JPH07320633A - Semiconductor spin polarized electron source - Google Patents

Semiconductor spin polarized electron source

Info

Publication number
JPH07320633A
JPH07320633A JP11522194A JP11522194A JPH07320633A JP H07320633 A JPH07320633 A JP H07320633A JP 11522194 A JP11522194 A JP 11522194A JP 11522194 A JP11522194 A JP 11522194A JP H07320633 A JPH07320633 A JP H07320633A
Authority
JP
Japan
Prior art keywords
substrate
spin
semiconductor
electron source
strained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11522194A
Other languages
Japanese (ja)
Other versions
JP2606131B2 (en
Inventor
Toshio Baba
寿夫 馬場
Masashi Mizuta
正志 水田
Tsunehiko Omori
恒彦 大森
Yoshimasa Kurihara
良将 栗原
Tsutomu Nakanishi
彊 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11522194A priority Critical patent/JP2606131B2/en
Priority to DE1995624806 priority patent/DE69524806T2/en
Priority to EP95107677A priority patent/EP0684624B1/en
Publication of JPH07320633A publication Critical patent/JPH07320633A/en
Priority to US08/807,216 priority patent/US5877510A/en
Application granted granted Critical
Publication of JP2606131B2 publication Critical patent/JP2606131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/34Photo-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2203/00Electron or ion optical arrangements common to discharge tubes or lamps
    • H01J2203/02Electron guns
    • H01J2203/0296Spin-polarised beams

Landscapes

  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

PURPOSE:To provide a semiconductor spin polarized electron source from which a large quantity of electrons having high spin polarized degree can be emitted by forming a p-type conductive strained super lattice structure with no lattice relaxation and composed of reciprocally formed well layers and barrier layers as a spin polarized electron generating region on a substrate. CONSTITUTION:A block layer 4 (p-Al0.35Ga0.65As) with smaller electron affinity than that of a substrate 1 is formed on the substrate 1 (p-GaAs). As a spin polarized electron generating region, strained well layers 8 (p-In0.15Ga0.85As) having larger lattice constants than those of the substrate 1 and thickness about electron wavelength or thinner and barrier layers 6 (p-GaAs) having lower valence electron band energy than that of the strained well layers 8 and thickness thin enough to transmit electrons in conduction band can permeate by tunnel effect are reciprocally formed to compose a p-type conductive short cycle strained super lattice structure with no lattice relaxation. Moreover, a surface layer 7 (p<+>-In0.15Ga0.85As) to absorb the curve of the bands is formed on these layers.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はスピン偏極度の大きな電
子を大きな電流密度で引き出すことができる半導体スピ
ン偏極電子源の構造に関するものである。スピン偏極電
子源の利用分野としては例えば、素粒子研究において重
要な装置である電子・陽電子線形衝突型加速器に装着さ
れる電子源がある。加速器では、電子源として、スピン
偏極した電子が取り出せるものが望まれている。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a semiconductor spin-polarized electron source capable of extracting electrons having a large spin polarization at a large current density. The field of application of the spin-polarized electron source is, for example, an electron source attached to an electron-positron linear collision type accelerator, which is an important device in elementary particle research. In the accelerator, an electron source that can take out spin-polarized electrons is desired.

【0002】[0002]

【従来の技術】スピン偏極した電子を取り出すための半
導体スピン偏極電子源として半導体自身のバンド構造を
利用したものが例えばランペル(G.Lanpel)ら
により、ソリッド・ステート・コミュニケーション(S
olid State Communication,
Vol.16,p.877,1975)に記載されてい
る。この半導体スピン偏極電子源はp型のGaAs表面
に負の電子親和力を生じるセシュウム(Cs)と酸素
(O)の交互積層多層膜を堆積したものであり、GaA
sの禁止帯幅程度のエネルギーの円偏光したレーザー光
を照射することにより、最大50%のスピン偏極度を持
つ電子を半導体の外へ引き出すことができる。GaAs
は重い正孔と軽い正孔のバンドが縮退した価電子帯構造
を持ち、これらのバンドから伝導帯に励起される電子の
下向きスピンと上向きスピンの比は遷移確率の違いから
3対1となる。このため、最大50%の偏極度が得られ
る。
2. Description of the Related Art As a semiconductor spin-polarized electron source for taking out spin-polarized electrons, a semiconductor spin-polarized electron source utilizing a band structure of the semiconductor itself has been disclosed by G. Lanpel et al.
solid state communication,
Vol. 16, p. 877, 1975). This semiconductor spin-polarized electron source is a p-type GaAs surface on which an alternating multilayered film of cesium (Cs) and oxygen (O) that produces a negative electron affinity is deposited.
By irradiating a circularly polarized laser beam having an energy of about s band gap, electrons having a spin polarization of 50% at the maximum can be extracted to the outside of the semiconductor. GaAs
Has a valence band structure in which bands of heavy holes and light holes are degenerate, and the ratio of the downward spin to the upward spin of the electrons excited in the conduction band from these bands is 3: 1 due to the difference in transition probability. . Therefore, a maximum polarization of 50% is obtained.

【0003】さらに100%に迫る高い偏極度を得るた
めには、この価電子帯の縮退を解く必要がある。このた
め、歪結晶を利用したものや、短周期の半導体超格子を
利用したものが提案されている。
In order to obtain a high polarization degree approaching 100%, it is necessary to solve the degeneracy of the valence band. Therefore, there have been proposed one using a strained crystal and one utilizing a short-period semiconductor superlattice.

【0004】歪結晶を用いた半導体スピン偏極電子源は
例えば中西らによるフィジックス・レターズ(Phys
ics Letters A,Vol.158,p.3
45,1991)に記載されている。図2に歪結晶を用
いた半導体スピン偏極電子源の構造を示す。p−GaA
s基板1上に格子定数がGaAsより大きく格子緩和を
起こしているp−GaPAs格子緩和層2、その上に格
子緩和を起こさず歪の入った薄いp−GaAs歪層3を
設けている。最上部のGaAs歪層3にはGaPAs格
子緩和層2の格子に合うように面内方向に圧縮応力が働
いており、GaAs価電子帯の重い正孔のバンドと軽い
正孔のバンドは縮退が解ける。その結果、重い正孔のバ
ンドがエネルギー的に高くなり、励起光のエネルギーを
この重い正孔のバンドから伝導帯までのエネルギーに選
ぶと、重い正孔のバンドの電子だけが励起され、スピン
が完全にそろった電子が得られる。したがって、原理的
には100%の偏極度を得ることができる。実際には熱
エネルギーによるバンドの広がりや歪結晶内部でのスピ
ン散乱などにより取り出せる電子のスピン偏極度は低く
なるが、表面にCsとOの交互積層多層膜を積層して表
面からでてくる電子の偏極度を測定した結果、80%を
越える高い偏極度が得られている。
A semiconductor spin-polarized electron source using a strained crystal is, for example, Physics Letters (Phys) by Nakanishi et al.
ics Letters A, Vol. 158, p. Three
45, 1991). FIG. 2 shows the structure of a semiconductor spin-polarized electron source using a strained crystal. p-GaA
A p-GaPAs lattice relaxation layer 2 having a lattice constant larger than that of GaAs and having lattice relaxation is provided on the s substrate 1, and a strained thin p-GaAs strain layer 3 without lattice relaxation is provided thereon. Compressive stress acts in the in-plane direction on the uppermost GaAs strained layer 3 so as to match the lattice of the GaPAs lattice relaxation layer 2, and the heavy hole band and the light hole band of the GaAs valence band degenerate. Can be solved. As a result, the heavy hole band becomes energetically high, and when the energy of the excitation light is selected as the energy from this heavy hole band to the conduction band, only the electrons in the heavy hole band are excited and the spin You can get the perfect electron. Therefore, in principle, 100% polarization can be obtained. Actually, the spin polarization degree of electrons that can be taken out becomes low due to band broadening due to thermal energy and spin scattering inside the strained crystal. However, electrons coming out of the surface by laminating alternating multilayer films of Cs and O on the surface. As a result of measuring the polarization degree of the above, a high polarization degree exceeding 80% was obtained.

【0005】短周期の半導体超格子を用いた半導体スピ
ン偏極電子源は例えば大森らによりフィジカル・レビュ
ー・レターズ(Physical Review Le
tters,Vol.67,p.3291,1991)
に記載されている。図3に半導体超格子を用いた半導体
スピン偏極電子源の構造を示す。p−GaAs基板1上
に、基板で励起された電子がその上の超格子層に行かな
いようにする禁止帯幅の広いp−AlGaAsブロック
層4、電子の波長以下の厚さのp−GaAsウェル層5
と電子がトンネル効果で透過できる厚さのp−AlGa
Asバリア層6の積層構造からなる短周期超格子、表面
のバンドの曲がりを薄い領域で吸収する高濃度ドープの
+ −GaAs表面層7を設けている。超格子構造中で
は量子効果によりミニバンドが形成されるが、このとき
価電子帯の重い正孔のバンドと軽い正孔のバンドは有効
質量の大きな差によりエネルギー位置が異なり、縮退が
解ける。その結果、歪結晶と同様に重い正孔のバンドが
エネルギー的に高くなり、励起光のエネルギーをこの重
い正孔のバンドから伝導帯までのエネルギーに選ぶと、
重い正孔のバンドの電子だけが励起され、スピンが完全
にそろった電子が得られる。したがって、原理的には1
00%の偏極度を得ることができる。実際に、表面にC
sO多層膜を積層して表面からでてくる電子の偏極度を
測定した結果、70%を越える高い偏極度が得られてい
る。
A semiconductor spin-polarized electron source using a semiconductor superlattice having a short period is described by, for example, Omori et al. In Physical Review Letters.
tters, Vol. 67, p. 3291, 1991)
It is described in. FIG. 3 shows the structure of a semiconductor spin-polarized electron source using a semiconductor superlattice. On the p-GaAs substrate 1, a p-AlGaAs block layer 4 having a wide bandgap for preventing electrons excited by the substrate from going to the superlattice layer thereon, and p-GaAs having a thickness equal to or less than the wavelength of electrons. Well layer 5
P-AlGa with a thickness that allows electrons and electrons to tunnel through
A short-period superlattice having a laminated structure of the As barrier layer 6 and a highly-doped p + -GaAs surface layer 7 that absorbs the bending of the surface band in a thin region are provided. In the superlattice structure, a miniband is formed by the quantum effect. At this time, the heavy hole band and the light hole band in the valence band have different energy positions due to a large difference in effective mass, and degeneration can be resolved. As a result, the band of heavy holes becomes energetically high as in the strained crystal, and if the energy of excitation light is selected as the energy from the band of heavy holes to the conduction band,
Only the electrons in the heavy hole band are excited, and electrons with completely uniform spins are obtained. Therefore, in principle 1
A polarization of 00% can be obtained. Actually, C on the surface
As a result of measuring the polarization of electrons emitted from the surface by stacking sO multilayer films, a high polarization exceeding 70% was obtained.

【0006】[0006]

【発明が解決しようとする課題】半導体スピン偏極電子
源としては、スピンのそろった電子を得るための100
%に近い偏極度と、大電流をとるための高い量子効率の
両立が望まれる。しかし、従来例のGaAs結晶や超格
子構造では量子効率は比較的高いものの偏極度が十分で
なく、歪結晶では大きな偏極度を持つものの結晶欠陥の
存在や歪層厚を厚くできないために量子効率が0.5%
以下と低く、両方の要求を満足するものはなかった。し
たがって、大きなスピン偏極度と高い量子効率を合わせ
持つ半導体スピン偏極電子源の開発が望まれる。
A semiconductor spin-polarized electron source is a semiconductor spin-polarized electron source for obtaining spin-uniform electrons.
%, And a high quantum efficiency for obtaining a large current is desired. However, in the conventional GaAs crystal and superlattice structure, the quantum efficiency is relatively high, but the degree of polarization is not sufficient. In the strained crystal, although the degree of polarization is large, the existence of crystal defects and the strained layer thickness cannot be increased. Is 0.5%
It was as low as or less, and none satisfied both requirements. Therefore, it is desired to develop a semiconductor spin-polarized electron source having both high spin polarization and high quantum efficiency.

【0007】本発明の目的は、従来よりも大きなスピン
偏極度と高い量子効率を兼ね合わせた半導体スピン偏極
電子源を提供することにある。
An object of the present invention is to provide a semiconductor spin-polarized electron source which has both higher spin polarization and higher quantum efficiency than ever before.

【0008】[0008]

【課題を解決するための手段】本発明の半導体スピン偏
極電子源は、基板上に少なくともスピン偏極電子の発生
領域として、基板の格子定数よりも大きな格子定数を有
し電子波長程度以下の厚さのウェル層と、ウェル層より
も価電子帯エネルギーが低く伝導帯の電子がトンネル効
果で透過できる厚さのバリア層との交互積層からなる格
子緩和のないp型伝導の歪超格子構造を含むことを特徴
としている。
The semiconductor spin-polarized electron source of the present invention has a lattice constant larger than the lattice constant of the substrate as an area where at least spin-polarized electrons are generated on the substrate, and the spin-polarized electron source has an electron wavelength of not more than about the electron wavelength. Strained superlattice structure of p-type conduction without lattice relaxation, which is composed of an alternating stack of a well layer having a thickness and a barrier layer having a valence band energy lower than that of the well layer and allowing conduction band electrons to pass through by a tunnel effect. It is characterized by including.

【0009】[0009]

【作用】本発明の半導体スピン偏極電子源においては、
超格子構造のウェル層に圧縮応力が加わることにより、
超格子構造で生じていた価電子帯の重い正孔と軽い正孔
のバンドのエネルギー差がさらに広がる。このため、重
い正孔のバンドにある電子だけを選択的に伝導帯に光励
起することが容易になり、大きな量子効率と共に従来構
造スピン偏極電子源よりも高いスピン偏極度を持つ電子
を取り出すことができる。
In the semiconductor spin polarized electron source of the present invention,
By applying compressive stress to the well layer of the superlattice structure,
The energy difference between the heavy hole and light hole bands in the valence band generated in the superlattice structure is further widened. For this reason, it becomes easy to selectively excite only the electrons in the heavy hole band into the conduction band, and to extract the electrons having high quantum efficiency and higher spin polarization than the conventional spin-polarized electron source. You can

【0010】[0010]

【実施例】以下、本発明について実施例を示す図面を参
照して詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings showing embodiments.

【0011】図1は本発明の実施例の層構造を示す模式
図である。図1において、図2および図3と同じ記号は
図2および図3と同等物で同一機能を果たすものであ
り、8は基板の格子定数よりも大きな格子定数を有し面
内に圧縮応力が加わっている電子波長程度以下の厚さの
歪ウェル層である。
FIG. 1 is a schematic view showing the layer structure of an embodiment of the present invention. In FIG. 1, the same symbols as those in FIGS. 2 and 3 are the same as those in FIGS. 2 and 3 and perform the same functions. Reference numeral 8 has a lattice constant larger than that of the substrate and compressive stress in the plane is It is a strained well layer having a thickness equal to or less than the applied electron wavelength.

【0012】(第1の実施例)本発明の第1の実施例の
半導体スピン偏極電子源の動作について、基板1にp−
GaAs、ブロック層4にp−Al0.35Ga0.65As、
歪ウェル層8にp−In0.15Ga0.85As、バリア層6
にp−GaAs、表面層7にp+ −In0.15Ga0.85
sを例に説明する。
(First Embodiment) Regarding the operation of the semiconductor spin-polarized electron source of the first embodiment of the present invention, p-
GaAs, p-Al 0.35 Ga 0.65 As on the block layer 4,
The strained well layer 8 has p-In 0.15 Ga 0.85 As and the barrier layer 6
On the surface layer 7 and p + -In 0.15 Ga 0.85 A on the surface layer 7.
s will be described as an example.

【0013】歪ウェル層8は基板1およびバリア層6よ
りも格子定数が大きいため、格子を合わせるために面内
方向に圧縮応力が加わり歪ウェル層の積層方向の格子は
長くなるように歪む。その結果、価電子帯の縮退が解
け、重い正孔のバンドと軽い正孔のバンドのエネルギー
が異なるようになる。どちらのエネルギーが高くなるか
は歪の方向に依存するが、この場合には、軽い正孔のバ
ンドが重い正孔のバンドよりも低いエネルギー位置にく
る。
Since the strained well layer 8 has a larger lattice constant than the substrate 1 and the barrier layer 6, a compressive stress is applied in the in-plane direction to match the lattice, and the strained well layer is distorted so that the lattice in the stacking direction becomes long. As a result, the degeneracy of the valence band is released, and the heavy hole band and the light hole band have different energies. Which energy becomes higher depends on the direction of strain, but in this case, the band of light holes comes to a lower energy position than the band of heavy holes.

【0014】このような歪ウェル層8とバリア層6の積
層からなる短周期の超格子においては、量子効果により
それぞれのバンドのミニバンドが形成される。重い正孔
のミニバンドのエネルギーは、重い正孔の有効質量が大
きいためにエネルギーシフトが顕著ではなく、歪ウェル
層8の重い正孔のバンドのエネルギーより少し小さくな
るだけである。一方、軽い正孔のミニバンドはその有効
質量が小さいためにエネルギーシフトが顕著であり、歪
ウェル層8の軽い正孔のバンドのエネルギーよりさらに
大きく低エネルギー側に動く。その結果、重い正孔のミ
ニバンドと軽い正孔のミニバンドのエネルギー差は、単
に格子が歪んでいる場合より広がる。
In a short-period superlattice composed of the strained well layer 8 and the barrier layer 6 stacked as described above, a miniband of each band is formed by the quantum effect. The energy of the heavy hole miniband does not have a significant energy shift due to the large effective mass of the heavy hole, and is only slightly smaller than the energy of the heavy hole band of the strained well layer 8. On the other hand, the light hole miniband has a significant energy shift because of its small effective mass, and moves to the low energy side, which is larger than the light hole band energy of the strained well layer 8. As a result, the energy difference between the heavy-hole miniband and the light-hole miniband is wider than if the lattice were simply distorted.

【0015】このように、歪の入ったウェルを用いた短
周期超格子(単周期歪超格子)においては重い正孔と軽
い正孔のバンドのエネルギー差が異なる歪結晶や歪のな
い短周期超格子よりもさらに大きくなるため、光励起に
よる価電子帯から伝導帯への電子の遷移を重い正孔のミ
ニバンドからだけに限る完全性が高くなる。よって、半
導体内でほぼ100%のスピン偏極電子を生成すること
ができる。
As described above, in a short-period superlattice (single-periodic strained superlattice) using strained wells, a strained crystal or a strainless short-period with a different energy difference between heavy hole band and light hole band. Since it is larger than the superlattice, the electron transition from the valence band to the conduction band by photoexcitation is limited to only from the heavy hole miniband. Therefore, almost 100% of spin-polarized electrons can be generated in the semiconductor.

【0016】伝導帯のミニバンドに励起されたスピン偏
極電子はこのミニバンドを通って表面層7へと拡散して
いくが、この超格子が短周期であるためにミニバンドの
幅は十分に広く、バルク結晶と同様に高い電子移動度を
持つ。このため、スピン偏極電子はスピン散乱を受けな
い短い時間で表面層7へ移動する。表面層7では、大き
な内部電界により電子は加速されて半導体の外に飛び出
してゆく。よって、ほぼ100%のスピン偏極電子を取
り出すことが可能になる。
The spin-polarized electrons excited in the conduction band miniband diffuse through the miniband to the surface layer 7. However, since the superlattice has a short period, the width of the miniband is sufficient. It has wide electron mobility and high electron mobility similar to bulk crystal. Therefore, the spin-polarized electrons move to the surface layer 7 in a short time without being subjected to spin scattering. In the surface layer 7, electrons are accelerated by a large internal electric field and jump out of the semiconductor. Therefore, it is possible to extract almost 100% of spin-polarized electrons.

【0017】また、短周期歪超格子においては基板から
最上層まで格子緩和を起こしていないために結晶欠陥の
発生がほとんどないことにより、励起された電子の再結
合がないことや、歪結晶よりも厚い光吸収領域を構成で
きるため励起光を有効に利用できるため、高い量子効率
も実現される。
Further, in the short period strained superlattice, since lattice relaxation does not occur from the substrate to the uppermost layer, crystal defects are scarcely generated, so that excited electrons are not recombined and strained crystal Since a thick light absorption region can be formed, excitation light can be effectively used, and high quantum efficiency is also realized.

【0018】以上述べたように、本願発明の半導体スピ
ン偏極電子源では100%に近いスピン偏極度の高い電
子を高い量子効率で取り出すことが可能になる。
As described above, the semiconductor spin-polarized electron source of the present invention makes it possible to extract electrons with a high spin polarization degree close to 100% with high quantum efficiency.

【0019】次に本発明の第1の実施例の製造方法につ
いて、動作の説明で用いた材料と同一の材料を用いて説
明する。
Next, the manufacturing method of the first embodiment of the present invention will be described using the same material as that used in the explanation of the operation.

【0020】本発明の素子構造の作製は、結晶成長方法
に分子線エピタキシー法(MBE:Molecular
Beam Epitaxy)を用い、基板温度520
℃で行った。まず、p型GaAs基板1上に厚さ1μm
でBeアクセプタ濃度5×1018cm-3のp−Al0.35
0.65Asブロック層を形成した。続いて、Be濃度5
×1017cm-3で厚さ3.1nmのp−GaAsバリア層と
Be濃度5×1017cm-3で厚さ2.0nmのp−In0.15
Ga0.85As歪ウェル層からなる短周期歪超格子を18
周期(91.8nm)を形成し、最後に、Be濃度4×1
19cm-3で厚さ4.8nmのp+ −In0.15Ga0.85As
表面層を形成した。その後、基板温度を−10℃まで冷
却し、大気中での表面の酸化を抑制するためにAs保護
膜を約1μm 堆積して素子を完成させた。
The device structure of the present invention is produced by a molecular beam epitaxy method (MBE: Molecular) as a crystal growth method.
Beam Epitaxy) and substrate temperature 520
Performed at ° C. First, the thickness is 1 μm on the p-type GaAs substrate 1.
At a Be acceptor concentration of 5 × 10 18 cm -3 p-Al 0.35 G
a 0.65 As block layer was formed. Then, Be concentration 5
× 10 17 cm p-GaAs barrier layer having a thickness of 3.1nm at -3 and Be concentration 5 × 10 17 cm p-In 0.15 thick 2.0nm -3
Ga 0.85 As Strained well layer 18
Period (91.8 nm) is formed, and finally Be concentration is 4 × 1.
0 19 cm -3 and 4.8 nm thick p + -In 0.15 Ga 0.85 As
A surface layer was formed. Then, the substrate temperature was cooled to −10 ° C., and an As protective film was deposited to a thickness of about 1 μm in order to suppress the oxidation of the surface in the atmosphere to complete the device.

【0021】この素子を超高真空の偏極度測定装置に導
入したあと、400℃に加熱して表面のAs保護膜を蒸
発させて除去し清浄表面を得た。その後、負の電子親和
力を得るためのCsとOの多層膜を形成し、測定の準備
を完了した。この素子のスピン偏極度および量子効率を
測定したところ、励起レーザーの波長915nm、CWで
100μWの照射条件において最大のスピン偏極度87
%と量子効率2%が得られ、大きな偏極度と高い量子効
率を同時に満足できた。
This device was introduced into an ultra-high vacuum polarization measuring device and then heated to 400 ° C. to evaporate and remove the As protective film on the surface to obtain a clean surface. After that, a multilayer film of Cs and O for obtaining a negative electron affinity was formed, and the preparation for measurement was completed. The spin polarization and quantum efficiency of this device were measured, and it was found that the maximum spin polarization of 87 was obtained under the irradiation conditions of the excitation laser wavelength of 915 nm and CW of 100 μW.
% And a quantum efficiency of 2% were obtained, and a large degree of polarization and a high quantum efficiency could be satisfied at the same time.

【0022】(第2の実施例)本発明の第2の実施例の
半導体スピン偏極電子源の動作について、構造図に図1
を用い、基板1にp−GaAs、ブロック層4にp−A
0.35Ga0.65As、歪ウェル層8にp−In0.15Ga
0.85As、バリア層6にp−Al0.35Ga0.65As、表
面層7にp+ −In0.15Ga0.85Asを例に説明する。
(Second Embodiment) The operation of the semiconductor spin-polarized electron source according to the second embodiment of the present invention is shown in the structural diagram in FIG.
Using p-GaAs for the substrate 1 and p-A for the blocking layer 4.
0.35 Ga 0.65 As, p-In 0.15 Ga in the strained well layer 8.
0.85 As, described barrier layer 6 p-Al 0.35 Ga 0.65 As , the surface layer 7 of p + -In 0.15 Ga 0.85 As an example.

【0023】バリア層6に基板1よりも禁止帯幅の広い
AlGaAsを用いるために、重い正孔のミニバンドと
軽い正孔のミニバンドのエネルギー差が第1の実施例よ
りも大きくなり、第1の実施例よりもさらにスピン偏極
度が改善される。
Since AlGaAs having a wider bandgap than the substrate 1 is used for the barrier layer 6, the energy difference between the heavy-hole miniband and the light-hole miniband is larger than that in the first embodiment. The spin polarization is further improved as compared with the first embodiment.

【0024】本発明の第2の実施例の製造方法は第1の
実施例とほとんど同じである。バリア層6としてBe濃
度5×1017cm-3で厚さ3.1nmのp−Al0.35Ga
0.65Asを用いてその他は第1の実施例と同じとした。
この素子のスピン偏極度および量子効率を測定したとこ
ろ、励起レーザーの波長830nm、CWで100μWの
照射条件において最大のスピン偏極度90%と量子効率
2%が得られ、第1の実施例よりも大きな偏極度が得ら
れ、高性能化が図れた。
The manufacturing method of the second embodiment of the present invention is almost the same as that of the first embodiment. As the barrier layer 6, p-Al 0.35 Ga having a Be concentration of 5 × 10 17 cm -3 and a thickness of 3.1 nm is used.
0.65 As was used, and otherwise the same as in the first embodiment.
When the spin polarization and the quantum efficiency of this device were measured, the maximum spin polarization of 90% and the quantum efficiency of 2% were obtained under the irradiation condition of the excitation laser wavelength of 830 nm and CW of 100 μW, which was higher than that of the first embodiment. A large degree of polarization was obtained and high performance was achieved.

【0025】(第3の実施例)本発明の第3の実施例の
半導体スピン偏極電子源の動作について、構造図に図1
を用い、基板1にp−GaAs、ブロック層4にp−A
0.35Ga0.65As、歪ウェル層8にp−In0.15Ga
0.85As、バリア層6にp−GaP0.2 As0. 8 、表面
層7にp+ −In0.15Ga0.85Asを例に説明する。
(Third Embodiment) FIG. 1 is a structural diagram showing the operation of a semiconductor spin-polarized electron source according to a third embodiment of the present invention.
Using p-GaAs for the substrate 1 and p-A for the blocking layer 4.
0.35 Ga 0.65 As, p-In 0.15 Ga in the strained well layer 8.
0.85 As, p-GaP 0.2 As 0. 8 to the barrier layer 6 will be described on the surface layer 7 of p + -In 0.15 Ga 0.85 As an example.

【0026】バリア層6にGaAs基板1よりも格子定
数が小さなGaP0.2 As0.8 を用いるために、GaA
s基板よりも格子定数の大きなIn0.15Ga0.85As歪
ウェルとの組み合わせの短周期超格子においては、平均
の格子定数がGaAs基板とほぼ等しくなり、短周期超
格子の厚さをいくら厚くしても格子緩和を生じない。こ
のため、短周期超格子の厚さを厚くすることにより第1
や第2の実施例よりも量子効率の改善が図れる。
Since GaP 0.2 As 0.8 having a lattice constant smaller than that of the GaAs substrate 1 is used for the barrier layer 6,
In the short period superlattice in combination with the In 0.15 Ga 0.85 As strain well having a larger lattice constant than the s substrate, the average lattice constant is almost equal to that of the GaAs substrate, and the thickness of the short period superlattice is increased. Also does not cause lattice relaxation. Therefore, by increasing the thickness of the short period superlattice, the first
Further, the quantum efficiency can be improved as compared with the second embodiment.

【0027】本発明の第3の実施例の製造方法は第1の
実施例と同じである。バリア層6としてBe濃度5×1
17cm-3で厚さ3.1nmのp−GaP0.2 As0.8 を用
いて、短周期超格子全体の厚さを300nmと厚くし、そ
の他は第1実施例と同じとした。この素子のスピン偏極
度および量子効率を測定したとろ、励起レーザーの波長
880nm、CWで100μWの照射条件において最大の
スピン偏極度88%と量子効率4%が得られ、第1や第
2の実施例よりも大きな偏極度が得られ、高性能化が図
れた。
The manufacturing method of the third embodiment of the present invention is the same as that of the first embodiment. Be concentration 5 × 1 as the barrier layer 6
0 17 with p-GaP 0.2 As 0.8 thick 3.1nm in cm -3, the thickness of the entire short-period superlattice is as thick as 300 nm, others were the same as the first embodiment. When the spin polarization and quantum efficiency of this device were measured, the maximum spin polarization of 88% and quantum efficiency of 4% were obtained under the excitation laser wavelength of 880 nm and CW irradiation of 100 μW. Greater polarization than the example was obtained and high performance was achieved.

【0028】(第4の実施例)本発明の第4の実施例の
半導体スピン偏極電子源の動作について、構造図に図1
を用い、基板1にp−GaAs、ブロック層4にp−G
aAs、歪ウェル層8にアンドープのi−In0.15Ga
0.85As、バリア層6にp−GaAs、表面層7にp+
−In0.15Ga0.85Asを例に説明する。
(Fourth Embodiment) FIG. 1 is a structural diagram showing the operation of the semiconductor spin-polarized electron source according to the fourth embodiment of the present invention.
Using p-GaAs for the substrate 1 and p-G for the block layer 4
undoped i-In 0.15 Ga in the strained well layer 8
0.85 As, p-GaAs for the barrier layer 6, p + for the surface layer 7
Description will be made by taking -In 0.15 Ga 0.85 As as an example.

【0029】歪ウェル層8にイオン化不純物(アクセプ
タ)を含まないため、ここでの不純物に起因する結晶欠
陥による再結合が少なくなる。励起されたスピン偏極電
子はバリア層6よりも歪ウェル層8に存在する確率が大
きいためこの効果は大きく、第1の実施例よりも高い量
子効率が得られる。
Since the strained well layer 8 does not contain ionized impurities (acceptors), recombination due to crystal defects caused by the impurities is reduced. Since the excited spin-polarized electrons have a higher probability of existing in the strained well layer 8 than in the barrier layer 6, this effect is large and a quantum efficiency higher than that in the first embodiment can be obtained.

【0030】本発明の第4の実施例の製造方法は第1の
実施例とほとんど同じである。バリア層6としてBe濃
度5×1017cm-3で厚さ3.1nmのp−Al0.35Ga
0.65As、歪ウェル層8にアンドープで厚さ2.0nmの
i−In0.15Ga0.85Asを用いてその他は第1実施例
と同じとした。この素子のスピン偏極度および量子効率
を測定したとろ、励起レーザーの波長915nm、CWで
100μWの照射条件においてスピン偏極度87%と量
子効率3%が得られ、第1の実施例よりも大きな量子効
率が得られ、高性能化が図れた。
The manufacturing method of the fourth embodiment of the present invention is almost the same as that of the first embodiment. As the barrier layer 6, p-Al 0.35 Ga having a Be concentration of 5 × 10 17 cm -3 and a thickness of 3.1 nm is used.
0.65 As, the strained well layer 8 was undoped, and i-In 0.15 Ga 0.85 As having a thickness of 2.0 nm was used. The spin polarization and quantum efficiency of this device were measured. As a result, a spin polarization of 87% and a quantum efficiency of 3% were obtained under the irradiation condition of the excitation laser wavelength of 915 nm and CW of 100 μW, which was larger than that of the first embodiment. Efficiency was obtained and high performance was achieved.

【0031】(第5の実施例)本発明の第5の実施例の
半導体スピン偏極電子源の動作について、構造図に図1
を用い、基板1にp−GaAs、ブロック層4にp−A
0.35Ga0.65As、歪ウェル層8にp−In0.15Ga
0.85As、バリア層6にアンドープのi−GaAs、表
面層7にp+ −In0.15Ga0.85Asを例に説明する。
(Fifth Embodiment) FIG. 1 is a structural diagram showing the operation of a semiconductor spin-polarized electron source according to a fifth embodiment of the present invention.
Using p-GaAs for the substrate 1 and p-A for the blocking layer 4.
0.35 Ga 0.65 As, p-In 0.15 Ga in the strained well layer 8.
0.85 As, explained undoped i-GaAs barrier layer 6, the surface layer 7 of p + -In 0.15 Ga 0.85 As an example.

【0032】歪ウェル層8だけにアクセプタを含みバリ
ア層6に含まないため、短周期超格子中で空間電荷によ
るバンドの曲がりが生じる。このバンドの曲がりは、正
孔に対する実効的なバリアの高さを大きくするため、重
い正孔と軽い正孔のミニバンドのエネルギー差は第1の
実施例よりも大きくなり、第1の実施例よりも大きなス
ピン偏極度が得られる。
Since only the strained well layer 8 contains the acceptor but not the barrier layer 6, band bending occurs due to space charges in the short period superlattice. The bending of the band increases the effective barrier height for holes, so that the energy difference between the minibands of heavy holes and light holes becomes larger than that in the first embodiment. A larger spin polarization is obtained.

【0033】本発明の第5の実施例の製造方法は第1の
実施例とほとんど同じである。バリア層6としてアンド
ープで厚さ3.1nmのi−GaAs、歪ウェル層8にB
e濃度5×1017cm-3で厚さ2.0nmのp−In0.15
0.85Asを用いてその他は第1の実施例と同じとし
た。この素子のスピン偏極度および量子効率を測定した
ところ、励起レーザーの波長915nm、CWで100μ
Wの照射条件においてスピン偏極度89%と量子効率2
%が得られ、第1の実施例よりも高いスピン偏極度が得
られ、高性能化が図れた。
The manufacturing method of the fifth embodiment of the present invention is almost the same as that of the first embodiment. The barrier layer 6 is undoped i-GaAs having a thickness of 3.1 nm, and the strain well layer 8 is B.
e p-In 0.15 G with a concentration of 5 × 10 17 cm -3 and a thickness of 2.0 nm
a 0.85 As was used, and otherwise the same as in the first embodiment. When the spin polarization and quantum efficiency of this device were measured, the wavelength of the excitation laser was 915 nm and the CW was 100 μ.
Under the irradiation condition of W, the spin polarization degree is 89% and the quantum efficiency is 2.
%, A spin polarization degree higher than that of the first embodiment was obtained, and high performance was achieved.

【0034】以上の本発明の実施例では、基板としてG
aAsしか示さなかったが、InP,InAs,GaS
b,GaPなどの化合物半導体や、Si,Geなどの元
素半導体でもよく、その他の単結晶半導体基板や単結晶
金属基板でもよいことは明らかである。また、歪超格子
の構成半導体として、GaAs,InGaAs,AlG
aAs,GaPAsしか示さなかったが、本発明の条件
を満足するような半導体の組み合わせであればどのよう
な組み合わせも可能であり、InP,InAlAs,I
nAlGaAs,AlGaPAs,GaSb,AlGa
Sb,InAs,GaP,GaN,AsGaNなどの代
表的な化合物半導体やその他の半導体でもよいことは明
らかである。
In the above-described embodiments of the present invention, G is used as the substrate.
Although only aAs was shown, InP, InAs, GaS
Obviously, a compound semiconductor such as b or GaP, an element semiconductor such as Si or Ge, or another single crystal semiconductor substrate or a single crystal metal substrate may be used. Further, as a constituent semiconductor of the strained superlattice, GaAs, InGaAs, AlG
Although only aAs and GaPAs are shown, any combination of semiconductors that satisfies the conditions of the present invention is possible, and InP, InAlAs, I
nAlGaAs, AlGaPAs, GaSb, AlGa
It is obvious that typical compound semiconductors such as Sb, InAs, GaP, GaN, AsGaN, and other semiconductors may be used.

【0035】ブロック層としてはAlGaAsしか示さ
なかったが、基板よりも電子親和力が小さな半導体であ
ればよい。また、表面層としては歪ウェル層の材料であ
るInGaAsしか示さなかったが、バリア層となる材
料でもよく、さらには短周期歪超格子に比べて電子親和
力が極端に小さくないその他の半導体材料でもよい。大
気における酸化の保護膜としてAsしか示さなかった
が、超格子構造が壊れない程度の温度で蒸発するもので
あればよく、SbやInAsなどでもよい。
Although only AlGaAs is shown as the block layer, any semiconductor having an electron affinity smaller than that of the substrate may be used. Although only InGaAs, which is the material of the strained well layer, has been shown as the surface layer, it may be a material that serves as a barrier layer or other semiconductor material whose electron affinity is not extremely small as compared with the short period strained superlattice. Good. Although only As has been shown as a protective film against oxidation in the atmosphere, Sb or InAs may be used as long as it vaporizes at a temperature at which the superlattice structure is not broken.

【0036】本発明の実施例としては第1から第5の実
施例を示したが、これらの組み合わせでも本発明の半導
体スピン偏極電子源が構成できることは明らかである。
例えば、第2から第5の実施例ではバリア層の組成、バ
リア層の歪みの有無、不純物ドーピング位置の3つの要
素の内2つを第1の実施例と同じに固定して1つの要素
だけを変えているが、2つ以上の要素を変えた場合にも
第1の実施例よりも高性能化が図れることは明らかであ
る。
Although the first to fifth embodiments have been shown as the embodiments of the present invention, it is clear that the semiconductor spin-polarized electron source of the present invention can be constituted by a combination thereof.
For example, in the second to fifth embodiments, two of the three elements of the composition of the barrier layer, the presence / absence of strain in the barrier layer, and the impurity doping position are fixed in the same manner as in the first embodiment, and only one element is fixed. However, even if two or more elements are changed, it is clear that higher performance can be achieved as compared with the first embodiment.

【0037】また、歪ウェル層やバリア層をさらに複数
の層に分け、組成やドーピングをそれぞれ異なるものに
してもよいことも明らかである。
It is also clear that the strained well layer and the barrier layer may be further divided into a plurality of layers to have different compositions and dopings.

【0038】[0038]

【発明の効果】本発明の半導体スピン偏極電子源によ
り、大きなスピン偏極度を持つ電子を大量に引き出すこ
とが可能になり、また弱励起光強度で動作するために動
作寿命が長くなる。
According to the semiconductor spin-polarized electron source of the present invention, it is possible to extract a large amount of electrons having a large spin polarization, and the operation life is extended because it operates with weak excitation light intensity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1から第5の実施例を示す短周期歪
超格子の構造図である。
FIG. 1 is a structural diagram of a short period strained superlattice showing first to fifth embodiments of the present invention.

【図2】歪結晶を用いた従来例の構造図である。FIG. 2 is a structural diagram of a conventional example using a strained crystal.

【図3】短周期超格子を用いた従来例の構造図である。FIG. 3 is a structural diagram of a conventional example using a short period superlattice.

【符号の説明】[Explanation of symbols]

1 基板 2 格子緩和層 3 歪層 4 ブロック層 5 ウェル層 6 バリア層 7 表面層 8 歪ウェル層 1 Substrate 2 Lattice Relaxation Layer 3 Strained Layer 4 Block Layer 5 Well Layer 6 Barrier Layer 7 Surface Layer 8 Strained Well Layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗原 良将 茨城県つくば市松代4丁目25番地403棟404 号 (72)発明者 中西 彊 愛知県名古屋市昭和区川名山町128番地の 4 杁中住宅3号棟43号室 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshimasa Kurihara 403, No. 403, 4-25, Matsushiro, Tsukuba City, Ibaraki Prefecture No. 403 No. 404 (72) Inventor Nakanishi, No. 4, No. 128, Kawanayama-cho, Showa-ku, Nagoya, Aichi Prefecture Building No. 43

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】基板上に少なくともスピン偏極電子の発生
領域として、基板の格子定数よりも大きな格子定数を有
し電子波長程度以下の厚さのウェル層と、ウェル層より
も価電子帯エネルギーが低く伝導帯の電子がトンネル効
果で透過できる厚さのバリア層との交互積層からなる格
子緩和のないp型伝導の歪超格子構造を含むことを特徴
とする半導体スピン偏極電子源。
1. A well layer having a lattice constant larger than that of the substrate and having a thickness equal to or less than an electron wavelength as a region for generating spin-polarized electrons on the substrate, and valence band energy higher than that of the well layer. 1. A semiconductor spin-polarized electron source, comprising a strained superlattice structure of p-type conduction without lattice relaxation, which is composed of alternating layers with a barrier layer having a low thickness and a thickness that allows electrons in the conduction band to be transmitted by a tunnel effect.
【請求項2】少なくともバリア層が基板とほぼ同じ格子
定数を有する半導体からなる請求項1記載の半導体スピ
ン偏極電子源。
2. The semiconductor spin-polarized electron source according to claim 1, wherein at least the barrier layer is made of a semiconductor having substantially the same lattice constant as the substrate.
【請求項3】少なくともバリア層が基板より小さな格子
定数を有する半導体からなり、ウェル層とバリア層の平
均の格子定数が基板とほぼ同じである請求項1記載の半
導体スピン偏極電子源。
3. The semiconductor spin polarized electron source according to claim 1, wherein at least the barrier layer is made of a semiconductor having a lattice constant smaller than that of the substrate, and the average lattice constant of the well layer and the barrier layer is substantially the same as that of the substrate.
【請求項4】ウェル層およびバリア層にp型不純物を同
程度に含む請求項1、2または3記載の半導体スピン偏
極電子源。
4. The semiconductor spin polarized electron source according to claim 1, 2 or 3, wherein the well layer and the barrier layer contain p-type impurities in the same amount.
【請求項5】少なくともバリア層の一部にp型不純物を
含み、ウェル層には不純物をほとんど含まない請求項
1、2または3記載の半導体スピン偏極電子源。
5. The semiconductor spin-polarized electron source according to claim 1, 2 or 3, wherein at least a part of the barrier layer contains p-type impurities, and the well layer contains almost no impurities.
【請求項6】少なくともウェル層の一部にp型不純物を
含み、バリア層には不純物をほとんど含まない請求項
1、2または3記載の半導体スピン偏極電子源。
6. The semiconductor spin-polarized electron source according to claim 1, wherein at least a part of the well layer contains a p-type impurity, and the barrier layer contains almost no impurity.
JP11522194A 1994-05-27 1994-05-27 Semiconductor spin-polarized electron source Expired - Fee Related JP2606131B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP11522194A JP2606131B2 (en) 1994-05-27 1994-05-27 Semiconductor spin-polarized electron source
DE1995624806 DE69524806T2 (en) 1994-05-27 1995-05-19 Semiconductor source for spin polarized electrons and device using this source
EP95107677A EP0684624B1 (en) 1994-05-27 1995-05-19 Spin polarized electron semiconductor source and apparatus utilizing the same
US08/807,216 US5877510A (en) 1994-05-27 1997-02-28 Spin polarized electron semiconductor source and apparatus utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11522194A JP2606131B2 (en) 1994-05-27 1994-05-27 Semiconductor spin-polarized electron source

Publications (2)

Publication Number Publication Date
JPH07320633A true JPH07320633A (en) 1995-12-08
JP2606131B2 JP2606131B2 (en) 1997-04-30

Family

ID=14657365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11522194A Expired - Fee Related JP2606131B2 (en) 1994-05-27 1994-05-27 Semiconductor spin-polarized electron source

Country Status (3)

Country Link
EP (1) EP0684624B1 (en)
JP (1) JP2606131B2 (en)
DE (1) DE69524806T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250998A (en) * 2000-03-07 2001-09-14 Univ Tohoku Spin polarization conduction electron generating method and semiconductor element
JP2007258119A (en) * 2006-03-24 2007-10-04 Univ Nagoya Spin polarized electron generator
WO2009119074A1 (en) * 2008-03-25 2009-10-01 国立大学法人名古屋大学 Spin polarized electron source
JP2013235750A (en) * 2012-05-10 2013-11-21 Nagoya Univ Spin polarization electron generating element and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3439994B2 (en) * 1998-07-07 2003-08-25 科学技術振興事業団 Method for synthesizing low-resistance n-type and low-resistance p-type single-crystal AlN thin films

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH575173A5 (en) * 1975-01-13 1976-04-30 Lab Fuer Festkoerperphysik Der
JP3070070B2 (en) * 1990-07-10 2000-07-24 大同特殊鋼株式会社 Polarized electron beam generator
JP3125328B2 (en) * 1991-05-02 2001-01-15 大同特殊鋼株式会社 Polarized electron beam generator
EP0512429B1 (en) * 1991-05-02 1995-01-04 Daido Tokushuko Kabushiki Kaisha Semiconductor device for emitting highly spin-polarized electron beam
JP3189444B2 (en) * 1992-06-30 2001-07-16 大同特殊鋼株式会社 Polarized electron beam generator
US5747862A (en) * 1992-09-25 1998-05-05 Katsumi Kishino Spin-polarized electron emitter having semiconductor opto-electronic layer with split valence band and reflecting mirror
JP3364970B2 (en) * 1992-11-25 2003-01-08 大同特殊鋼株式会社 Polarized electron beam generator
JP3192263B2 (en) * 1993-01-25 2001-07-23 克巳 岸野 Polarized electron beam generator
US5877510A (en) * 1994-05-27 1999-03-02 Nec Corporation Spin polarized electron semiconductor source and apparatus utilizing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001250998A (en) * 2000-03-07 2001-09-14 Univ Tohoku Spin polarization conduction electron generating method and semiconductor element
JP2007258119A (en) * 2006-03-24 2007-10-04 Univ Nagoya Spin polarized electron generator
WO2009119074A1 (en) * 2008-03-25 2009-10-01 国立大学法人名古屋大学 Spin polarized electron source
US8344354B2 (en) 2008-03-25 2013-01-01 National University Corporation Nagoya University Spin-polarized electron source
JP2013235750A (en) * 2012-05-10 2013-11-21 Nagoya Univ Spin polarization electron generating element and method for manufacturing the same

Also Published As

Publication number Publication date
DE69524806T2 (en) 2002-09-19
JP2606131B2 (en) 1997-04-30
EP0684624A1 (en) 1995-11-29
DE69524806D1 (en) 2002-02-07
EP0684624B1 (en) 2002-01-02

Similar Documents

Publication Publication Date Title
Helman et al. Intersubband spectroscopy of doped and undoped GaN/AlN quantum wells grown by molecular-beam epitaxy
Kwok et al. Confinement and electron-phonon interactions of the E 1 exciton in self-organized Ge quantum dots
US8344354B2 (en) Spin-polarized electron source
US5528051A (en) Quantum well infrared detector
WO2014087549A1 (en) Infrared detector
US5877510A (en) Spin polarized electron semiconductor source and apparatus utilizing the same
Kos et al. Different regimes of Förster-type energy transfer between an epitaxial quantum well and a proximal monolayer of semiconductor nanocrystals
Shriram et al. Study on inter band and inter sub-band optical transitions with varying InAs/InGaAs sub-monolayer quantum dot heterostructure stacks grown by molecular beam epitaxy
JP2606131B2 (en) Semiconductor spin-polarized electron source
JPH04226015A (en) Quantum well super conductor having resonance charge coupling
US20100108983A1 (en) Photocathode semiconductor device
DE102015217330A1 (en) Semiconductor device with active field shielded against internal fields
Lan et al. Two-dimensional In0. 4Ga0. 6As/GaAs quantum dot superlattices realized by self-organized epitaxial growth
Wang et al. Growth and optical investigation of strain-induced AlGaAs/GaAs quantum dots using self-organized GaSb islands as a stressor
US20100270592A1 (en) Semiconductor device
He et al. Effects of seed dot layer and thin GaAs spacer layer on the structure and optical properties of upper In (Ga) As quantum dots
Matsuyama et al. High spin polarization of conduction band electrons in Gaas-GaasP strained layer superlattice fabricated as a spin-polarized electron source
JPH06196808A (en) Light-emitting device
Zhang et al. Temperature stabilized 1.55 μ m photoluminescence in InAs quantum dots grown on InAlGaAs/InP
CN108574004B (en) Semiconductor device with infield protection active region
Shen et al. Optical properties of quaternary GaInAsSb/AlGaAsSb strained quantum wells
Hosoda et al. Avalanche breakdown mechanism originating from Γ–X–Γ transfer in GaAs/AlAs superlattices
Zhao et al. Magnetic-field-induced localization effects on radiative recombination in GaAs/Al x Ga 1− x As heterostructures
JPH10209430A (en) In-solid electron transfer method and in-solid electron transfer device
Lipsanen et al. Growth and optical properties of strain-induced quantum dots

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19961210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110213

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees