JPH07320550A - Impact resistant cable - Google Patents
Impact resistant cableInfo
- Publication number
- JPH07320550A JPH07320550A JP10967394A JP10967394A JPH07320550A JP H07320550 A JPH07320550 A JP H07320550A JP 10967394 A JP10967394 A JP 10967394A JP 10967394 A JP10967394 A JP 10967394A JP H07320550 A JPH07320550 A JP H07320550A
- Authority
- JP
- Japan
- Prior art keywords
- vinyl chloride
- chloride resin
- cable
- impact resistant
- impact
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Insulated Conductors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は屋内配線等に用いる、電
線・ケーブルの改良に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to improvements in electric wires and cables used for indoor wiring and the like.
【0002】[0002]
【従来の技術】屋内配線に用いる電線・ケーブルは、一
般に安価なビニル絶縁ビニルシースが使われることが多
い。また、ビニル絶縁ビニルシースケーブルの外傷性、
耐衝撃性を改良したケーブルとしてはコンクリート直埋
用ケーブルがある。2. Description of the Related Art In general, inexpensive vinyl-insulated vinyl sheaths are often used for electric wires and cables used for indoor wiring. Also, the trauma of vinyl insulated vinyl sheath cable,
As a cable with improved impact resistance, there is a cable for direct embedding in concrete.
【0003】[0003]
【発明が解決しようとする課題】ビニル絶縁ビニルシー
スケーブルのビニルは外傷・衝撃等に弱いため、これを
防ぐ目的で、電線管に入れて敷設されていた。しかし電
線等を使用する工法は、ケーブル単独の敷設に比べ手間
がかかり、さらにコストも高くなるという欠点があっ
た。一方、コンクリート直埋用ケーブルは図5のように
多量の無機充填剤を含む保護介在層を使用したり、図6
のように緩衝座床紐を使用するため押出加工が難しく、
さらには外径が大きいため、敷設しにくいという問題点
があった。The vinyl of the vinyl-insulated vinyl sheathed cable is vulnerable to external damage and impact, and therefore, it has been laid in a conduit for the purpose of preventing it. However, the method of using an electric wire or the like has a drawback that it takes more time and labor than that of laying a cable alone, and the cost becomes higher. On the other hand, the cable for direct embedding in concrete may use a protective intervening layer containing a large amount of inorganic filler as shown in FIG.
It is difficult to extrude due to the use of cushioned floor cords like
Further, since the outer diameter is large, there is a problem that it is difficult to install.
【0004】[0004]
【課題を解決するための手段】本発明は電線保護のため
の電線管を必要とせず、コンクリート直埋ケーブルより
細く、かつコンクリート直埋ケーブルと同等の耐衝撃性
を持つ耐衝撃性ケーブルを提供するものである。その特
徴は、芯線間に0.2〜2.6mmの隙間を設け、さら
に、絶縁体とシースの間に厚み0.2〜1.4mmの耐
衝撃層を設けた事にある。耐衝撃層にはショアA硬度
50〜ショアD硬度70のウレタン樹脂、重合度10
00〜2600の塩化ビニル樹脂、可塑剤を配合した塩
化ビニル樹脂組成物と、ショアA硬度50〜ショアD硬
度70のウレタン樹脂をウレタン/塩化ビニル樹脂組成
物の配合比がウレタン樹脂20〜70重量%の範囲でな
る組成物、結合アクリロニトリル量20〜45重量%
のNBRゴムと、ショアA硬度50〜ショアD硬度70
のウレタン樹脂をウレタン/NBRゴム組成物の配合比
がウレタン樹脂20〜70重量%の範囲でなる組成物を
用いる事が好ましい。DISCLOSURE OF THE INVENTION The present invention provides an impact resistant cable that does not require a conduit for protecting an electric wire, is thinner than a concrete direct embedded cable, and has an impact resistance equivalent to that of the concrete direct embedded cable. To do. The feature is that a gap of 0.2 to 2.6 mm is provided between the core wires, and an impact resistant layer having a thickness of 0.2 to 1.4 mm is provided between the insulator and the sheath. The impact resistant layer has a urethane resin having a Shore A hardness of 50 to a Shore D hardness of 70, and a polymerization degree of 10
A vinyl chloride resin composition containing a vinyl chloride resin of 0 to 2600 and a plasticizer, and a urethane resin having a Shore A hardness of 50 to a Shore D hardness of 70 have a urethane / vinyl chloride resin composition blending ratio of 20 to 70 wt. % Composition, bound acrylonitrile amount 20-45% by weight
NBR rubber with a Shore A hardness of 50 to a Shore D hardness of 70
It is preferable to use a composition in which the urethane resin is a urethane / NBR rubber composition in the range of 20 to 70% by weight.
【0005】[0005]
【作用】芯線間に0.2〜2.6mmの隙間を設けるこ
とにより、衝撃が加わった際の受容面積が大きくするこ
とができ、衝撃をやわらげることが出来る。さらに絶縁
体とシースの間に設けた厚み0.2〜1.4mmの耐衝
撃層が、衝撃を吸収・反発するため、コンクリート直埋
ケーブルと同等の耐衝撃性を可能とする。芯線間の隙間
を0.2〜2.6mmと規定したのは、0.2mm未満
だと製造が難しく、2.6mm以上だと外径が大きくな
り布設できなくなることやケーブルコストが高くなりす
ぎるからである。By providing a gap of 0.2 to 2.6 mm between the core wires, the receiving area when a shock is applied can be increased and the shock can be softened. Further, the impact resistant layer having a thickness of 0.2 to 1.4 mm provided between the insulator and the sheath absorbs and repels impact, so that the impact resistance equivalent to that of the concrete direct buried cable is possible. The gap between the core wires is specified to be 0.2 to 2.6 mm because it is difficult to manufacture if it is less than 0.2 mm, and if it is 2.6 mm or more, the outer diameter becomes large and it becomes impossible to lay it, and the cable cost becomes too high. Because.
【0006】耐衝撃層の厚みを0.2〜1.4mmと規
定したのは、0.2mm未満だと製造が難しく、1.4
mm以上だと外径が大きくなりすぎるからである。芯線
間の隙間と耐衝撃層の厚みは得ようとするケーブルの外
径によって任意に選べば良い。ウレタン樹脂としては、
ポリエーテル系、ポリエステル系等、一般の成形可能な
ウレタン樹脂をもちいたが、ショアA硬度が50未満で
は、ウレタン樹脂の融点が低く、押出成形機のホッパー
口でブリッジを起こし易くなり、さらに塩化ビニル樹脂
組成物もしくはNBRゴムと混合して使用する場合に
は、分散性の悪いものとなった。一方ショアD硬度が7
0を越えると、溶融粘度が高すぎるため押出加工が困難
となり、さらに塩化ビニル樹脂組成物もしくはNBRゴ
ムと混合して使用する場合には、塩化ビニル樹脂組成物
もしくはNBRゴムの溶融する温度で、ウレタン樹脂が
十分溶融していないため分散性の悪いものとなった。The thickness of the impact-resistant layer is specified to be 0.2 to 1.4 mm.
This is because the outer diameter becomes too large when it is more than mm. The gap between the core wires and the thickness of the impact resistant layer may be arbitrarily selected according to the outer diameter of the cable to be obtained. As a urethane resin,
Although general moldable urethane resins such as polyether type and polyester type were used, when the Shore A hardness is less than 50, the melting point of the urethane resin is low, and a bridge is easily generated at the hopper opening of the extruder, and further chlorination occurs. When used in a mixture with a vinyl resin composition or NBR rubber, the dispersibility was poor. On the other hand, Shore D hardness is 7
If it exceeds 0, extrusion processing becomes difficult because the melt viscosity is too high. Furthermore, when used in combination with a vinyl chloride resin composition or NBR rubber, at a temperature at which the vinyl chloride resin composition or NBR rubber melts, Since the urethane resin was not sufficiently melted, the dispersibility was poor.
【0007】又、ウレタン/塩化ビニル樹脂組成物もし
くはウレタン樹脂/NBRゴム組成物においてウレタン
樹脂含量が20重量%未満では、耐衝撃性が低下する。
一方、ウレタン樹脂含量が70重量%を越えると、絶縁
シースとの密着が困難となる。ウレタン/塩化ビニル樹
脂組成物における塩化ビニル樹脂組成物中の塩化ビニル
樹脂としては、重合度1000〜2600が好ましく、
1000未満では溶融時粘度が低く、また、2600以
上では溶融時の粘度が高く、ウレタン樹脂と混合して使
用するには押出成形機内でウレタン樹脂と均一に混合す
ることが出来なかった。Further, in the urethane / vinyl chloride resin composition or the urethane resin / NBR rubber composition, when the urethane resin content is less than 20% by weight, impact resistance is lowered.
On the other hand, when the urethane resin content exceeds 70% by weight, it becomes difficult to adhere to the insulating sheath. The vinyl chloride resin in the vinyl chloride resin composition in the urethane / vinyl chloride resin composition preferably has a polymerization degree of 1000 to 2600,
If it is less than 1000, the viscosity when melted is low, and if it is 2600 or more, the viscosity when melted is high, so that it cannot be uniformly mixed with the urethane resin in the extruder to be used by mixing with the urethane resin.
【0008】可塑剤としては、塩化ビニルに一般に用い
ているジオクチルフタレート、ジエチルヘキシルフタレ
ート、ジイソデシルフタレート等のフタル酸系エステ
ル、トリオクチルトリメリテート、トリエチルヘキシル
トリメリテート等のトリメリット酸系エステル、ジイソ
デシルアジペート等のアジピン酸系エステルや、ピロメ
リット酸系エステル、ポリエステル系の可塑剤を塩化ビ
ニル樹脂に対し30〜80重量部を用いる。可塑剤とし
ては軟質化させるために多量に添加することが望ましい
が、塩化ビニル樹脂に対し80重量部以上添加すると、
可塑剤のウレタンへの溶解度が低いため、可塑剤がブリ
ードする傾向にあった。また、30重量部未満では塩化
ビニル樹脂の可塑化効果が不足し、押出成形機ではウレ
タン樹脂と均一に混合することが出来なかった。As the plasticizer, dioctyl phthalate, diethylhexyl phthalate, diisodecyl phthalate and other phthalic acid esters generally used for vinyl chloride, trioctyl trimellitate, triethylhexyl trimellitate and other trimellitic acid esters, 30 to 80 parts by weight of an adipic acid ester such as diisodecyl adipate, a pyromellitic acid ester, or a polyester plasticizer is used with respect to the vinyl chloride resin. As a plasticizer, it is desirable to add a large amount to soften it, but if 80 parts by weight or more is added to the vinyl chloride resin,
Since the solubility of the plasticizer in urethane was low, the plasticizer tended to bleed. On the other hand, if the amount is less than 30 parts by weight, the plasticizing effect of the vinyl chloride resin is insufficient, and the extruder cannot be uniformly mixed with the urethane resin.
【0009】更に塩化ビニル樹脂組成物に対しては熱安
定性向上のため鉛系、バリウム系、亜鉛系等の安定剤を
単独もしくは複合し用いることが好ましい。また、充填
剤として炭酸カルシウム、クレー、タルク、炭酸マグネ
シウム、酸化マグネシウム等や、滑剤、着色剤等塩化ビ
ニル樹脂組成物に一般に混合することの出来る配合剤を
添加することが出来る。ウレタン樹脂/NBRゴム組成
物におけるNBRゴムは結合アクリロニトリル量20〜
45重量%が好ましく、20重量%未満もしくは45重
量%を越えると押出成形機内でウレタン樹脂と均一に混
合することが出来なかった。NBRゴムには、充填剤と
して炭酸カルシウム、クレー、タルク、炭酸マグネシウ
ム、酸化マグネシウム等や、滑剤、着色剤等NBRゴム
一般に混合することのできる配合剤を添加することがで
きる。Further, for the vinyl chloride resin composition, it is preferable to use a lead-based stabilizer, a barium-based stabilizer, a zinc-based stabilizer or the like alone or in combination in order to improve the thermal stability. Further, as a filler, calcium carbonate, clay, talc, magnesium carbonate, magnesium oxide, or the like, and a compounding agent such as a lubricant or a colorant that can be generally mixed with the vinyl chloride resin composition can be added. The NBR rubber in the urethane resin / NBR rubber composition has a bound acrylonitrile content of 20 to
It is preferably 45% by weight, and if it is less than 20% by weight or exceeds 45% by weight, it cannot be uniformly mixed with the urethane resin in the extruder. To the NBR rubber, it is possible to add calcium carbonate, clay, talc, magnesium carbonate, magnesium oxide or the like as a filler, and a compounding agent such as a lubricant or a colorant, which can be mixed with general NBR rubber.
【0010】[0010]
【実施例】2×1.6φの平型ビニル絶縁ビニルシース
ケーブル(以下、新VVF 図3)を表1,2に示す材
料、構造で作製し、従来の2×1.6φの平型ビニル絶
縁ビニルシースケーブル(以下、従来VVF 図7)、
および2×1.6φ平型コンクリート直埋ケーブル(以
下、CBVV)と比較試験を行い、衝撃試験結果を表
3,4に示す。耐衝撃試験はJIS C 3005 3
0衝撃に準拠し5.0Kgの錘を高さを替えて落下させ
た。試験後の試料は交流破壊電圧を測定した。交流破壊
電圧は1000Vからスタートし、1000V/分の割
合で昇圧して、10000Vまで測定した。本発明に従
う、実施例1〜6はいずれも、ブリードがなく、シース
と絶縁体との密着も良く、かつ5Kg×60Cmの衝撃
試験後も破壊電圧は低下しておらず、比較例16にある
CBVVケーブルと同様の特性であることが分かる。こ
れに対して、比較例1〜14は本発明の規定範囲外、比
較例15は従来VVFであるが、ブリード、シース・絶
縁体との密着性、そして耐衝撃性のいずれか一つ、ある
いは複数にわたって劣っている。EXAMPLE A 2 × 1.6φ flat vinyl insulation vinyl sheath cable (hereinafter referred to as the new VVF FIG. 3) was made with the materials and structures shown in Tables 1 and 2, and the conventional 2 × 1.6φ flat vinyl insulation was used. Vinyl sheath cable (hereinafter, conventional VVF Fig. 7),
And a comparative test with 2 × 1.6φ flat concrete direct buried cable (hereinafter, CBVV), and the impact test results are shown in Tables 3 and 4. Impact resistance test is JIS C 3005 3
A weight of 5.0 kg was dropped while changing the height according to 0 impact. The AC breakdown voltage of the sample after the test was measured. The AC breakdown voltage was started from 1000 V, and the voltage was increased at a rate of 1000 V / min and measured up to 10000 V. In Examples 1 to 6 according to the present invention, there is no bleeding, the sheath and the insulator are adhered well, and the breakdown voltage is not lowered even after the impact test of 5 kg × 60 Cm. It can be seen that the characteristics are similar to those of the CBVV cable. On the other hand, Comparative Examples 1 to 14 are out of the specified range of the present invention, and Comparative Example 15 is a conventional VVF, but any one of the bleed, the adhesion to the sheath / insulator, and the impact resistance, or Inferior to several.
【0011】[0011]
【表1】 [Table 1]
【0012】[0012]
【表2】 [Table 2]
【0013】[0013]
【表3】 [Table 3]
【0014】[0014]
【表4】 [Table 4]
【0015】[0015]
【発明の効果】以上説明したように、本発明によれば、
電線保護の為の電線管を必要とせず、コンクリート直埋
ケーブルと同等の衝撃に耐える耐衝撃性ケーブルを作成
することが可能である。本発明に従って作成された電線
ケーブルは、従来電線保護管を必要としていた、集合住
宅等の床下配線用VVFケーブルの代替等、幅広い分野
で使用されると考える。As described above, according to the present invention,
It is possible to create an impact resistant cable that can withstand the same impact as a concrete direct-embedded cable without requiring a conduit for wire protection. It is considered that the electric wire cable produced according to the present invention is used in a wide range of fields such as replacement of a VVF cable for underfloor wiring of an apartment house, which has conventionally required an electric wire protection tube.
【図1】本発明の実施例の断面図。FIG. 1 is a sectional view of an embodiment of the present invention.
【図2】本発明の実施例の断面図。FIG. 2 is a sectional view of an embodiment of the present invention.
【図3】本発明の実施例の断面図。FIG. 3 is a sectional view of an embodiment of the present invention.
【図4】本発明の実施例の断面図。FIG. 4 is a sectional view of an embodiment of the present invention.
【図5】従来のコンクリート直埋用ケーブルの断面図。FIG. 5 is a cross-sectional view of a conventional cable for directly burying concrete.
【図6】従来のコンクリート直埋用ケーブルの断面図。FIG. 6 is a cross-sectional view of a conventional cable for directly burying concrete.
【図7】従来例の断面図。FIG. 7 is a sectional view of a conventional example.
1:導体 2:ビニル絶縁体 3:衝撃層 4:ビニルシース 5:保護介在層 6:緩衝座床紐 1: Conductor 2: Vinyl insulator 3: Impact layer 4: Vinyl sheath 5: Protective intervening layer 6: Buffer cushion
───────────────────────────────────────────────────── フロントページの続き (72)発明者 萩原 壽夫 東京都港区元赤坂一丁目3番12号 住友電 気工業株式会社東京本社内 (72)発明者 成實 清幸 大阪府大阪市此花区島屋一丁目1番3号 住友電気工業株式会社大阪製作所内 (72)発明者 芋岡 克美 広島県東広島市八本松町飯田2392 河村電 線工業株式会社広島工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Hagiwara 1-3-12 Moto-Akasaka, Minato-ku, Tokyo Sumitomo Electric Industries, Ltd. Tokyo Head Office (72) Inventor Kiyoyuki Seizo Shimaya, Konohana-ku, Osaka City, Osaka Prefecture 1-3 1 Sumitomo Electric Industries, Ltd. Osaka Works (72) Inventor Katsumi Imooka 2392 Iida, Hachihonmatsu-cho, Higashihiroshima-shi, Hiroshima Prefecture Kawamura Electric Wire Industry Co., Ltd. Hiroshima factory
Claims (5)
〜1.4mmの厚さで設けたことを特徴とする耐衝撃性
ケーブル。1. An impact resistant layer is provided between the insulator and the sheath in an amount of 0.2.
An impact resistant cable characterized by being provided with a thickness of up to 1.4 mm.
2〜2.6mmの隙間を設けたことを特徴とする耐衝撃
性ケーブル。2. The method according to claim 1, wherein a gap between the insulators is 0.
A shock resistant cable having a gap of 2 to 2.6 mm.
硬度70のウレタン樹脂を用いたことを特徴とする特許
請求の範囲第1〜2項記載の耐衝撃性ケーブル。3. The impact resistant layer has a Shore A hardness of 50 to Shore D.
The impact resistant cable according to claim 1, wherein a urethane resin having a hardness of 70 is used.
成物で、耐衝撃層が重合度1000〜2600の塩化ビ
ニル樹脂、可塑剤等を配合した塩化ビニル樹脂組成物と
ショアA硬度50〜ショアD硬度70のウレタン樹脂
を、ウレタン/塩化ビニル樹脂組成物の配合比がウレタ
ン樹脂20〜70重量%の範囲となる組成物を用いたこ
とを特徴とする特許請求の範囲第1〜3項記載の耐衝撃
性ケーブル。4. A vinyl chloride resin composition in which the insulator and the sheath are a vinyl chloride resin composition, and the impact resistant layer is a vinyl chloride resin composition containing a vinyl chloride resin having a polymerization degree of 1000 to 2600, a plasticizer and the like, and a Shore A hardness of 50 to Shore D. A urethane resin having a hardness of 70 is used, and a composition in which the compounding ratio of the urethane / vinyl chloride resin composition is in the range of 20 to 70% by weight of the urethane resin is used. Impact resistant cable.
成物で、耐衝撃層が結合アクリロニトリル量20〜45
重量%のNBRゴムとショアA硬度50〜ショアD硬度
70のウレタン樹脂を、ウレタン/NBRゴム組成物の
配合比がウレタン樹脂20〜70重量%の範囲となる組
成を用いたことを特徴とする特許請求の範囲第1〜3項
記載の耐衝撃性ケーブル。5. The insulator and the sheath are made of a vinyl chloride resin composition, and the impact resistant layer has an amount of bound acrylonitrile of 20 to 45.
% Of NBR rubber and a urethane resin having a Shore A hardness of 50 to a Shore D hardness of 70 are used, and a composition in which the compounding ratio of the urethane / NBR rubber composition is in the range of 20 to 70% by weight of the urethane resin is used. The impact resistant cable according to claims 1 to 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10967394A JPH07320550A (en) | 1994-05-24 | 1994-05-24 | Impact resistant cable |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10967394A JPH07320550A (en) | 1994-05-24 | 1994-05-24 | Impact resistant cable |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07320550A true JPH07320550A (en) | 1995-12-08 |
Family
ID=14516280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10967394A Pending JPH07320550A (en) | 1994-05-24 | 1994-05-24 | Impact resistant cable |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07320550A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501027B1 (en) | 1997-05-15 | 2002-12-31 | Pirelli Cavi E Sistemi S.P.A. | Cable with impact-resistant coating |
-
1994
- 1994-05-24 JP JP10967394A patent/JPH07320550A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6501027B1 (en) | 1997-05-15 | 2002-12-31 | Pirelli Cavi E Sistemi S.P.A. | Cable with impact-resistant coating |
US6768060B2 (en) | 1997-05-15 | 2004-07-27 | Pirelli Cavi E Sistemi S.P.A. | Cable with impact-resistant coating |
BG64658B1 (en) * | 1997-05-15 | 2005-10-31 | Pirelli Cavi E Sistemi S.P.A. | Cable with impact-resistant coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2563137C (en) | Non-lead jacket for non-metallic sheathed electrical cable | |
US5936205A (en) | Communication cable for use in a plenum | |
CA1118854A (en) | Electric cables with an enclosing sheath of low flammability material | |
US3935369A (en) | Methods of manufacturing an insulated conductor and product produced thereby | |
JP6325072B2 (en) | Synergistic blend of calcium carbonate and calcined clay | |
JPH07320550A (en) | Impact resistant cable | |
CA1118855A (en) | Electric cables presenting low hazard under fire conditions | |
EP3832672B1 (en) | Flame- retardant electrical cable | |
JP2015004025A (en) | Non-halogen flame-retardant resin composition and cable using the same | |
CA2911589A1 (en) | Flame retardant pvc material | |
GB1583956A (en) | Electric cables | |
JP2001043737A (en) | Resin admixture for intervention for electric cable | |
JP3953694B2 (en) | Insulated wire / cable | |
JPH1074420A (en) | Fire resisting wire | |
JPH09270208A (en) | Fireproof electric wire | |
JP2808226B2 (en) | Watertight compounds and watertight wires and cables | |
JPH0864039A (en) | Rubber sheath cable | |
JP2724494B2 (en) | Semiconductive composition and peelable outer semiconductive layer of power cable | |
KR102569293B1 (en) | Sheath resin composition of insulated cable having high flexibility and Insulated cable having high flexibility | |
KR102569297B1 (en) | Sheath resin composition of insulated cable having heat resistnace and Insulated cable having heat resistnace | |
JP2003277633A (en) | Nonhalogen flame-retardant resin composition and flame-retardant power source cord | |
JP3682842B2 (en) | Insulated wire / cable | |
JP2003197036A (en) | Wire harness protecting material and wire harness using the same | |
JPH10233120A (en) | Cable | |
JP2000067653A (en) | Polyvinyl chloride resin composition for intervening, and electric wire and cable using the same |