JP2007207765A - Alkaline dry cell - Google Patents

Alkaline dry cell Download PDF

Info

Publication number
JP2007207765A
JP2007207765A JP2007072431A JP2007072431A JP2007207765A JP 2007207765 A JP2007207765 A JP 2007207765A JP 2007072431 A JP2007072431 A JP 2007072431A JP 2007072431 A JP2007072431 A JP 2007072431A JP 2007207765 A JP2007207765 A JP 2007207765A
Authority
JP
Japan
Prior art keywords
negative electrode
sealing body
metal plate
electrode terminal
terminal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007072431A
Other languages
Japanese (ja)
Other versions
JP4958161B2 (en
Inventor
Makoto Urade
誠 浦出
Shoichiro Tateishi
昭一郎 立石
Koji Koide
浩二 小出
Shinichi Iwamoto
真一 岩本
Minajiyuuro Ushijima
三七十郎 牛島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2007072431A priority Critical patent/JP4958161B2/en
Publication of JP2007207765A publication Critical patent/JP2007207765A/en
Application granted granted Critical
Publication of JP4958161B2 publication Critical patent/JP4958161B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)
  • Primary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alkaline dry cell with a high capacity having a superior liquid leak resistant property. <P>SOLUTION: As a support means for supporting a resin-made sealing member 6 from the inner circumferential portion, a sheet of metal plate 7 also served as an anode terminal is used instead of a metal washer which has been conventionally utilized. A curved portion 78b is placed over the entire outer circumference of the metal plate 7 with an average curvature radius of not more than 1 mm, which shows a virtually C-letter shape or an arcuate shape in its cross-section obtained by cutting the metal plate 7 through its center in the thickness direction. By providing a structure for supporting the sealing member 6 by the curved portion 78b from the inner circumferential side, the sealing edge is allowed to have a sufficient strength, and it is possible to ensure a superior liquid leak resistant property and also to increase the battery inner volume. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、筒形アルカリ乾電池の封止技術に関する。   The present invention relates to a sealing technique for cylindrical alkaline batteries.

〈筒形アルカリ乾電池の全体概略構造〉
従来の筒形アルカリ乾電池の基本構造は、例えば特許文献1に記載されており、公知である。そこでは、図11に示すように、正極端子を兼ねる有底円筒状の外装缶1の内部(セル室C)に、正極2および負極4と、これらの間に配置されるセパレータ3と、負極4に挿入される釘状の負極集電棒5と、セパレータ3および正極2に含浸される電解液(図示せず)とを収容し、セル室C内の電解液が外部に漏れ出ないように外装缶1の開口端部1aを封口した構成とされている。
<Overall schematic structure of cylindrical alkaline battery>
The basic structure of a conventional cylindrical alkaline battery is described in Patent Document 1, for example, and is well known. In this case, as shown in FIG. 11, a positive electrode 2 and a negative electrode 4, a separator 3 disposed therebetween, and a negative electrode are disposed inside the bottomed cylindrical outer can 1 that also serves as a positive electrode terminal (cell chamber C). The nail-like negative electrode current collecting rod 5 inserted into the electrode 4 and the electrolyte (not shown) impregnated in the separator 3 and the positive electrode 2 are accommodated so that the electrolyte in the cell chamber C does not leak to the outside. The opening end 1a of the outer can 1 is sealed.

〈外装缶の缶厚み〉
筒形アルカリ乾電池の一つである単三形アルカリ乾電池の外径はJIS規格では13.5〜14.5mmと定められているが、電池を使用する機器の電池ホルダの寸法が統一されていて、外径は14.0±0.1mmが事実上の標準となっている。外径が制限されている中で、アルカリ乾電池の内容積(セル容積)を増やして放電容量のアップを図るには、外装缶の缶厚みを減らせば良い。しかし、アルカリ乾電池で一般に使用されているキルド鋼板(アルミキルド鋼板)製の外装缶の缶厚みを薄くすると、加工しにくくなったり、外装缶の輸送過程や電池組み立て時の搬送工程で外装缶が変形したりするなどの問題が起こりやすくなる。このため、現在国内で販売されている単三形アルカリ乾電池の外装缶の缶厚みは、最も薄いものでも0.18mmとなっている。
<Outer can thickness>
The outer diameter of AA alkaline batteries, one of the cylindrical alkaline batteries, is defined as 13.5 to 14.5 mm according to JIS standards, but the dimensions of the battery holders of the equipment that uses the batteries are uniform. The outer diameter of 14.0 ± 0.1mm is the de facto standard. In order to increase the discharge capacity by increasing the inner volume (cell volume) of the alkaline battery while the outer diameter is limited, the thickness of the outer can can be reduced. However, if the can thickness of the outer can made of killed steel plate (aluminum killed steel plate) generally used in alkaline batteries is made thin, it becomes difficult to process, or the outer can is deformed during the transport process of the outer can and the battery assembly process. Problems occur. For this reason, the thickness of the outer can of AA alkaline batteries currently sold in Japan is 0.18 mm even at the thinnest.

〈封口部分の構造〉
筒形アルカリ乾電池における封口部分には、図12に拡大して示すように、内圧の異常上昇防止用つまり防爆用の安全弁機構を有する樹脂製封口体6と、これを内周から支える支持手段107と、図中の上方に向けて凸状(ハット状)に形成された負極端子板(負極端子)207とが装着されている。このうち、樹脂製封口体6は、負極集電棒5を保持するボス部61と、外装缶1の内周面と接する外周部62と、一部に防爆用の薄肉部分(安全弁の作動点)63aが設けられてボス部61と外周部62とを連結する連結部63とで構成されている。そして、電池の内圧つまりセル室C内の圧力が所定レベル以上に上昇したときに、連結部63が例えば図中の鎖線で示すように膨張変形し、さらに内圧が上昇したときに図13に示すように防爆用の薄肉部分63aが破断する(すなわち安全弁が作動する)ことにより、内圧を外部に逃がすようになっている。また、樹脂製封口体6は、セル室Cの上方を封鎖して電解液の漏出を防止するとともに、正極集電体となる外装缶1と負極集電体端子である負極端子板207との間を電気的に絶縁する。なお、図12および図13において符号107fおよび207fは、セル室C内で発生したガスを外部に放出するためのガス抜き孔をそれぞれ示している。
<Structure of the sealing part>
As shown in an enlarged view in FIG. 12, the sealing portion of the cylindrical alkaline battery has a resin sealing body 6 having a safety valve mechanism for preventing abnormal increase in internal pressure, that is, explosion-proof, and supporting means 107 for supporting this from the inner periphery. And a negative electrode terminal plate (negative electrode terminal) 207 formed in a convex shape (hat shape) toward the upper side in the figure. Among these, the resin sealing body 6 includes a boss portion 61 that holds the negative electrode current collector rod 5, an outer peripheral portion 62 that is in contact with the inner peripheral surface of the outer can 1, and a thin portion for explosion protection (operation point of the safety valve). 63a is provided and includes a connecting portion 63 that connects the boss portion 61 and the outer peripheral portion 62. When the internal pressure of the battery, that is, the pressure in the cell chamber C rises to a predetermined level or more, the connecting portion 63 expands and deforms as shown by, for example, a chain line in the figure, and when the internal pressure further rises, it is shown in FIG. As described above, the explosion-proof thin portion 63a is broken (that is, the safety valve is activated), so that the internal pressure is released to the outside. In addition, the resin sealing body 6 seals the upper part of the cell chamber C to prevent leakage of the electrolytic solution, and between the outer can 1 serving as the positive electrode current collector and the negative electrode terminal plate 207 serving as the negative electrode current collector terminal. Insulate the gap electrically. In FIGS. 12 and 13, reference numerals 107f and 207f denote gas vent holes for releasing the gas generated in the cell chamber C to the outside.

このような樹脂製封口体6は、これの外周部62が支持手段107と外装缶1との間に位置した状態で外装缶1の開口端部1aの周縁部分とともに内側に締め付けられてかしめられることによって、外装缶1の開口端部1a内に装着される(このような封口方法を、この明細書では「横締めによる封口」または「横締め封口」という)。その場合、かしめる力が弱ければ、最初のうちは電池内部の電解液(水酸化カリウムを主成分とする強アルカリ液)が漏れ出なかったとしても、その後の温度変化などによって封口体6と外装缶1との間の密着性が低下し、やがては電池内部の電解液が封口体6と外装缶1との境界部分から外部に浸み出してくる。そこで、従来の筒形アルカリ乾電池においては、封口体6を内周から支える支持手段107として、所要の厚み(通常、0.6〜0.75mm程度)を有する金属ワッシャ(中央部に孔を有する円盤状の金属板)が使用されており、封口体6の外周部62を締め付ける際にその内側から金属ワッシャでしっかりとバックアップすることによって、外装缶1の開口端部1aとともに封口体6の外周部62を外側から十分な力でかしめることができるようにしている。   Such a resin-made sealing body 6 is clamped inside and crimped together with the peripheral edge portion of the open end 1a of the outer can 1 in a state where the outer peripheral portion 62 thereof is located between the support means 107 and the outer can 1. By this, it is mounted in the open end 1a of the outer can 1 (this sealing method is referred to as “sealing by side fastening” or “lateral sealing” in this specification). In that case, if the caulking force is weak, even if the electrolytic solution (strong alkaline solution mainly composed of potassium hydroxide) in the battery does not leak at first, Adhesiveness with the outer can 1 is lowered, and eventually the electrolyte inside the battery oozes out from the boundary between the sealing body 6 and the outer can 1. Therefore, in a conventional cylindrical alkaline battery, a metal washer having a required thickness (usually about 0.6 to 0.75 mm) (having a hole in the central portion) is used as the supporting means 107 that supports the sealing body 6 from the inner periphery. Disc-shaped metal plate) is used, and when the outer peripheral portion 62 of the sealing body 6 is tightened, the outer periphery of the sealing body 6 is sealed together with the opening end 1a of the outer can 1 by firmly backing up from the inside with a metal washer. The part 62 can be caulked from the outside with a sufficient force.

特開平8−222189号公報JP-A-8-222189

ところが、筒形アルカリ乾電池おいては負極端子板207の中央側の部分つまり端子面の部分を凸形状とすることが事実上の標準となっていることから、封口体6の外周部62を内周から支える支持手段107として金属ワッシャ(以下、金属ワッシャについても必要に応じて符号107を使用する)を備えた図12および図13に示したような従来の封口構造では、金属ワッシャ107を挟んで電池の高さ方向に上下2つの空隙部分、すなわち封口体6の連結部63側の空間S1 と負極端子板207側の空間S2 とが存在することとなる。このうち、前者の空間S1 は内部圧力の上昇に伴う封口体6の連結部63あるいはその薄肉部分63aの変形を許すために必要な部分であるが、後者の空間S2 は負極端子板207が表面側に凸形状となっているために形成されるもので、本来は無くても良い無駄な部分である。このような無駄な空間S2 が封口部分に存在するため、従来の封口構造では、全体として封口部分の厚みつまり体積が必要以上に大きくならざるを得ず、そのぶんだけ放電容量に直接関係する電池活物質が充填されるセル室Cの容積つまり電池の内容積が制限されるといった問題がある。 However, in the cylindrical alkaline dry battery, it is a de facto standard that the central portion of the negative electrode terminal plate 207, that is, the portion of the terminal surface, has a convex shape. In the conventional sealing structure as shown in FIG. 12 and FIG. 13 provided with a metal washer (hereinafter also referred to as reference numeral 107 if necessary) as the supporting means 107 supported from the periphery, the metal washer 107 is sandwiched. Thus, there are two upper and lower gap portions in the height direction of the battery, that is, a space S 1 on the connecting portion 63 side of the sealing body 6 and a space S 2 on the negative electrode terminal plate 207 side. Among these, the former space S 1 is a portion necessary for allowing deformation of the connecting portion 63 of the sealing body 6 or its thin portion 63a with an increase in internal pressure, but the latter space S 2 is the negative terminal plate 207. Is formed because it has a convex shape on the surface side, and is a useless portion that may not be present. Such wasted space S 2 is due to the presence in the sealing portion, in the conventional sealing structure, inevitably larger than necessary thickness clogging volume of the sealing portion as a whole, directly related to only discharge capacity correspondingly There is a problem that the volume of the cell chamber C filled with the battery active material, that is, the internal volume of the battery is limited.

そこで、封口部分の容積を必要以上に大きくしないようにするため、金属ワッシャ107を廃止し、その代わりに負極端子板207を、封口体6を内側から支える支持手段として利用することが考えられる。しかしながら、製作コスト上の理由から負極端子板207には金属ワッシャ107よりも厚みの薄いもの(通常は厚み0.4mmのもの)が使用されることから、上記の手法を採用した場合には、封口体6をかしめる際に負極端子板207が変形してしまい、封口体6の外周部62を締め付ける力が充分でなくなる。このため、電池に激しい温度変化を加えたときなどに、外装缶1と封口体6との間を経由して内部の電解液が外部に漏れ出るおそれがある。   Therefore, in order not to increase the volume of the sealing portion more than necessary, it is conceivable to eliminate the metal washer 107 and use the negative electrode terminal plate 207 as a supporting means for supporting the sealing body 6 from the inside instead. However, since the negative terminal plate 207 is thinner than the metal washer 107 (usually having a thickness of 0.4 mm) for reasons of manufacturing cost, when the above method is employed, When the sealing body 6 is caulked, the negative electrode terminal plate 207 is deformed, and the force for tightening the outer peripheral portion 62 of the sealing body 6 is not sufficient. For this reason, when an intense temperature change is applied to the battery, the internal electrolyte solution may leak outside through the space between the outer can 1 and the sealing body 6.

本発明は、これらの問題を解消するためになされたものであり、樹脂製の封口体を備えた筒形アルカリ乾電池において、封口体を内周から支える支持手段として、負極端子板(負極端子)を兼ねる金属板1枚だけを使用し、同時にこれの外周部の形状を工夫することにより、封口部分の厚みもしくは体積が必要以上に大きくならないようにして電池の内容積の増大ひいては電池容量の向上を図り、しかも温度変化等があった場合においても電池内の電解液が外部に漏出しないようにすることを目的とする。   The present invention has been made to solve these problems, and in a cylindrical alkaline battery provided with a resin sealing body, as a supporting means for supporting the sealing body from the inner periphery, a negative electrode terminal plate (negative terminal) By using only one metal plate that also serves as a battery, and by devising the shape of the outer periphery of the metal plate at the same time, the inner volume of the battery is increased and the battery capacity is improved so that the thickness or volume of the sealing portion is not increased more than necessary In addition, an object is to prevent the electrolyte in the battery from leaking to the outside even when there is a temperature change or the like.

樹脂製封口体を備えたアルカリ乾電池において、封口体の支持手段として負極端子板を兼ねた金属板を使用した場合、封口体をかしめたときに内側の金属板(負極端子板)の強度が弱いと封口体樹脂を押さえつける力が弱くなり、その結果、封口体と外装缶との間から電解液が漏出する事態を招く。そこで、本発明者らは金属板の外周部に特定の曲げ加工を施し、金属板の加工硬化と、金属板と封口体樹脂との接触面積を増加させることで上記の問題を解決した。   In an alkaline battery equipped with a resin sealant, when a metal plate that also serves as a negative electrode terminal plate is used as a support for the sealant, the strength of the inner metal plate (negative electrode terminal plate) is weak when the sealant is caulked. As a result, the electrolyte is leaked from between the sealing body and the outer can. Therefore, the present inventors have solved the above-mentioned problem by performing a specific bending process on the outer peripheral portion of the metal plate to increase the work hardening of the metal plate and the contact area between the metal plate and the sealing body resin.

すなわち、本発明は、図1および図2に示すように、有底円筒状の外装缶1の内部に、正極2および負極4と、これらの間に配置されるセパレータ3と、電解液(図示せず)とを収容し、外装缶1の開口端部1a内に樹脂製封口体6とこれを内周から支える支持手段とを装着して、外装缶1と支持手段とで樹脂製封口体6を締め付けることにより封口したアルカリ乾電池において、前記支持手段として、負極端子板を兼ねた1枚の金属板7(以下、負極端子板7ともいう)を使用し、この負極端子板7の外周部に全周にわたって、外装缶1との間で樹脂製封口体6を挟持する部分として、負極端子板7をこれの中心を通って厚み方向に切断したときの断面においてほぼC字状または弧状を呈する平均曲率半径1mm以下の湾曲部78bを設けたことを特徴とする。なお、湾曲部78bの平均曲率半径rとは、後述するように、湾曲部78b断面の外周を縁取る曲線に対し、曲線上の各点からの距離の合計が最小となるような円の半径のことを指す(図5〜図7参照)。   That is, as shown in FIG. 1 and FIG. 2, the present invention includes a positive electrode 2 and a negative electrode 4, a separator 3 disposed between them, an electrolyte solution (see FIG. (Not shown), a resin sealing body 6 and a supporting means for supporting this from the inner periphery are mounted in the opening end 1a of the outer can 1, and the resin sealing body is composed of the outer can 1 and the supporting means. In the alkaline battery sealed by tightening 6, a single metal plate 7 also serving as a negative electrode terminal plate (hereinafter also referred to as a negative electrode terminal plate 7) is used as the supporting means, and the outer peripheral portion of the negative electrode terminal plate 7. As a portion for sandwiching the resin sealing member 6 with the outer can 1 over the entire circumference, the negative electrode terminal plate 7 has a substantially C-shape or arc shape in a cross section when cut in the thickness direction through the center thereof. A curved portion 78b having an average curvature radius of 1 mm or less is provided. And wherein the door. As will be described later, the average curvature radius r of the curved portion 78b is a radius of a circle that minimizes the sum of the distances from each point on the curve with respect to a curve that borders the outer periphery of the curved portion 78b. (Refer to FIGS. 5 to 7).

具体的には、例えば図5に示すように、1枚の鋼板からなる負極端子板(金属板)7の外周部に全周にわたって、負極端子板7をこれの中心を通って厚み方向に切断したときの断面において平均曲率半径rが1mm以下で、かつ90度より大きい角度範囲にわたってほぼC字状または弧状に湾曲形成された湾曲部78bを設ける。   Specifically, for example, as shown in FIG. 5, the negative electrode terminal plate 7 is cut in the thickness direction through the center of the negative electrode terminal plate (metal plate) 7 made of one steel plate over the entire circumference. In the cross section, a curved portion 78b having an average radius of curvature r of 1 mm or less and curved in an approximately C shape or arc shape over an angle range larger than 90 degrees is provided.

負極端子板7が加工硬化によって増加する強度は、負極端子板7を微小領域に仮想的に分割したときの各微小領域での変形量を全領域にわたって積分した値が大きいほど増加すると考えられる。したがって、曲げ部分(本発明では湾曲部78b)の曲率半径が大きくなり過ぎると微小領域での変形量が小さくなるので加工硬化による強度増加が見込めず、逆に曲げ部分の曲率半径が小さすぎると局所的な変形量が大きくなるが、変形している部分の総体積が小さいために、加工硬化による強度増加は見込めない。実験的には曲率半径が0.1〜1.0mmの場合に塑性変形による強度増加が大きかった。   The strength at which the negative electrode terminal plate 7 increases due to work hardening is considered to increase as the value obtained by integrating the deformation amount in each minute region when the negative electrode terminal plate 7 is virtually divided into minute regions is increased over the entire region. Therefore, if the radius of curvature of the bent portion (in the present invention, the curved portion 78b) becomes too large, the amount of deformation in the minute region becomes small, so that an increase in strength due to work hardening cannot be expected, and conversely if the radius of curvature of the bent portion is too small. Although the amount of local deformation becomes large, since the total volume of the deformed portion is small, an increase in strength due to work hardening cannot be expected. Experimentally, the increase in strength due to plastic deformation was large when the radius of curvature was 0.1 to 1.0 mm.

また、湾曲部78bの角度が大きいほど変形の起こる領域の体積が増えるので加工強化による強度増加が大きくなり好ましい。角度が90度以下であれば金属板7の縁が八の字状に広がった形状になり、電池内圧が異常に上昇した時に封口部分が抜けやすいので、90度以上が好ましい。ただし、負極端子板7の湾曲部78bの角度が180度を超えるとプレス加工が困難になり、コストが増大するので、角度は180度以下が好ましい。   In addition, the larger the angle of the curved portion 78b, the larger the volume of the region where deformation occurs. If the angle is 90 degrees or less, the edge of the metal plate 7 has an eight-shaped shape, and when the internal pressure of the battery rises abnormally, the sealing portion is easily removed, so 90 degrees or more is preferable. However, if the angle of the curved portion 78b of the negative electrode terminal plate 7 exceeds 180 degrees, press working becomes difficult and the cost increases. Therefore, the angle is preferably 180 degrees or less.

湾曲部78bが封口体6と接する角度範囲は大きいほど液の浸み出しを防ぐ面積が大きくなり好ましい。この角度は先述の負極端子板7の湾曲部78bを設ける角度の下限値である90度より大きい程良い。ただし、180度を超えると通常の封口方式では負極端子板7と封口体樹脂の押さえつけが効かなくなるので意味がない。   The larger the angle range in which the curved portion 78b is in contact with the sealing body 6, the larger the area for preventing the liquid from seeping out, which is preferable. The angle is preferably larger than 90 degrees that is the lower limit value of the angle at which the curved portion 78b of the negative electrode terminal plate 7 is provided. However, if the angle exceeds 180 degrees, the normal sealing method is meaningless because the pressing of the negative electrode terminal plate 7 and the sealing body resin becomes ineffective.

ここで、本発明でいう湾曲部78bを設ける角度範囲とは、例えば図5に示すように、湾曲部78bを、上記の平均曲率半径rを半径として有する仮想的な円で近似したときに、この円の中心Oを基準として湾曲部分7cの両端がなす角度θ1 を意味する。また、湾曲部78bと封口体6とが接触している部分の角度範囲も同様に、湾曲部78bを、上記の平均曲率半径rを半径として有する仮想的な円で近似したときに、この円の中心Oを基準として、封口体6と接触している湾曲部78bの当該接触部分の両端がなす角度θ2 を意味する。 Here, the angle range in which the curved portion 78b referred to in the present invention is provided is, for example, as shown in FIG. 5, when the curved portion 78b is approximated by a virtual circle having the average radius of curvature r as a radius. This means an angle θ 1 formed by both ends of the curved portion 7c with reference to the center O of the circle. Similarly, when the curved portion 78b is approximated by an imaginary circle having the average curvature radius r as a radius, the angular range of the portion where the curved portion 78b and the sealing body 6 are in contact with each other is also similar. The angle θ 2 formed by both ends of the contact portion of the curved portion 78b that is in contact with the sealing body 6 with the center O as a reference.

本発明では、上記の負極端子板(金属板)7として、通常は厚み0.4mm程度のめっき鋼板を使用する。これは、本発明では、封口体の支持手段である金属板が負極端子板を兼ねており、負極端子板には、コスト面等で有利な前記のような厚みを有するめっき鋼板が一般に使用されるからである。   In the present invention, as the negative electrode terminal plate (metal plate) 7, a plated steel plate having a thickness of about 0.4 mm is usually used. This is because, in the present invention, the metal plate which is the supporting means of the sealing body also serves as the negative electrode terminal plate, and the negative electrode terminal plate is generally a plated steel plate having the above-described thickness which is advantageous in terms of cost. This is because that.

封口体6を支える支持手段としての機能を持つ金属板に負極端子板としての機能を併せ持たせるために、言い換えれば金属板で構成される負極端子板7に支持手段としての機能を持たせるために、負極端子面となる金属板7の中央側の部分(以下、端子面という)は、通常の負極端子板のそれのように、内面側から外面側に向かう方向に凸状、全体としてはハット状に形成する。要するに、負極端子板を兼ねる金属板7は、全体としての形状はハット状であるが、その外周部には、厚み方向の断面形状がほぼC字状または弧状の湾曲部78bが設けられており、この湾曲部78bの平均曲率半径rが1mm以下で、当該湾曲部78bにおいて封口体6と前記の角度範囲にわたって接触している構成とするのである。   In order to provide the metal plate functioning as a supporting means for supporting the sealing body 6 together with the function as the negative electrode terminal plate, in other words, to provide the negative electrode terminal plate 7 composed of the metal plate as the supporting means. In addition, the central portion (hereinafter referred to as a terminal surface) of the metal plate 7 serving as the negative electrode terminal surface is convex in the direction from the inner surface side to the outer surface side, like that of a normal negative electrode terminal plate. Form a hat shape. In short, the metal plate 7 also serving as the negative electrode terminal plate has a hat-like shape as a whole, but the outer peripheral portion is provided with a curved portion 78b having a substantially C-shaped or arc-shaped cross-sectional shape in the thickness direction. The mean radius of curvature r of the curved portion 78b is 1 mm or less, and the curved portion 78b is in contact with the sealing body 6 over the angular range.

筒形アルカリ乾電池において、樹脂製の封口体を内周から支える支持手段として従来から用いられている金属ワッシャを廃止し、その代わりに、図1ないし図5に示したような負極端子板(金属板)7を使用して、この負極端子板7と外装缶1との間に封口体6の外周部を挟んでかしめれば、封口部分の厚みを次の二つの理由から薄くすることができる。   In the cylindrical alkaline battery, the metal washer conventionally used as a supporting means for supporting the resin sealing member from the inner periphery is abolished, and instead of the negative electrode terminal plate (metal) as shown in FIGS. If the outer peripheral portion of the sealing body 6 is sandwiched between the negative electrode terminal plate 7 and the outer can 1 by caulking, the thickness of the sealing portion can be reduced for the following two reasons. .

第一に、金属ワッシャを廃止することで、封口部分を少なくとも金属ワッシャの厚みぶんだけ薄くすることができる。国内で製造されている、金属ワッシャで封口体を押さえる手法を採っている単3形アルカリ乾電池を例に取ると、0.6mm以上、0.75mm程度の厚みの金属ワッシャが用いられており、この金属ワッシャを廃止することで少なくともこの厚みぶんだけ封口部分の厚みを薄くすることができる。   First, by eliminating the metal washer, the sealing portion can be made at least as thin as the metal washer. Taking an AA alkaline battery manufactured in Japan and using a method to hold the sealing body with a metal washer as an example, a metal washer with a thickness of 0.6 mm or more and about 0.75 mm is used. By eliminating this metal washer, the thickness of the sealing portion can be reduced by at least this thickness.

第二に、封口体6の連結部63が内圧で変形するための空間を特に設ける必要が無くなることが挙げられる。このことをさらに詳しく述べる。   Second, it is not necessary to provide a space for the connecting portion 63 of the sealing body 6 to be deformed by the internal pressure. This will be described in more detail.

封口体6は、通常、ナイロンやポリプロピレン等でできており、その一部に防爆用の薄肉部分が設けられていることはすでに述べた通りである。何らかの理由で電池の内圧が高くなったときには、例えば図12に示したような封口体6は同図に鎖線で示したように変形し、内圧がさらに高くなると連結部63の薄肉部分63aがちぎれて内圧の一部を放出することにより、内圧の上昇を防止する。図11および図12に示した従来のアルカリ乾電池では、封口体6の薄肉部分63aと金属ワッシャ107との間に隙間(空間S1 )が設けられているが、もしこの隙間が小さければ内圧が高くなったときに、変形した封口体6の連結部63あるいは薄肉部分63aが金属ワッシャ107に押さえつけられて変形できなくなり、どんなに内圧が高くなっても薄肉部分63aがちぎれなくなるので、内圧を開放することができなくなる。このため、封口体6の薄肉部分(安全弁の作動点)63aと、封口体6を支える金属ワッシャ107との間には、ある程度の間隔を設けることが必要であり、国内で製造されている単3形アルカリ乾電池を例に取ると、通常、1.0〜1.5mm程度の間隔が設けられている。 As described above, the sealing body 6 is usually made of nylon, polypropylene, or the like, and a thin-walled portion for explosion protection is provided on a part thereof. When the internal pressure of the battery becomes high for some reason, for example, the sealing body 6 as shown in FIG. 12 is deformed as indicated by a chain line in FIG. 12, and when the internal pressure is further increased, the thin portion 63a of the connecting portion 63 is broken. The internal pressure is prevented from rising by releasing a part of the internal pressure. In the conventional alkaline battery shown in FIGS. 11 and 12, a gap (space S 1 ) is provided between the thin portion 63a of the sealing body 6 and the metal washer 107. If this gap is small, the internal pressure is reduced. When the height is increased, the connecting portion 63 or the thin portion 63a of the deformed sealing body 6 is pressed against the metal washer 107 and cannot be deformed, and the thin portion 63a cannot be broken no matter how high the internal pressure is, so the internal pressure is released. I can't do that. For this reason, it is necessary to provide a certain amount of space between the thin-walled portion (the operating point of the safety valve) 63a of the sealing body 6 and the metal washer 107 that supports the sealing body 6. Taking a 3 type alkaline battery as an example, an interval of about 1.0 to 1.5 mm is usually provided.

さて、図11および図12に示したように、アルカリ乾電池の負極端子板207を凸形形状とすることは事実上の標準となっているが、封口体6をかしめるために支持手段として金属ワッシャを用いた場合には、先に述べたように金属ワッシャ107と負極端子板207との間に電池にとって何ら必要のない無駄な空間S2 が生じる。しかし、本発明におけるように金属ワッシャを廃止して、図1ないし図7に例示したような負極端子板(金属板)7を支持手段として用いると、従来においては無駄であった上記の空間S2 を封口体6の変形に必要な空間に利用できるので、全体として封口部分の厚みを薄くすることができるのである。 Now, as shown in FIGS. 11 and 12, it is a de facto standard that the negative electrode terminal plate 207 of the alkaline battery has a convex shape. However, in order to caulk the sealing body 6, a metal is used as a supporting means. When the washer is used, as described above, a useless space S 2 that is not necessary for the battery is generated between the metal washer 107 and the negative electrode terminal plate 207. However, when the metal washer is eliminated as in the present invention and the negative electrode terminal plate (metal plate) 7 illustrated in FIGS. 1 to 7 is used as the support means, the above-described space S, which has been wasted in the past, is used. Since 2 can be used for a space required for deformation of the sealing body 6, the thickness of the sealing portion as a whole can be reduced.

上記の理由から、図1ないし図7に示すように、封口体6を内部から支える支持手段としての金属板を負極端子板7のみとし、かつこの負極端子板の厚みを従来の金属ワッシャのそれよりも薄くする(例えば0.3〜0.7mmにする)ことで封口部分の体積を減らすことができ、これによって電池の内容積(セル室Cの容積)を大きくすることが可能となる。図1、図2に示した例でいうと、図1の構造では封口部分Aは、電池の高さに対し10%以上の厚み(電池高さ方向における厚み)を持つのに対し、図2の構造では封口部分の厚みは電池高さの8%に抑えられ、その結果、電池内容積が4%増加した。この増加体積に電池活物質を充填すれば電池の容量は4%増加するし、空隙のまま残しても、電池内部でガスが発生したときの圧力上昇緩和のアブソーバーとして機能するので安全上有効に活用される。   For the above reasons, as shown in FIGS. 1 to 7, only the negative electrode terminal plate 7 is used as a supporting means for supporting the sealing body 6 from the inside, and the thickness of the negative electrode terminal plate is set to that of a conventional metal washer. By making the thickness thinner (for example, 0.3 to 0.7 mm), the volume of the sealing portion can be reduced, and thereby the internal volume of the battery (the volume of the cell chamber C) can be increased. In the example shown in FIGS. 1 and 2, in the structure of FIG. 1, the sealing portion A has a thickness of 10% or more (thickness in the battery height direction) with respect to the height of the battery, whereas FIG. With this structure, the thickness of the sealing portion was suppressed to 8% of the battery height, and as a result, the battery internal volume increased by 4%. If the battery active material is filled in this increased volume, the capacity of the battery will increase by 4%, and even if it remains in the gap, it functions as an absorber for reducing pressure rise when gas is generated inside the battery, so it is effective for safety. Be utilized.

ただし、金属ワッシャを廃止して、その代わりに負極端子板でもある金属板を使用しただけでは、電池に激しい温度変化を加えたときなどに外装缶と封口体との間を経由して内部の強アルカリ電解液が漏れ出るおそれがある。封口体を内側から押さえる支持手段としての金属板が薄くなったことで、かしめる時に負極端子板が変形してしまい、封口体を押さえつける力が充分でなくなるからである。   However, if the metal washer is abolished and a metal plate that is also the negative electrode terminal plate is used instead, the inside of the battery can be passed through between the outer can and the sealing body when a severe temperature change is applied to the battery. Strong alkaline electrolyte may leak out. This is because the metal plate as the supporting means for pressing the sealing body from the inside becomes thin, so that the negative electrode terminal plate is deformed when caulking, and the force for pressing the sealing body is not sufficient.

このような変形は、本発明における負極端子板7のように、これの外周部に平均曲率半径が1mm以下のほぼC字状または孤状の断面形状を有する湾曲部78bを設け、この湾曲部78bを封口体6と所定の角度範囲にわたって接触させることによって防止できる。この湾曲部78bの形成に伴う加工硬化によって負極端子板7が変形しにくくなるのみならず、外装缶1を介して封口体6に加えられる押しつけ力が負極端子板7の外周部に作用しても、封口体6と比較的広い角度範囲にわたって接触する湾曲部78bを介して負極端子板全体で封口体6がしっかりとバックアップされるからである。したがって、外装缶1の開口端部1aの周縁部分を内側に曲げて負極端子板7との間で封口体6を強い力で締め付けることができ、その結果、外装缶1と封口体6との間の密着性、つまりは耐漏液性(液密性)を高めることができる。しかも、負極端子板7の湾曲部78bは、封口体6がかしめられた状態で封口体6と90度よりも大きい角度範囲にわたって接触していることで、封口体6と外装缶1との接触面積も比較的大きくなるから、これによっても封口体6と外装缶1との境界部分に充分な耐漏液性を付与することができる。   Such a deformation is achieved by providing a curved portion 78b having a substantially C-shaped or arcuate cross-sectional shape having an average radius of curvature of 1 mm or less on the outer periphery of the negative terminal plate 7 according to the present invention. It can prevent by making 78b contact the sealing body 6 over a predetermined angle range. The negative electrode terminal plate 7 is not easily deformed by the work hardening accompanying the formation of the curved portion 78b, and the pressing force applied to the sealing body 6 via the outer can 1 acts on the outer peripheral portion of the negative electrode terminal plate 7. This is also because the sealing body 6 is firmly backed up over the entire negative electrode terminal plate via the curved portion 78b that contacts the sealing body 6 over a relatively wide angle range. Therefore, the peripheral part of the opening end 1a of the outer can 1 can be bent inward and the sealing body 6 can be tightened with a strong force between the negative terminal plate 7 and, as a result, the outer can 1 and the sealing body 6 It is possible to improve the adhesion between them, that is, the liquid leakage resistance (liquid tightness). Moreover, the curved portion 78b of the negative electrode terminal plate 7 is in contact with the sealing body 6 over the angular range larger than 90 degrees with the sealing body 6 being caulked, so that the sealing body 6 and the outer can 1 are in contact with each other. Since the area is also relatively large, sufficient leakage resistance can be imparted to the boundary portion between the sealing body 6 and the outer can 1.

図1は、本発明を単三形アルカリ乾電池(以下、単にアルカリ乾電池または電池ともいう)に適用した例を示したものである。このアルカリ乾電池は、正極端子を兼ねる有底円筒状の外装缶1と、この外装缶1内(セル室C内)に収容された円筒状の正極2と、この正極2の中空部内に配置されたコップ状の不織布からなるセパレータ3と、このセパレータ3内に充填されたペースト状の負極4と、この負極4内に挿入された釘状の負極集電棒(負極集電体)5と、セパレータ3および正極2に含浸された水酸化カリウム水溶液を主成分とする電解液(図示せず)とを有し、外装缶1の開口端部1a側を封口した構成である。外装缶1の底部には、凸状の正極端子部分1bが形成されている。ここで、図1中の符号Aは外装缶1の封口部分を示し、符号Bは外装缶1の胴部分を示す。さらに詳しくは、図1に示した状態において、外装缶1の封口部分Aとは、グルーブによる変形で外装缶1の外形がもとの寸法より小さくなる部分から上の部分を指し、胴部分Bとはそれより下の部分を指す。   FIG. 1 shows an example in which the present invention is applied to an AA alkaline battery (hereinafter also simply referred to as an alkaline battery or a battery). The alkaline dry battery is arranged in a bottomed cylindrical outer can 1 that also serves as a positive electrode terminal, a cylindrical positive electrode 2 accommodated in the outer can 1 (in the cell chamber C), and a hollow portion of the positive electrode 2. A separator 3 made of a cup-shaped non-woven fabric, a paste-like negative electrode 4 filled in the separator 3, a nail-shaped negative electrode current collector rod (negative electrode current collector) 5 inserted into the negative electrode 4, a separator 3 and an electrolytic solution (not shown) mainly composed of an aqueous potassium hydroxide solution impregnated in the positive electrode 2, and the opening end 1 a side of the outer can 1 is sealed. A convex positive terminal portion 1 b is formed on the bottom of the outer can 1. Here, symbol A in FIG. 1 indicates a sealing portion of the outer can 1, and symbol B indicates a body portion of the outer can 1. More specifically, in the state shown in FIG. 1, the sealing portion A of the outer can 1 refers to a portion above the portion where the outer shape of the outer can 1 becomes smaller than the original dimension due to deformation by the groove, and the body portion B Refers to the part below it.

そして、本発明を適用した上記のアルカリ乾電池においては、外装缶の胴部分Aにおける缶厚み(肉厚)が0.18mm以下とされ、かつ封止部分Bにおける缶厚みが胴部分Aにおける缶厚みの1.4倍以上に設定されている。   In the alkaline dry battery to which the present invention is applied, the can thickness (wall thickness) in the barrel portion A of the outer can is 0.18 mm or less, and the can thickness in the sealed portion B is the can thickness in the barrel portion A. Is set to 1.4 times or more.

外装缶1内に収容された円筒状の正極2は、二酸化マンガンと黒鉛(導電材料)との混合物で構成されている。上記のアルカリ乾電池においては、この二酸化マンガンと黒鉛(導電材料)とを混合して正極2を成形する際に、水酸化カリウム濃度を高めたアルカリ電解液が用いられている。これは、水酸化カリウム濃度を高めたアルカリ電解液を用いて正極2を成形することで、正極2となる成形体の強度を高めることができるからである。その結果、二酸化マンガンや黒鉛(導電材料)を結合するためのバインダー(結合剤樹脂)を使用する必要がなくなり、その分だけ放電特性に関係する材料の充填率を高めることができるので、電池の放電特性が改善されることとなる。また、外装缶1内に収容された正極2の強度が高まることで、外装缶1に上記のような肉厚の薄い鋼板を使用した場合であっても外力による変形を受けにくくなる。   The cylindrical positive electrode 2 accommodated in the outer can 1 is composed of a mixture of manganese dioxide and graphite (conductive material). In the alkaline dry battery described above, an alkaline electrolyte with an increased potassium hydroxide concentration is used when the positive electrode 2 is formed by mixing manganese dioxide and graphite (conductive material). This is because the strength of the molded body to be the positive electrode 2 can be increased by molding the positive electrode 2 using an alkaline electrolyte with an increased potassium hydroxide concentration. As a result, it is not necessary to use a binder (binder resin) for bonding manganese dioxide or graphite (conductive material), and the filling rate of the material related to the discharge characteristics can be increased accordingly, so that The discharge characteristics will be improved. In addition, since the strength of the positive electrode 2 accommodated in the outer can 1 is increased, even when a thin steel plate as described above is used for the outer can 1, it becomes difficult to be deformed by an external force.

外装缶1の開口端部1a内、すなわち封口部分A内には、防爆用の安全弁機構を有する例えばポリアミドやポリプロピレン等の樹脂(図示例では6,6ナイロン)からなる封口体6と、これを内周から支える支持手段であり且つ負極端子板を兼ねた一枚の金属板7(負極端子板7)と、外装缶1の開口端部1aと負極端子板7との間を電気的に絶縁する鍔付き短筒状の樹脂体からなる絶縁板8とが装着されている。   In the opening end 1a of the outer can 1, that is, in the sealing portion A, a sealing body 6 made of a resin such as polyamide or polypropylene (6, 6 nylon in the illustrated example) having an explosion-proof safety valve mechanism is provided. Electrically insulated between one metal plate 7 (negative electrode terminal plate 7) which is a supporting means supported from the inner periphery and also serves as a negative electrode terminal plate, and the open end 1a of the outer can 1 and the negative electrode terminal plate 7 An insulating plate 8 made of a short tubular resin body with a flange is attached.

封口体6は、図2に拡大して示すように、負極集電棒5が挿通される孔61aを有するボス部61と、外装缶1の内周面と接する外周部62と、ボス部61と外周部62とを連結し且つ前者から後者に至る面を封鎖する連結部63とで構成されている。そして、この封口体6によって、電池活物質の収容されているセル室Cを閉じてセル室C内の電解液の外部への漏出を防止し、かつ負極端子板7と外装缶1との間を前記の絶縁板8とともに電気的に絶縁するようになっている。   As shown in an enlarged view in FIG. 2, the sealing body 6 includes a boss portion 61 having a hole 61 a through which the negative electrode current collecting rod 5 is inserted, an outer peripheral portion 62 in contact with the inner peripheral surface of the outer can 1, and a boss portion 61. It is comprised by the connection part 63 which connects the outer peripheral part 62 and seals the surface from the former to the latter. The sealing body 6 closes the cell chamber C in which the battery active material is accommodated to prevent leakage of the electrolyte in the cell chamber C to the outside, and between the negative electrode terminal plate 7 and the outer can 1. Are electrically insulated together with the insulating plate 8.

封口体6の連結部63におけるボス部61側の付け根部分には、防爆用の安全弁機構を構成する薄肉部分63aが設けられている。この薄肉部分63aは、電池の内圧が所定レベル以上に上昇したときに連結部63が図中の上方側に変形し、さらに内圧が上昇したときに当該薄肉部分63aが破断することにより、内圧の一部を負極端子板7の後述するガス抜き孔を介してセル室C外に開放する機能を果たすものである。ところが、従来の封口体では、防爆用の薄肉部分とこれの直ぐ外側の部分との間の肉厚があまり大きくなく、しかも連結部の肉厚が比較的薄く且つ一様であったために、高温短絡時に薄肉部分が破断する前にドーム状に膨張したまま負極端子板に接触してガス抜き孔を塞いでしまったり、過放電放置時に薄肉部分が剪断されるよりも前にドーム状に膨らんだ連結部が破裂したりする可能性が全くないとは言い切れなかった。そこで、このような問題が生じないようにするため、本発明のアルカリ乾電池に備えられた封口体6では、連結部63に設けた防爆用の薄肉部分63aが、これを取り囲んでいる直ぐ外側の部分(第1肉厚部分)63bに比べて肉厚が不連続に薄くなるように且つ第1肉厚部分63bとの間に所定の段差を有するように形成されている。   A thin portion 63a that constitutes an explosion-proof safety valve mechanism is provided at the base portion of the connecting portion 63 of the sealing body 6 on the boss portion 61 side. When the internal pressure of the battery rises to a predetermined level or more, the thin portion 63a is deformed upward in the drawing, and when the internal pressure further rises, the thin portion 63a breaks, so that the internal pressure is reduced. A part of the negative electrode terminal plate 7 functions to be opened to the outside of the cell chamber C through a gas vent described later. However, in the conventional sealing body, the thickness between the explosion-proof thin portion and the portion immediately outside it is not so large, and the thickness of the connecting portion is relatively thin and uniform. The thin-walled portion swells in a dome shape before it breaks during a short-circuit, contacts the negative terminal plate and closes the vent hole, or when left overdischarged, the thin-walled portion swells in a dome shape before shearing It could not be said that there was no possibility that the connecting part would burst. Therefore, in order to prevent such a problem from occurring, in the sealing body 6 provided in the alkaline battery of the present invention, the explosion-proof thin-walled portion 63a provided in the connecting portion 63 is immediately outside the surrounding portion. Compared with the portion (first thick portion) 63b, the thickness is discontinuously reduced and a predetermined step is formed between the first thick portion 63b.

封口体6の連結部63における外周部62側の付け根部分には、比較的薄肉の応力吸収部63cが設けられている。この応力吸収部63cは、これの直ぐ内周側に位置する部分(第2肉厚部分)63dに比べて肉厚が不連続に薄くなるように且つ第2肉厚部分63dとの間に段差を有するように形成されている。これにより、外装缶1の開口端部1aを封口すべく封口体6を締め付けたときに連結部63に作用する応力の一部を吸収して、防爆用の薄肉部分63aへの応力集中を防止する。   A relatively thin-walled stress absorbing portion 63c is provided at the base portion of the connecting portion 63 of the sealing body 6 on the outer peripheral portion 62 side. The stress absorbing portion 63c has a step difference between the second thick portion 63d and the second thick portion 63d so that the thickness is discontinuously thin compared to the portion (second thick portion) 63d located immediately on the inner peripheral side thereof. It is formed to have. This absorbs a part of the stress acting on the connecting portion 63 when the sealing body 6 is tightened to seal the opening end 1a of the outer can 1 and prevents stress concentration on the explosion-proof thin portion 63a. To do.

封口体6の連結部63における第1肉厚部分63bから第2肉厚部分63dに至る部分は、第1肉厚部分63bから第2肉厚部分63dに行くに従って肉厚が連続的に厚くなるように形成されている。図示例の封口体6では、第1肉厚部分63bの肉厚は0.4〜0.5mmであり、第2肉圧部分63dの肉厚は第1肉厚部分63bの肉厚の2.5〜3.0倍とされている。そして、このような連結部63の形状と、従来のものと比べた場合の連結部63の厚肉化と、第1肉厚部分63bとの間に所定の段差を有する防爆用の薄肉部分63aの構造とが相まって、上述した高温短絡時や過放電放置時における不具合をさらに確実に防止できるようになっている。   The thickness of the connecting portion 63 of the sealing body 6 from the first thick portion 63b to the second thick portion 63d continuously increases from the first thick portion 63b to the second thick portion 63d. It is formed as follows. In the sealing body 6 in the illustrated example, the thickness of the first thick portion 63b is 0.4 to 0.5 mm, and the thickness of the second thick pressure portion 63d is 2 of the thickness of the first thick portion 63b. 5 to 3.0 times. The shape of the connecting portion 63, the thickness of the connecting portion 63 compared to the conventional one, and the explosion-proof thin portion 63a having a predetermined step between the first thick portion 63b. In combination with this structure, it is possible to more reliably prevent the above-described problems during high-temperature short-circuiting or overdischarge.

封口体6のボス部61においては、負極集電棒5が挿通された孔61aの図2中の上端部分が、これ以外の孔部分の内径よりも大きな内径を有する大径孔部分61bとされており、負極集電棒5を挿通セットした図示状態において負極集電棒5の大径端部5aがボス部61の大径孔部分61bに嵌合して、当該大径端部5aの上端がボス部61の上端面から僅かに突出した状態またはそれと略面一の状態となっている。図2においてボス部61の周壁部分は外周部62のそれに比べて肉厚が厚くされているが、これは、封口時に外周部62がかしめられて変形する部分であるのに対し、ボス部61はこれに挿通された負極集電棒5とともに負極端子板7の中央部分の裏面側にあってこの部分が外力によって内側にへこんだりしないように負極端子板7を裏面側から支える役目をも持っているからである。   In the boss portion 61 of the sealing body 6, the upper end portion in FIG. 2 of the hole 61a through which the negative electrode current collecting rod 5 is inserted is a large-diameter hole portion 61b having an inner diameter larger than the inner diameter of the other hole portions. In the illustrated state in which the negative electrode current collector rod 5 is inserted and set, the large diameter end portion 5a of the negative electrode current collector rod 5 is fitted into the large diameter hole portion 61b of the boss portion 61, and the upper end of the large diameter end portion 5a is the boss portion. It is in a state of slightly protruding from the upper end surface of 61 or substantially flush with it. In FIG. 2, the peripheral wall portion of the boss portion 61 is thicker than that of the outer peripheral portion 62. This is a portion where the outer peripheral portion 62 is caulked and deformed at the time of sealing, whereas the boss portion 61. Is on the back side of the central portion of the negative electrode terminal plate 7 together with the negative electrode current collector rod 5 inserted therethrough, and also has a function of supporting the negative electrode terminal plate 7 from the back side so that this portion is not dented inward by an external force. Because.

一方、負極端子板7は、一枚の鋼板で構成されており、図3および図4に単体で示すように、凸状に形成された中央部の端子面77と、この端子面77を垂直に貫く方向から見て端子面77を取り囲むように形成された外周部の鍔面78と、端子面77の外周から鍔面78の内周に至る円筒状の端子面側面79とからなる。このうち端子面77には、これの中心部を取り囲むように僅かに凹んだ平面視で円形の凹み77aが形成されており、この凹み77aが取り囲んでいる中央部分の裏面側に負極集電棒5の大径端部5aがスポット溶接等により接合されている(図2参照)。   On the other hand, the negative electrode terminal plate 7 is composed of a single steel plate. As shown in FIG. 3 and FIG. And the cylindrical terminal surface side surface 79 extending from the outer periphery of the terminal surface 77 to the inner periphery of the flange surface 78. Among these, the terminal surface 77 is formed with a circular recess 77a in a plan view slightly recessed so as to surround the central portion of the terminal surface 77, and the negative electrode current collector rod 5 is formed on the back side of the central portion surrounded by the recess 77a. Are joined by spot welding or the like (see FIG. 2).

負極端子板7における鍔面78は、内周側の平坦部78aと、封口体6をかしめる際にこれの外周部62を内周からしっかりと支える目的で当該負極端子板7の全周にわたって設けられた外周側の湾曲部78bとからなる。内周側の平坦部78aは、図4に示した厚み方向の断面において、外周側の湾曲部78bに比べて相対的に平坦な形状を有する。そして、この平坦部78aが端子面77aに対して、外側に下る方向に4度以上傾斜した構造とされていることにより、封口工程での負極端子板7の変形による高さ方向寸法のばらつきを低減させるようになっている。なお、図示例は、鍔面平坦部78aと端子面77とのなす角度α、すなわち鍔面平坦部78aの外周端(湾曲部78b側)にある変曲点と内周端(端子面側面側79側)にある変曲点とを結ぶ平面と、端子面77とのなす角度αを8度としたものである。   The flange surface 78 of the negative electrode terminal plate 7 covers the entire circumference of the negative electrode terminal plate 7 in order to firmly support the outer peripheral portion 62 from the inner periphery when the inner peripheral flat portion 78a and the sealing body 6 are caulked. It comprises an outer peripheral curved portion 78b provided. The flat part 78a on the inner peripheral side has a relatively flat shape as compared with the curved part 78b on the outer peripheral side in the cross section in the thickness direction shown in FIG. The flat portion 78a is inclined by 4 degrees or more in the downward direction with respect to the terminal surface 77a, so that variations in the height direction dimension due to deformation of the negative electrode terminal plate 7 in the sealing step can be prevented. It is intended to reduce. In the illustrated example, the angle α formed between the flange flat portion 78a and the terminal surface 77, that is, the inflection point and the inner peripheral end (terminal surface side surface side) at the outer peripheral end (curved portion 78b side) of the flange flat portion 78a. The angle α formed between the plane connecting the inflection point on the (79 side) and the terminal surface 77 is 8 degrees.

負極端子板7の外周側に設けられた湾曲部78bは、先の「課題を解決するための手段」の項で述べたように、負極端子板7をこれの中心を通って厚み方向に切断したときの断面において、平均曲率半径が1mm以下で、かつ90度より大きい角度範囲にわたってほぼC字状または弧状に湾曲形成されており、しかもその外周側が、すでに説明した意味において90度より大きい角度範囲にわたって封口体6の外周部62の内周側と接触している。そして、この接触部分において封口体6の外周部62が、これの内周側に位置する負極端子板7の湾曲部78bと、外周側に位置する外装缶1の開口端部1aとでかしめられて締め付けられていることにより、図2に示したように封口体6が外装缶1の開口端部1a内の所定位置に装着され、この状態でセル室C内の上方が封口されるとともに、封口体6の連結部63と負極端子板7との間に安全弁(薄肉部分63a)の動作を確保するための所要の空間が形成された構造となっている。なお、図3および図4中の符号7fはセル室内で発生したガスを安全弁の作動時に外部に逃がすためのガス抜き孔を示す。   The curved portion 78b provided on the outer peripheral side of the negative electrode terminal plate 7 cuts the negative electrode terminal plate 7 in the thickness direction through the center of the negative electrode terminal plate 7 as described above in the section “Means for Solving the Problems”. In the cross section, the average radius of curvature is 1 mm or less and is curved in a substantially C-shape or arc shape over an angle range larger than 90 degrees, and the outer peripheral side has an angle larger than 90 degrees in the already explained meaning. It is in contact with the inner peripheral side of the outer peripheral portion 62 of the sealing body 6 over the range. And in this contact part, the outer peripheral part 62 of the sealing body 6 is caulked with the curved part 78b of the negative electrode terminal board 7 located in the inner peripheral side of this, and the opening end part 1a of the exterior can 1 located in the outer peripheral side. As shown in FIG. 2, the sealing body 6 is mounted at a predetermined position in the opening end 1a of the outer can 1, and in this state, the upper portion in the cell chamber C is sealed, A required space for ensuring the operation of the safety valve (thin wall portion 63a) is formed between the connecting portion 63 of the sealing body 6 and the negative electrode terminal plate 7. 3 and 4 indicates a gas vent for releasing the gas generated in the cell chamber to the outside when the safety valve is operated.

なお、上記の湾曲部78bが設けられている角度範囲とは、負極端子板7の他の例を示す図5に記載したように、湾曲部78bを、上記の平均曲率半径rを半径として有する仮想的な円で近似したときに、この円の中心Oを基準として湾曲部78bの両端がなす角度θ1 を意味する。湾曲部78bと封口体6とが接触している部分の角度範囲も同様に、湾曲部78bを、上記の平均曲率半径rを半径として有する仮想的な円で近似したときに、この円の中心Oを基準として、封口体6と接触している湾曲部78bの当該接触部分の両端がなす角度θ2 を意味する。 Note that the angle range in which the curved portion 78b is provided means that the curved portion 78b has the average curvature radius r as a radius, as described in FIG. 5 showing another example of the negative electrode terminal plate 7. When approximated by a virtual circle, it means an angle θ 1 formed by both ends of the curved portion 78b with reference to the center O of the circle. Similarly, when the curved portion 78b is approximated by a virtual circle having the average curvature radius r as a radius, the angular range of the portion where the curved portion 78b and the sealing body 6 are in contact is also the center of this circle. With reference to O, it means an angle θ 2 formed by both ends of the contact portion of the curved portion 78b in contact with the sealing body 6.

一方、鍔付き短筒状の樹脂体からなる絶縁板8は、封口体6が装着された後に、負極端子板7の端子面77と外装缶1の開口端および封口体6の外周部62の一端との間に形成された隙間部分に、当該絶縁板8における短筒部分8aを嵌め込むことで図示した所定位置に取り付けられており、これによって負極端子板7と外装缶1との間を電気的に絶縁している。   On the other hand, the insulating plate 8 made of a short-tubular resin body with a flange is attached to the terminal surface 77 of the negative electrode terminal plate 7, the open end of the outer can 1, and the outer peripheral portion 62 of the sealing body 6 after the sealing body 6 is mounted. The short cylindrical portion 8a of the insulating plate 8 is fitted into the gap portion formed between the one end and the predetermined position shown in the figure, so that the gap between the negative electrode terminal plate 7 and the outer can 1 is secured. It is electrically insulated.

なお、負極端子板(金属板)7の外周側に設ける湾曲部78bは、先に述べた平均曲率半径rと角度範囲θ1 ・θ2 の条件を満たしてさえいれば、その曲げ方や曲げ方向は問わない。図5ないし図7は、湾曲部78bの他の例を示したものである。このうちの図5は、負極端子板7の端子面7aと同じ方向もしくは同じ側に凸となるように湾曲部78bを形成した例を示す。図6は、負極端子板7の半径方向の外方に向けて凸となるように湾曲部78bを形成した例を示す。図7は、負極端子板7の外周部を端子面77の突出方向とは反対側の方向にいったん曲げ、そこからさらに逆向きに湾曲させて外周側が封口体6の外周部62と所定状態で接するように湾曲部78bを形成した例を示す。また、負極端子板7には、例えば電池を落としたときや端子面77を外部から強く押したときにも簡単にはへこまないようにしたり、封口体6のかしめ時に負極端子板7全体が変形しないようにしたりする目的で、中央部に設けた凹み77aと同じような凹凸を同心円状に設けてもよい。 The bending portion 78b provided on the outer peripheral side of the negative electrode terminal plate (metal plate) 7 can be bent or bent as long as it satisfies the conditions of the average curvature radius r and the angle ranges θ 1 and θ 2 described above. The direction is not important. 5 to 7 show other examples of the bending portion 78b. Of these, FIG. 5 shows an example in which the curved portion 78 b is formed so as to be convex in the same direction or the same side as the terminal surface 7 a of the negative electrode terminal plate 7. FIG. 6 shows an example in which the curved portion 78 b is formed so as to protrude outward in the radial direction of the negative electrode terminal plate 7. FIG. 7 shows that the outer peripheral portion of the negative electrode terminal plate 7 is once bent in the direction opposite to the protruding direction of the terminal surface 77 and further bent in the opposite direction so that the outer peripheral side is in a predetermined state with the outer peripheral portion 62 of the sealing body 6. An example in which the curved portion 78b is formed so as to be in contact with each other will be described. Further, the negative electrode terminal plate 7 is not easily dented even when the battery is dropped or the terminal surface 77 is strongly pressed from the outside, or the entire negative electrode terminal plate 7 is caulked when the sealing body 6 is caulked. For the purpose of preventing deformation, unevenness similar to the recess 77a provided in the central portion may be provided concentrically.

以下において本発明の実施例を説明するが、もちろん本発明はこれらの実施例に限定されるものではない。なお、以下でいう「%」は、特に断らない限り全て「重量パーセント(wt%)」を意味する。   Examples of the present invention will be described below. Of course, the present invention is not limited to these examples. In the following, “%” means “weight percent (wt%)” unless otherwise specified.

〈実施例1〜4〉
板厚0.25mmのキルド鋼板を深絞り加工によって単三形アルカリ乾電池用の外装缶に形成した。このとき、封口部分の缶厚みは元の鋼板の厚みを残し、胴部分の缶厚みは元の鋼板よりも薄くなるように加工した。表1に、本発明の実施例1〜4で使用した外装缶の胴部分および封口部分における缶厚みと、後述する比較例1・2で使用した外装缶のそれらとを併せて示す。
<Examples 1-4>
A 0.25 mm thick killed steel plate was formed into an outer can for AA alkaline batteries by deep drawing. At this time, the can thickness of the sealing portion was processed so that the thickness of the original steel plate was left, and the can thickness of the trunk portion was thinner than the original steel plate. Table 1 shows the can thickness at the body portion and the sealing portion of the outer can used in Examples 1 to 4 of the present invention and those of the outer can used in Comparative Examples 1 and 2 described later.

また、実施例1〜4においては、電池を落下させたときに正極端子のへこみを防ぐために、外装缶の正極端子部分1b(図1参照)も胴部分より缶厚が厚くなるように加工した。   Moreover, in Examples 1-4, in order to prevent the dent of a positive electrode terminal when a battery was dropped, the positive electrode terminal part 1b (refer FIG. 1) of an exterior can was processed so that can thickness might become thicker than a trunk | drum part. .

次いで、電解法による二酸化マンガンと黒鉛と水とを92:5:3の割合(重量比)で混合した正極材料11.0gを、内径9.1mm、外径13.3mm、高さ43.0mmの円筒状に加圧成形した正極を単3形アルカリ乾電池用の外装缶に挿入した。その後、外装缶の開口端から高さ方向において3.7mmの位置にグルーブを施した。これは、後で封口体を挿入するときに封口体がグルーブの位置で支えられ、グルーブ位置より奥に押し込まれないようにするためである。さらに外装缶の内側、開口端から高さ方向において3.7mmまでの部分に外装缶と封口体との密着性を良くすることを目的としてピッチを塗布した。なお、ピッチ塗布量は20mg以下であると耐漏液性が低下するが、それ以上であれば耐漏液性に差がないことを確認している。   Next, 11.0 g of a positive electrode material obtained by mixing manganese dioxide, graphite, and water by a ratio of 92: 5: 3 (weight ratio) by electrolysis is 9.1 mm in inner diameter, 13.3 mm in outer diameter, and 43.0 mm in height. The positive electrode molded in a cylindrical shape was inserted into an outer can for an AA alkaline battery. Thereafter, a groove was formed at a position of 3.7 mm in the height direction from the open end of the outer can. This is to prevent the sealing body from being pushed deeper than the groove position when the sealing body is inserted later and supported at the groove position. Furthermore, a pitch was applied to the inside of the outer can and a portion from the opening end to 3.7 mm in the height direction in order to improve the adhesion between the outer can and the sealing body. In addition, although the liquid leakage resistance falls that the pitch application amount is 20 mg or less, it has been confirmed that there is no difference in the liquid leakage resistance if it is more than that.

次に、厚み100μmのビニロンとレーヨンとからなる不織布を三重に重ねてコップ状に巻いたセパレータを先の円筒状正極の内側に装填し、これらに電解液として濃度39%の水酸化カリウム水溶液1.5gをしみこませた。次いで、純度99.0%、目開き425μmのふるいを通過し、目開き75μmのふるいを通過しなかった粉末亜鉛4.0gと濃度39%の水酸化カリウム水溶液2.0gとポリアクリル酸ソーダ0.04gとを混練してなるペースト状の負極をセパレータの内部に充填した。   Next, a separator in which a non-woven fabric made of vinylon and rayon having a thickness of 100 μm is layered three times and wound into a cup shape is loaded inside the cylindrical positive electrode, and an aqueous potassium hydroxide solution 1 having a concentration of 39% as an electrolyte is loaded therein. Soaked .5g. Subsequently, 4.0 g of powdered zinc which passed through a sieve having a purity of 99.0% and an opening of 425 μm, and not passed through a sieve having an opening of 75 μm, 2.0 g of an aqueous potassium hydroxide solution having a concentration of 39% and sodium polyacrylate 0 A paste-like negative electrode formed by kneading 0.04 g was filled in the separator.

次いで、負極の集電を取るためのすずめっき真鍮製の負極集電棒を封口体のボス部に挿通して装着し、負極集電棒と負極端子板とをスポット溶接により接合した。この負極端子板をナイロン6−6(6,6ナイロン)製の封口体に装着し、これらを、先の正極および負極を充填した外装缶に装着した後、外装缶の開口端部の外側からスピニング方式によりかしめることにより単3形アルカリ乾電池を作成した。   Subsequently, a tin-plated brass negative electrode current collecting rod for collecting the negative electrode current was inserted into the boss portion of the sealing body and attached, and the negative electrode current collecting rod and the negative electrode terminal plate were joined by spot welding. After attaching this negative electrode terminal plate to a sealing body made of nylon 6-6 (6,6 nylon), and attaching these to the outer can filled with the positive electrode and the negative electrode, from the outside of the opening end of the outer can AA alkaline batteries were made by caulking by a spinning method.

〈比較例1および比較例2〉
外装缶の封口部分および胴部分における缶厚みを表1に示したように設定したこと以外は実施例1〜4と同様にして単3形アルカリ乾電池を作成した。
<Comparative Example 1 and Comparative Example 2>
AA alkaline batteries were prepared in the same manner as in Examples 1 to 4, except that the can thickness at the sealing portion and the body portion of the outer can was set as shown in Table 1.

〔耐漏液性試験〕
以上のようにして作成した各実施例および比較例に係る電池のうち、各々100個を、30分毎に−10℃と60℃の温度変化を繰り返す恒温槽に3日間保管して、保管後に外装缶と封口体との間から内部の強アルカリ液(電解液)が浸みだしてきていないかどうかを、アルカリ識別液のクレゾールレッド液を用いて調べた。表1にその結果を示す。
(Leakage resistance test)
Of the batteries according to each of Examples and Comparative Examples prepared as described above, 100 batteries are stored in a thermostatic chamber that repeats temperature changes of −10 ° C. and 60 ° C. every 30 minutes for 3 days. Whether or not the strong alkaline solution (electrolyte solution) has oozed out between the outer can and the sealing body was examined using a cresol red solution as an alkali identification solution. Table 1 shows the results.

Figure 2007207765
Figure 2007207765

この表を見ればわかるように、本発明の実施例1〜4で得られたアルカリ乾電池では、温度変化の激しい環境の下で一定期間保管した後においてもいずれも漏液が全く認められなかった。これに対して、比較例1で得られたアルカリ乾電池では、サンプル100個中の15個に液のしみ出しが認められ、比較例2のアルカリ乾電池では、サンプル100個中の17個に液のしみ出しが認められた。   As can be seen from this table, in the alkaline dry batteries obtained in Examples 1 to 4 of the present invention, no liquid leakage was observed at all even after being stored for a certain period under an environment where the temperature change was severe. . On the other hand, in the alkaline dry battery obtained in Comparative Example 1, the exudation of liquid was observed in 15 out of 100 samples, and in the alkaline dry battery of Comparative Example 2, liquid out of 17 in 100 samples. Exudation was observed.

〈実施例5〉
電解法による二酸化マンガンと黒鉛と水とを92:5:3(重量比)で混合した正極材料11.0gを、内径9.1mm、外径13.3mm、高さ43.0mmの円筒状に加圧成形した正極を単3形アルカリ乾電池用の外装缶に挿入した。次に、外装缶の開口端から高さ方向において3.7mmの位置にグルーブを施した。これは、後で封口体を挿入するときに封口体がグルーブの位置で支えられ、グルーブ位置より奥に押し込まれないようにするためである。さらに外装缶の内側、開口端から高さ方向において3.7mmまでの部分に外装缶と封口体との密着性を良くすることを目的としてピッチを塗布した。
<Example 5>
11.0 g of positive electrode material made by mixing manganese dioxide, graphite, and water by electrolytic method in 92: 5: 3 (weight ratio) into a cylindrical shape with an inner diameter of 9.1 mm, an outer diameter of 13.3 mm, and a height of 43.0 mm The positive electrode thus formed was inserted into an outer can for an AA alkaline battery. Next, a groove was formed at a position of 3.7 mm in the height direction from the open end of the outer can. This is to prevent the sealing body from being pushed deeper than the groove position when the sealing body is inserted later and supported at the groove position. Furthermore, a pitch was applied to the inside of the outer can and a portion from the opening end to 3.7 mm in the height direction in order to improve the adhesion between the outer can and the sealing body.

次に、厚み100μmのビニロンとレーヨンからなる不織布を三重に重ねてコップ状に巻いたセパレータを先の円筒状正極の内側に装填し、これらに電解液として濃度39%の水酸化カリウム水溶液1.5gをしみこませた。次いで、純度99.0%、目開き425μmのふるいを通過し、目開き75μmのふるいを通過しなかった粉末亜鉛4.0gと濃度39%の水酸化カリウム水溶液2.0gとポリアクリル酸ソーダ0.04gとを混練してなるペースト状の負極をセパレータの内部に充填した。   Next, a separator in which a non-woven fabric made of vinylon and rayon having a thickness of 100 μm is layered three times and wound into a cup shape is loaded inside the cylindrical positive electrode, and a potassium hydroxide aqueous solution 1. Soaked 5g. Subsequently, 4.0 g of powdered zinc which passed through a sieve having a purity of 99.0% and an opening of 425 μm, and not passed through a sieve having an opening of 75 μm, 2.0 g of an aqueous potassium hydroxide solution having a concentration of 39% and sodium polyacrylate 0 A paste-like negative electrode formed by kneading 0.04 g was filled in the separator.

次いで、負極の集電を取るためのすずめっき真鍮製の負極集電棒を封口体のボス部の孔に挿通して装着し、負極集電棒と負極端子板(金属板)とをスポット溶接により接合した。ここで用いた負極端子板は図5に簡略化して示したタイプの金属板7で、その湾曲部78bの平均曲率半径rは0.6mm、湾曲部分7cが形成されている角度範囲(θ1 )は150度、湾曲部78bが封口体6と接している角度範囲(θ2 )は120度である。これらの負極端子板は、厚さ0.4mmのニッケルめっき鋼鈑を、打ち抜き・プレス加工することで作成した。この負極端子板をナイロン6−6製の封口体に装着し、これらを、先の正極および負極を充填した外装缶に装着した後、外装缶の開口端部の外側からスピニング方式によりかしめることにより、図1に示したような単3形アルカリ乾電池を作成した。 Next, a tin-plated brass negative electrode current collector rod for collecting the negative electrode current is inserted through the hole in the boss portion of the sealing body, and the negative electrode current collector rod and the negative electrode terminal plate (metal plate) are joined by spot welding. did. The negative electrode terminal plate used here is a metal plate 7 of the type shown in a simplified form in FIG. 5, the average radius of curvature r of the curved portion 78b is 0.6 mm, and the angle range (θ 1 ) in which the curved portion 7c is formed. ) Is 150 degrees, and the angle range (θ 2 ) in which the curved portion 78b is in contact with the sealing body 6 is 120 degrees. These negative electrode terminal plates were prepared by stamping and pressing a nickel-plated steel plate having a thickness of 0.4 mm. This negative electrode terminal plate is attached to a nylon 6-6 sealing body, and after these are attached to the outer can filled with the positive electrode and the negative electrode, it is caulked from the outside of the opening end of the outer can by a spinning method. Thus, an AA alkaline battery as shown in FIG. 1 was prepared.

なお、以上の実施例5および後述する実施例6・7ならびに比較例3〜6においては、いずれも負極端子板にめっき鋼鈑を用いたが、これは加工が容易で耐食性が良いうえに廉価な材料であるためである。国内で販売されているアルカリ乾電池は、すべてこの種のめっき鋼鈑を使用している。また、この鋼鈑の厚みを0.4mmとしたのは、鋼鈑の厚みが0.5mm以上であれば原板から負極端子板を打ち抜く際に金型の摩耗が激しくコスト面で不利となるからである。   In all of Example 5 and Examples 6 and 7 and Comparative Examples 3 to 6 described later, a plated steel plate was used for the negative electrode terminal plate. However, this is easy to work, has good corrosion resistance, and is inexpensive. It is because it is a new material. All alkaline batteries sold in Japan use this type of plated steel sheet. Moreover, the thickness of this steel plate is set to 0.4 mm because if the thickness of the steel plate is 0.5 mm or more, when the negative electrode terminal plate is punched from the original plate, the mold wear becomes severe, which is disadvantageous in terms of cost. It is.

〈実施例6〉
金属板(負極端子板)の外周部における湾曲部分の平均曲率半径を0.8mmとした以外は、実施例5と同様の単三形アルカリ乾電池を作成した。
<Example 6>
AA alkaline batteries similar to those of Example 5 were prepared except that the average radius of curvature of the curved portion at the outer peripheral portion of the metal plate (negative electrode terminal plate) was 0.8 mm.

〈実施例7〉
金属板(負極端子板)の外周部における湾曲部分の平均曲率半径を1.0mmとした以外は、実施例5と同様の単三形アルカリ乾電池を作成した。
<Example 7>
AA alkaline batteries similar to those of Example 5 were prepared except that the average radius of curvature of the curved portion at the outer peripheral portion of the metal plate (negative electrode terminal plate) was 1.0 mm.

〈比較例3〉
図8に示すように金属板(負極端子板)7の外周部に湾曲部分や曲げ部分を設けず、金属板7の平坦な外周部と外装缶1とで封口体6を挟んでかしめたこと以外は、実施例5と同様にして単三形アルカリ乾電池を作成した。
<Comparative Example 3>
As shown in FIG. 8, the metal plate (negative electrode terminal plate) 7 is caulked with the sealing body 6 sandwiched between the flat outer periphery of the metal plate 7 and the outer can 1 without providing a curved portion or a bent portion. Except for this, an AA alkaline battery was prepared in the same manner as in Example 5.

〈比較例4〉
図9に示すように金属板(負極端子板)7の外周部に90度折り曲げられた曲げ部分20を設け、この曲げ部分20と外装缶1とで封口体6を締め付けたこと以外は、実施例5と同様にして単三形アルカリ乾電池を作成した。なお、この場合の曲げ部分20の外側のコーナーは微小な曲面となるが、この曲面の平均曲率半径rは0.3mmであった。
<Comparative example 4>
As shown in FIG. 9, a bent portion 20 bent 90 degrees is provided on the outer peripheral portion of the metal plate (negative electrode terminal plate) 7, and the sealing body 6 is tightened by the bent portion 20 and the outer can 1. AA alkaline batteries were prepared in the same manner as in Example 5. In this case, the outer corner of the bent portion 20 is a minute curved surface, and the average radius of curvature r of this curved surface was 0.3 mm.

〈比較例5〉
金属板(負極端子板)7の外周部における湾曲部78bの平均曲率半径rを1.4mmとした以外は、実施例5と同様の単三形アルカリ乾電池を作成した。
<Comparative Example 5>
An AA alkaline battery similar to that of Example 5 was prepared except that the average radius of curvature r of the curved portion 78b at the outer peripheral portion of the metal plate (negative electrode terminal plate) 7 was set to 1.4 mm.

〈比較例6〉
図10に示すように金属板(負極端子板)7の外周部に、内側に90度折り曲げられてその外周端側をさらに外側に僅かに曲げられた曲げ部分30を設け、この曲げ部分30と外装缶1とで封口体6締め付けたこと以外は、実施例5と同様にして単三形アルカリ乾電池を作成した。なお、この場合の曲げ部分30の外面側には、コーナー部を形成する第1の折曲面31と末端側の第2の折曲面32とが存在するが、これらの折曲面31・32の平均曲率半径rは、それぞれ0.3mmと0.4mmであった。
<Comparative Example 6>
As shown in FIG. 10, a bent portion 30 is provided on the outer peripheral portion of the metal plate (negative electrode terminal plate) 7 by being bent 90 degrees inward and slightly bending the outer peripheral end side outward. AA alkaline batteries were prepared in the same manner as in Example 5 except that the sealing body 6 was tightened with the outer can 1. In this case, a first folding surface 31 that forms a corner portion and a second folding surface 32 on the end side are present on the outer surface side of the bent portion 30 in this case, and the average of these folding surfaces 31 and 32 is present. The curvature radii r were 0.3 mm and 0.4 mm, respectively.

〔耐漏液性試験〕
以上のようにして作成した各実施例および比較例の電池のうち、各々100個を、30分毎に−10℃と60℃の温度変化を繰り返す恒温槽に3日間保管して、保管後に外装缶と封口体の間から内部の強アルカリ液が浸みだしてきていないかどうかを、アルカリ識別液のクレゾールレッド液を用いて調べた。表2にその結果を示す。
(Leakage resistance test)
Of the batteries of the examples and comparative examples prepared as described above, 100 batteries are stored in a thermostatic chamber that repeats temperature changes of −10 ° C. and 60 ° C. every 30 minutes for 3 days. Whether or not the strong alkaline liquid in the inside of the can and the sealing body had oozed out was examined using a cresol red liquid as an alkaline identification liquid. Table 2 shows the results.

Figure 2007207765
Figure 2007207765

この表を見ればわかるように、本発明の実施例5〜7で得られたアルカリ乾電池では、温度変化の激しい環境の下で一定期間保管した後においてもいずれも漏液が全く認められなかった。これに対して、比較例3で得られたアルカリ乾電池では、サンプルとして用いた100個すべてに液漏れが認められ、最も良好な耐漏液性を示した比較例6のアルカリ乾電池でも、サンプル100個のうち2個には液漏れが生じているのが認められた。   As can be seen from this table, in the alkaline dry batteries obtained in Examples 5 to 7 of the present invention, no leakage was observed at all even after being stored for a certain period of time in an environment where the temperature change was severe. . On the other hand, in the alkaline battery obtained in Comparative Example 3, liquid leakage was observed in all 100 samples used as samples, and even in the alkaline battery of Comparative Example 6 that showed the best leakage resistance, 100 samples. Two of them were found to have leaked.

以上のように、本発明によれば、樹脂製の封口体を備えた筒形アルカリ乾電池において、封口体を内周から支える支持手段として、負極端子を兼ねる金属板1枚だけを使用し、同時にこれの外周部に所定の湾曲部分を形成したことにより、電池の実質的な内容積を増大させることができるでけでなく、封口部分における耐漏液性(液密性もしくはシール性)も高めることができる。これにより、高容量で、しかも温度変化等があった場合においても液漏れの生じないアルカリ乾電池を実現できることとなる。   As described above, according to the present invention, in the cylindrical alkaline battery provided with the resin sealing body, as the supporting means for supporting the sealing body from the inner periphery, only one metal plate that also serves as the negative electrode terminal is used. By forming a predetermined curved portion on the outer periphery of this, not only can the substantial internal volume of the battery be increased, but also leakage resistance (liquid tightness or sealing performance) at the sealing portion is improved. Can do. As a result, it is possible to realize an alkaline battery that has a high capacity and does not leak even when there is a temperature change or the like.

本発明を適用したアルカリ乾電池の全体構造を示す断面図である。It is sectional drawing which shows the whole structure of the alkaline dry battery to which this invention is applied. 図1の単三形アルカリ乾電池の封口部分を拡大して示す部分拡大図である。It is the elements on larger scale which expand and show the sealing part of the AA alkaline battery of FIG. 本発明で用いられる負極端子板(金属板)の一例を示す平面図である。It is a top view which shows an example of the negative electrode terminal plate (metal plate) used by this invention. 図3の負極端子板の断面構造を示す縦断面図である。It is a longitudinal cross-sectional view which shows the cross-section of the negative electrode terminal plate of FIG. 負極端子板の他の一例を示すもので、その周辺部分の構造を一部省略および簡略化して示す断面図である。FIG. 10 is a cross-sectional view showing another example of the negative electrode terminal plate, partially omitting and simplifying the structure of the peripheral portion thereof. 負極端子板の別の例を示すもので、その周辺部分の構造を一部省略および簡略化して示す断面図である。It is sectional drawing which shows another example of a negative electrode terminal board, and abbreviate | omitted and simplified the structure of the peripheral part. 負極端子板のさらに別の例を示すもので、その周辺部分の構造を一部省略および簡略化して示す断面図である。It is sectional drawing which shows another example of a negative electrode terminal board, and abbreviate | omitted and simplified the structure of the peripheral part. 本発明の比較例3で用いた金属板の周辺部分の構造を一部省略および簡略化して示す断面図である。It is sectional drawing which abbreviate | omits and simplifies and shows the structure of the peripheral part of the metal plate used in the comparative example 3 of this invention. 本発明の比較例4で用いた金属板の周辺部分の構造を一部省略および簡略化して示す断面図である。It is sectional drawing which abbreviate | omits and simplifies and shows the structure of the peripheral part of the metal plate used in the comparative example 4 of this invention. 本発明の比較例6で用いた金属板の周辺部分の構造を一部省略および簡略化して示す断面図である。It is sectional drawing which abbreviate | omits and simplifies and shows the structure of the peripheral part of the metal plate used in the comparative example 6 of this invention. 従来のアルカリ乾電池(単三形アルカリ乾電池)の一般的な構造を示す断面図である。It is sectional drawing which shows the general structure of the conventional alkaline battery (AA alkaline battery). 図11のアルカリ乾電池における封口部分を拡大して示す部分拡大図である。It is the elements on larger scale which expand and show the sealing part in the alkaline dry battery of FIG. 従来のアルカリ乾電池(単三形)において封口体の連結部が金属板(金属ワッシャ)のガス抜き孔を塞いだ状態を示す模式図である。It is a schematic diagram which shows the state which the connection part of the sealing body block | closed the vent hole of a metal plate (metal washer) in the conventional alkaline battery (AA size).

符号の説明Explanation of symbols

1 外装缶
1a 外装缶の開口端部
2 正極
3 セパレータ
4 負極
5 集電棒
6 樹脂製封口体
7 負極端子板(金属板、支持手段)
77 端子面
78 鍔面
78a 鍔面平坦部
78b 湾曲部
r 平均曲率半径
DESCRIPTION OF SYMBOLS 1 Outer can 1a Open end 2 of outer can 2 Positive electrode 3 Separator 4 Negative electrode 5 Current collecting rod 6 Resin sealing body 7 Negative electrode terminal board (metal plate, support means)
77 Terminal surface 78 ridge surface 78a ridge surface flat portion 78b curved portion r average radius of curvature

Claims (3)

有底円筒状の外装缶の内部に、正極および負極と、これらの間に配置されるセパレータと、電解液とを収容し、外装缶の開口端部内に、樹脂製封口体とこれを内周から支える支持手段とを装着して、外装缶と支持手段とで樹脂製封口体を締め付けることにより外装缶の開口端部を封口したアルカリ乾電池であって、
前記支持手段として、負極端子板を兼ねた1枚の金属板が使用されており、この金属板の外周部には全周にわたって、外装缶との間で樹脂製封口体を挟持する部分として、当該金属板をこれの中心を通って厚み方向に切断したときの断面において平均曲率半径1mm以下の湾曲部が設けられていることを特徴とするアルカリ乾電池。
Inside the bottomed cylindrical outer can, the positive electrode and the negative electrode, the separator disposed between them, and the electrolytic solution are accommodated, and the resin sealing body and the inner periphery are disposed in the opening end of the outer can. An alkaline dry battery in which the opening end of the outer can is sealed by fastening the resin sealing body with the outer can and the supporting means.
As the support means, a single metal plate that also serves as a negative electrode terminal plate is used, and as a part that sandwiches the resin sealing body with the outer can over the entire outer periphery of the metal plate, An alkaline battery characterized in that a curved portion having an average curvature radius of 1 mm or less is provided in a cross section when the metal plate is cut in the thickness direction through the center of the metal plate.
有底円筒状の外装缶の内部に、正極および負極と、これらの間に配置されるセパレータと、電解液とを収容し、外装缶の開口端部内に、樹脂製封口体とこれを内周から支える支持手段とを装着して、外装缶と支持手段とで樹脂製封口体を締め付けることにより外装缶の開口端部を封口したアルカリ乾電池であって、
前記支持手段として、負極端子板を兼ねた1枚の金属板が使用されており、
この金属板の外周部には全周にわたって、外装缶との間で樹脂製封口体を挟持する部分として、当該金属板をこれの中心を通って厚み方向に切断したときの断面において平均曲率半径が1mm以下で、かつ90度より大きい角度範囲にわたって湾曲形成された湾曲部が設けられていることを特徴とするアルカリ乾電池。
Inside the bottomed cylindrical outer can, the positive electrode and the negative electrode, the separator disposed between them, and the electrolytic solution are accommodated, and the resin sealing body and the inner periphery are disposed in the opening end of the outer can. An alkaline dry battery in which the opening end of the outer can is sealed by fastening the resin sealing body with the outer can and the supporting means.
As the support means, a single metal plate that also serves as a negative electrode terminal plate is used,
The average curvature radius in the cross section when the metal plate is cut in the thickness direction through the center of the metal plate as a part sandwiching the resin sealing body with the outer can over the entire outer periphery of the metal plate. The alkaline dry battery is characterized in that a curved portion is formed which is curved over an angle range of 1 mm or less and greater than 90 degrees.
湾曲部は、金属板をこれの中心を通って厚み方向に切断したときの断面において樹脂製封口体と90度より大きい角度範囲にわたって接触している、請求項1または2記載のアルカリ乾電池。   3. The alkaline dry battery according to claim 1, wherein the curved portion is in contact with the resin sealing member over an angle range larger than 90 degrees in a cross section when the metal plate is cut in the thickness direction through the center of the metal plate.
JP2007072431A 2000-09-01 2007-03-20 Alkaline battery Expired - Lifetime JP4958161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007072431A JP4958161B2 (en) 2000-09-01 2007-03-20 Alkaline battery

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2000266337 2000-09-01
JP2000266336 2000-09-01
JP2000266337 2000-09-01
JP2000266336 2000-09-01
JP2000267701 2000-09-04
JP2000267701 2000-09-04
JP2007072431A JP4958161B2 (en) 2000-09-01 2007-03-20 Alkaline battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001244779A Division JP4853935B2 (en) 2000-09-01 2001-08-10 Alkaline battery

Publications (2)

Publication Number Publication Date
JP2007207765A true JP2007207765A (en) 2007-08-16
JP4958161B2 JP4958161B2 (en) 2012-06-20

Family

ID=38487001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007072431A Expired - Lifetime JP4958161B2 (en) 2000-09-01 2007-03-20 Alkaline battery

Country Status (1)

Country Link
JP (1) JP4958161B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505516A (en) * 2009-04-27 2012-03-01 コリア エレクトロテクノロジー リサーチ インスティテュート Pressed cylindrical metal-air battery
JPWO2018225394A1 (en) * 2017-06-07 2020-03-19 株式会社村田製作所 Secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59132558A (en) * 1983-12-29 1984-07-30 Matsushita Electric Ind Co Ltd Battery
JPS6065976U (en) * 1983-10-14 1985-05-10 富士電気化学株式会社 alkaline battery
JPS63125367U (en) * 1987-02-06 1988-08-16

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6065976U (en) * 1983-10-14 1985-05-10 富士電気化学株式会社 alkaline battery
JPS59132558A (en) * 1983-12-29 1984-07-30 Matsushita Electric Ind Co Ltd Battery
JPS63125367U (en) * 1987-02-06 1988-08-16

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012505516A (en) * 2009-04-27 2012-03-01 コリア エレクトロテクノロジー リサーチ インスティテュート Pressed cylindrical metal-air battery
JPWO2018225394A1 (en) * 2017-06-07 2020-03-19 株式会社村田製作所 Secondary batteries, battery packs, electric vehicles, power storage systems, power tools and electronic devices

Also Published As

Publication number Publication date
JP4958161B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4853935B2 (en) Alkaline battery
US6991872B2 (en) End cap seal assembly for an electrochemical cell
US6620543B2 (en) Electrochemical cell having can vent and cover terminal
US6025090A (en) End cap assembly for an alkaline cell
JP4615215B2 (en) Electrochemical battery end cap assembly
JP4958162B2 (en) Alkaline battery
JP4958161B2 (en) Alkaline battery
WO2007010669A1 (en) Alkaline battery
US6348281B1 (en) Electrochemical cell having venting cover
US6270918B1 (en) Low profile ventable seal for an electrochemical cell
US6060192A (en) Collector assembly for an electrochemical cell including an integral seal/inner cover
JP4958163B2 (en) Alkaline battery
US20080241678A1 (en) Electrochemical cell having low volume collector assembly
JP4789442B2 (en) Battery seal and battery
JP2006202637A (en) Alkaline battery
US6300006B1 (en) Electrochemical cell having seal and cover assembly
JP2002075315A (en) Alkaline dry battery
JP2825868B2 (en) Cylindrical alkaline battery
JPH0415581B2 (en)
JP4452449B2 (en) Alkaline battery
JP4288540B2 (en) Cylindrical alkaline battery
JP2023127980A (en) Battery and battery manufacturing method
JP2003051295A (en) Alkaline dry cell
JP2000040496A (en) Sealed battery
JP4303938B2 (en) Cylindrical battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080415

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110519

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120314

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120314

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958161

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250