脂リング14,15を
配置したのち金属外装缶13で外装し、金属外装
缶13の負極側端部の折曲部により樹脂リング1
4、樹脂チユーブ11の端部、負極端子板8の周
縁部、板ばね9の端部および封口体6の外周縁部
62を押えて固定し、それらの電池外部側への移
動を防止できるようにする。なお、この電池にお
けるガスを外部へ逃散させるための設定圧力は25
Kg/cm2である。
つぎの第2表は第8図に示すような構成からな
る本発明の電池Cおよび従来電池Dの電池内の圧
力とガスが外部に逃散する電池個数との関係を調
べた結果を示すものである。電池はいずれも
LR20形の筒形アルカリ・マンガン電池で、供試
個数は電池C,Dとも100個ずつであり、試験条
件は前記第1表の場合と同様である。なお従来電
池Dは第10図に示すような構成からなり、封口
体6はポリエチレン製で薄肉部63bの設計厚は
0.20mmであつてガスを外部へ逃散させるための設
定圧力は25Kg/cm2である。[Table] As shown in Table 1, in the conventional battery B, the pressure at which gas escapes to the outside varies considerably, but in the case of the battery A of the present invention, such variation is small. Next, when the battery A of the present invention and the conventional battery B similar to those described above were stored in an atmosphere of 60°C and 90% relative humidity for 40 days to check their leakage resistance, both batteries showed no leakage. , the battery A of the present invention is the conventional battery B
It had the same level of leakage resistance. in this way,
Portion 6a around the hole of the sealing body 6 and other portions 6b
No deterioration in leakage resistance due to the separate molding of the battery was observed, and it can be said that Battery A of the present invention has excellent leakage resistance among this type of battery.
Note that the compression ratio of the thick annular portion 61 of battery B is 16.7%, similar to battery A. 4 and 5 show other embodiments of the cylindrical alkaline battery of the present invention. In the battery shown in FIG. The structure is almost the same as that of the battery shown in FIG. 1, except that the battery does not reach the peripheral edge 62. In addition, in the battery shown in FIG. 5, the upper end of the portion 6a surrounding the through hole of the sealing body 6 is shaped like a flange, and the outer circumferential surface of the flange does not come into contact with the inner circumferential surface of the other portion 6b. , other parts 6b
The structure is almost the same as that of the battery shown in FIG. 1, except that the height of the other part 6b is slightly lowered. The batteries shown in FIGS. 4 and 5 exhibit the same effects as the batteries shown in FIG. 1. FIG. 8 is a half-cut sectional view showing still another embodiment of the cylindrical alkaline battery of the present invention, and FIG.
FIG. 2 is an enlarged cross-sectional view of a main part of the battery shown in the figure. First, the sealing body 6 in this battery will be explained. Similar to the case shown in FIG. 1, the sealing body 6
is centered on the through hole 64 into which the negative electrode current collector rod 5 is inserted,
A thick annular portion 61 formed around the thick annular portion 61 , an outer peripheral edge 62 that contacts the open end of the positive electrode can 4 , and a connecting portion 63 that connects the thick annular portion 61 and the outer peripheral edge 62 .
An annular support 7 made of iron is fitted on the outside of the thick annular portion 61, a negative electrode current collector rod 5 made of brass is inserted into the through hole 64, and the thick annular portion 61 is connected to the anode current collector rod 5. It is compressed between it and the annular support 7. The surrounding portion 6a of the through hole in the thick annular portion 61 of the sealing body 6, the other portion 6b, that is, the portion other than the portion surrounding the through hole 6a of the thick annular portion 61, and the connecting portion 6
3 and the outer circumferential edge 62, and the diameter of the surface 6c that contacts the inner circumferential surface of the other portion on the outer circumferential side of the through-hole peripheral portion 6a gradually decreases in diameter toward the power generation element side. Formed in a tapered shape,
The inner circumferential surface 6d of the other portion 6b is formed in a tapered shape whose diameter gradually decreases toward the power generating element side, corresponding to the outer circumferential contact surface 6c of the through-hole peripheral portion 6a. Note that these through-hole peripheral portions 6a and other portions 6b are molded separately as in the above case,
When in use, the area around the through hole 6a is connected to the other area 6.
The sealing body 6 is constructed by inserting the sealing body 6 into b. FIG. 8 shows a cylindrical alkaline battery using the sealing body 6 as described above, and the difference between this battery and the batteries described in the previous examples is that in this battery, the positive electrode can 4 is The sealing is performed by curling the open end of the positive electrode can 4 inward so that the outer peripheral edge 62 of the sealing body 6 bites into the outer peripheral side of the hanging portion 63c having an inverted triangular cross section. , the outer peripheral edge 62 of the sealing body 6 is held down by bending the negative electrode side end of the metal exterior can 13. However, although the batteries shown in FIGS. 8 and 9 have the above-mentioned differences, like the batteries described in the previous embodiments, when the pressure inside the battery reaches the set pressure, the sealing body 6 closes. The area around the through hole 6a and the other area 6b are separated to quickly dissipate the internal gas to the outside to prevent the battery from exploding, and also to restore the leaf spring 9 when the internal pressure drops due to the gas escaping to the outside of the battery. It has the effect of returning to its original state with force. The above battery is manufactured, for example, as shown below. The through-hole surrounding portion 6a and the other portion 6b are molded separately. The molding is carried out by injection molding, and the resin used is nylon 11 for the portion 6a surrounding the hole, and polyethylene for the other portion 6b. The inner diameter of the through-hole peripheral portion 6a, that is, the diameter of the through-hole 64, is 2.0 mm, the height is 4.0 mm, the outer diameter of the upper end is 4.0 mm, and the outer diameter of the lower end is 2.0 mm.
The taper is 7° at 3.0mm, and the other part is 6b.
The outer diameter of the outer peripheral edge 62 is 30.7 mm. The thickness of the leaf spring is 0.15mm, and the Bitkers hardness is
It is 300. After applying an asphalt compound to the outer circumferential surface of the through-hole surrounding portion 6a, the through-hole surrounding portion 6a is inserted into the other portion 6b. The annular support 7 is fitted on the outside of the thick annular portion 6a of the sealing body 6 constructed as described above, and the through hole 64 is
The negative electrode current collector rod 5 coated with asphalt compound on the upper part of its shaft is inserted into the thick annular part 61.
is tightened between the negative electrode current collector rod 5 and the annular support 7. The outer diameter of the thick annular portion 61 at the contact surface with the annular support 7 is 5.0 mm, and the inner diameter of the annular support 7 is 5.1 mm.
mm, and the radial thickness is 1.25 mm. Negative electrode current collector rod 5
The outer diameter of the shaft portion is 2.6 mm, and the compression ratio of the thick annular portion 61 is 16.7%. Separately, after filling the positive electrode can 4 with the positive electrode 1, the open end of the positive electrode can 4 is curled inward, and asphalt compound is applied to the outer peripheral surface of the positive electrode can 4, and then the separator 3, electrolyte, and negative electrode 2 are filled. Fill it with
The sealing body 6 is placed in the opening of the positive electrode can 4, and the open end of the positive electrode can 4 is inserted into the outer circumferential side of the hanging part 63c having an inverted triangular cross section with the outer peripheral edge 62 of the sealing body 6. Seal the opening. Next, the leaf spring 9 and the negative terminal plate 8 are placed on the upper part of the outer peripheral edge 62 of the sealing body 6, and the positive terminal plate 12 is placed on the positive side, and then covered with a heat-shrinkable vinyl chloride resin tube 11. The resin tube 11 is heated to shrink, and then the resin rings 14 and 15 are arranged, and then it is covered with a metal outer can 13.
4. Press and fix the end of the resin tube 11, the periphery of the negative terminal plate 8, the end of the leaf spring 9, and the outer periphery 62 of the sealing body 6 to prevent them from moving outside the battery. Make it. The set pressure for this battery to release gas to the outside is 25
Kg/ cm2 . The following Table 2 shows the results of investigating the relationship between the internal pressure of the battery C of the present invention and the conventional battery D having the configuration shown in FIG. 8 and the number of batteries in which gas escapes to the outside. be. Both batteries
LR20 type cylindrical alkaline manganese batteries were tested, and the number of samples tested was 100 each for batteries C and D, and the test conditions were the same as in Table 1 above. Note that the conventional battery D has a configuration as shown in FIG.
0.20 mm, and the set pressure for escaping the gas to the outside is 25 Kg/cm 2 .
【表】
第2表に示すように、従来電池Dではガスが外
部へ逃散する圧力がバラツイているが、本発明の
電池Cの場合はそのようなバラツキが少ない。
つぎに上記本発明の電池Cと従来電池Dの耐漏
液性を前記と同様の条件下で調べたが両電池とも
漏液の発生がなく、本発明の電池Cはこの種の電
池においてはすぐれた耐漏液性を有していること
が明らかにされた。なお電池Dの厚肉環状部61
の圧縮率は電池Cと同様に16.7%である。
なお実施例では、ばねとして板ばねを用いた
が、それに限定されることなくたとえばコイルス
プリングなど他の形式のばねを用いることができ
るし、また板ばねも実施例に記載のもののみに限
られることなく他の形式の板ばねを用いることが
できる。[Table] As shown in Table 2, in the conventional battery D, the pressure at which gas escapes to the outside varies, but in the case of the battery C of the present invention, such variation is small. Next, the leakage resistance of the battery C of the present invention and the conventional battery D was examined under the same conditions as above, and both batteries showed no leakage, and the battery C of the present invention was excellent among this type of battery. It was revealed that it has excellent leakage resistance. Note that the thick annular portion 61 of battery D
The compression ratio of battery C is 16.7%. In the examples, a leaf spring is used as the spring, but the spring is not limited to this, and other types of springs such as coil springs can be used, and the leaf spring is also limited to those described in the examples. Other types of leaf springs can be used without having to do so.
第1図は本発明の筒形アルカリ電池の一実施例
を示す半截断面図であり、第2図は第1図に示す
電池の要部拡大断面図である。第3図は第2図同
様に第1図に示す電池の要部拡大断面図であり、
電池内の内圧が上昇した際に電池内のガスを外部
へ逃散させる状態を説明するためのものである。
第4〜5図はそれぞれ本発明の筒形アルカリ電池
の他の実施例の要部拡大断面図であり、第6図は
従来電池の半截断面図で、第7図は第6図に示す
従来電池の要部拡大断面図である。第8図は本発
明の筒形アルカリ電池のさらに他の実施例を示す
半截断面図であり、第9図は第8図に示す電池の
要部拡大断面図である。第10図は第6図に示し
た電池とは異なる構成の従来電池の要部拡大断面
図である。
4…正極缶、5…負極集電棒、6…封口体、6
a…透孔周辺部分、6b…その他の部分、6c…
透孔周辺部分の外周側でその他の部分の内周面と
接する面、6d…その他の部分の内周面、61…
厚肉環状部、62…外周縁部、63…連結部、6
4…透孔、7…環状支持体、8…負極端子板、9
…板ばね、13…金属外装缶。
FIG. 1 is a half-cut sectional view showing one embodiment of the cylindrical alkaline battery of the present invention, and FIG. 2 is an enlarged sectional view of the main part of the battery shown in FIG. 1. FIG. 3 is an enlarged sectional view of the main part of the battery shown in FIG. 1, similar to FIG.
This is to explain the state in which the gas inside the battery escapes to the outside when the internal pressure inside the battery increases.
4 and 5 are enlarged cross-sectional views of main parts of other embodiments of the cylindrical alkaline battery of the present invention, FIG. 6 is a half-cut sectional view of a conventional battery, and FIG. 7 is a conventional battery shown in FIG. FIG. 2 is an enlarged cross-sectional view of the main parts of the battery. FIG. 8 is a half-cut sectional view showing still another embodiment of the cylindrical alkaline battery of the present invention, and FIG. 9 is an enlarged sectional view of the main part of the battery shown in FIG. 8. FIG. 10 is an enlarged sectional view of a main part of a conventional battery having a configuration different from that of the battery shown in FIG. 6. 4... Positive electrode can, 5... Negative electrode current collector rod, 6... Sealing body, 6
a... Peripheral part of the through hole, 6b... Other parts, 6c...
Surface in contact with the inner circumferential surface of other portions on the outer circumferential side of the peripheral portion of the through hole, 6d... Inner circumferential surface of other portions, 61...
Thick-walled annular portion, 62...Outer peripheral edge portion, 63...Connecting portion, 6
4... Through hole, 7... Annular support, 8... Negative electrode terminal plate, 9
...Plate spring, 13...Metal exterior can.
Claims (1)
極集電棒5を挿入する透孔64を中心とする厚肉
環状部61と、正極缶4の開口端部と接する外周
縁部62と、該厚肉環状部61と外周縁部62と
を連結する連結部68とからなり、前記厚肉環状
部61に環状支持体7を外嵌し、透孔64に負極
集電棒5を挿入して前記厚肉環状部61を負極集
電棒5と環状支持体7との間で締め付けた封口体
6で封口し、封口体6の外周縁部62を正極缶4
の開口端部の内方への締め付けまたは金属外装缶
13の端部の内方への折り曲げにより押え電池外
部側への移動を防止し、負極集電棒5と負極端子
板8との間の空間部に配置したばね9により負極
集電棒5の頭部を軸方向に押圧する筒形アルカリ
電池において、封口体6の厚肉環状部61の透孔
周辺部分6aとその他の部分6bとを別々に成形
し、透孔周辺部分6aの外周側でその他の部分6
bの内周面と接する面6cは発電要素側に向つて
漸次径が縮小するテーパー状に形成し、その他の
部分6bの内周面6dは前記透孔周辺部分6aの
外周側接面6cに対応して発電要素側に向つて漸
次径が縮小するテーパー状に形成し、透孔周辺部
分6aをその他の部分6bに挿入して封口体6を
構成したことを特徴とする筒形アルカリ電池。1. The opening of the positive electrode can 4 containing the power generating element is divided into a thick annular part 61 centered on the through hole 64 into which the negative electrode current collector rod 5 is inserted, and an outer peripheral edge part 62 in contact with the open end of the positive electrode can 4. , a connecting part 68 connecting the thick annular part 61 and the outer peripheral edge part 62, the annular support 7 is fitted onto the thick annular part 61, and the negative electrode current collector rod 5 is inserted into the through hole 64. Then, the thick annular portion 61 is sealed with a sealing body 6 tightened between the negative electrode current collector rod 5 and the annular support 7, and the outer peripheral edge 62 of the sealing body 6 is attached to the positive electrode can 4.
By tightening the open end of the metal case 13 inward or bending the end of the metal outer can 13 inward, the holding battery is prevented from moving to the outside, and the space between the negative electrode current collector rod 5 and the negative electrode terminal plate 8 is In a cylindrical alkaline battery in which the head of the negative electrode current collector rod 5 is pushed in the axial direction by a spring 9 disposed in the section, the through-hole surrounding section 6a of the thick annular section 61 of the sealing body 6 and the other section 6b are separately separated. The other portion 6 is formed on the outer peripheral side of the through-hole peripheral portion 6a.
The surface 6c in contact with the inner circumferential surface of b is formed in a tapered shape whose diameter gradually decreases toward the power generation element side, and the inner circumferential surface 6d of the other portion 6b is in contact with the outer circumferential side contact surface 6c of the through-hole peripheral portion 6a. A cylindrical alkaline battery characterized in that it is formed into a tapered shape whose diameter gradually decreases toward the power generating element side, and that the sealing body 6 is constructed by inserting the peripheral portion 6a of the through hole into the other portion 6b.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57142899A JPS5933751A (en) | 1982-08-17 | 1982-08-17 | Cylindrical alkaline battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57142899A JPS5933751A (en) | 1982-08-17 | 1982-08-17 | Cylindrical alkaline battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5933751A JPS5933751A (en) | 1984-02-23 |
JPH0415581B2 true JPH0415581B2 (en) | 1992-03-18 |
Family
ID=15326183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57142899A Granted JPS5933751A (en) | 1982-08-17 | 1982-08-17 | Cylindrical alkaline battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5933751A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0424607Y2 (en) * | 1985-10-03 | 1992-06-10 | ||
JPS63186055U (en) * | 1987-05-22 | 1988-11-29 | ||
US6300006B1 (en) * | 1999-11-19 | 2001-10-09 | Eveready Battery Company, Inc. | Electrochemical cell having seal and cover assembly |
US6855454B2 (en) * | 2001-12-20 | 2005-02-15 | Eveready Battery Company, Inc. | Electrochemical cell having venting current collector and seal assembly |
JP4678128B2 (en) * | 2003-12-25 | 2011-04-27 | 株式会社Gsユアサ | Sealed storage battery |
-
1982
- 1982-08-17 JP JP57142899A patent/JPS5933751A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5933751A (en) | 1984-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2712565A (en) | Electrochemical cell | |
US3617386A (en) | Sealed cell construction | |
JP4853935B2 (en) | Alkaline battery | |
US3663301A (en) | Leak-proof primary cell | |
US6025090A (en) | End cap assembly for an alkaline cell | |
US20030031918A1 (en) | Electrochemical cell having can vent and cover terminal | |
US6312850B1 (en) | Current collector and seal assembly for electrochemical cell | |
US6495284B2 (en) | End seal assembly for an alkaline cell | |
JPH0415581B2 (en) | ||
US11038238B2 (en) | Alkaline secondary battery | |
US4052533A (en) | Pressure relief flapper vent valve for galvanic cells | |
EP0037121B1 (en) | Improvements in alkaline cells | |
JP2825868B2 (en) | Cylindrical alkaline battery | |
JPH02117063A (en) | Cylindrical alkaline battery | |
US6300006B1 (en) | Electrochemical cell having seal and cover assembly | |
US4965144A (en) | Releasable pressure vents | |
JPH0338700B2 (en) | ||
JPH0329881Y2 (en) | ||
JPH0446374Y2 (en) | ||
JPH0329882Y2 (en) | ||
JP2007207765A (en) | Alkaline dry cell | |
JP2587244Y2 (en) | Manganese dry cell | |
JPH0350611Y2 (en) | ||
JPH0411334Y2 (en) | ||
JPH0152860B2 (en) |