JPH0731607Y2 - Magnetostatic wave delay element - Google Patents
Magnetostatic wave delay elementInfo
- Publication number
- JPH0731607Y2 JPH0731607Y2 JP1988051753U JP5175388U JPH0731607Y2 JP H0731607 Y2 JPH0731607 Y2 JP H0731607Y2 JP 1988051753 U JP1988051753 U JP 1988051753U JP 5175388 U JP5175388 U JP 5175388U JP H0731607 Y2 JPH0731607 Y2 JP H0731607Y2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- input
- transducer
- magnetostatic wave
- delay element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【考案の詳細な説明】 〈産業上の利用分野〉 本考案は例えばVCO(voltage-controlled oscillator:
電圧制御型発振器)等に使用される静磁波(MSW…magne
tostatic wave)遅延装置に用いられる静磁波遅延素子
の改良に関するものである。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention is, for example, a VCO (voltage-controlled oscillator:
Magnetostatic wave (MSW… magne) used for voltage controlled oscillators, etc.
The present invention relates to improvement of a magnetostatic wave delay element used in a delay device.
〈従来の技術〉 まず,静磁波と静磁波遅延素子について簡単に説明す
る。<Prior Art> First, the magnetostatic wave and the magnetostatic wave delay element will be briefly described.
静磁波…磁性体中の電子スピンは外から磁界が加わると
すべてその方向に揃う。そこへ局所的な磁界を加えると
スピンも揺ぎ,その揺ぎはその近傍のスピンに伝わり次
々と磁性体中を伝搬していく。これが静磁波と呼ばれる
ものでその伝搬速度は光速の1/1000程度であるが磁界の
強さに応じて変化する。Magnetostatic wave: All electron spins in a magnetic substance are aligned in the direction when a magnetic field is applied from the outside. When a local magnetic field is applied to it, the spin also fluctuates, and the fluctuation propagates to the spins in the vicinity and propagates in the magnetic material one after another. This is called a magnetostatic wave, and its propagation speed is about 1/1000 of the speed of light, but it changes according to the strength of the magnetic field.
静磁波遅延素子…2本のトランスジューサの一方に高周
波電流を流すとその近くの磁性体中のスピンが静磁波と
なって伝搬し,他方のトランスジューサにはスピンの揺
ぎに起因する高周波の誘導電流が流れる。スピンの揺ぎ
の伝搬速度は磁界の強さに応じて変化するので遅延時間
の可変な素子となる。Magnetostatic wave delay element: When a high-frequency current is passed through one of the two transducers, the spin in the magnetic material near it propagates as a magnetostatic wave and propagates, and in the other transducer, a high-frequency induced current due to spin fluctuations. Flows. Since the propagation speed of spin fluctuations changes according to the strength of the magnetic field, the device has a variable delay time.
第7図は従来の静磁波遅延素子の一例を示す斜視図であ
る。図において1は例えばGGG(ガドリニウム−ガリウ
ム−ガーネット)からなる第1の基板であり,2はこの基
板の表面(図では裏面)に形成されたYIG(イットリウ
ム−鉄−ガーネット)薄膜である。3は第1の基板より
多少広い面積を有する例えばアルミナからなる第2の基
板であり,4a,4bはこの基板の一方の面に所定の距離(第
1の基板の長手方向よりは短い)を隔てて形成された導
電体(薄膜またはコイル)からなるマイクロストリップ
・トランスジューサ(以下,単にトランスジューサとい
う)である。これら2つの基板はYIG薄膜2とトランス
ジューサ4a,4bが形成された側を接して固定されてい
る。図中H0で示す矢印は印加磁界の方向を示し,波形矢
印は静磁波の進行方向を示している。5は第2の基板の
他方の面に形成された接地膜である。なお,基板の位置
を動かし,静磁波遅延素子に印加する磁界の方向をXま
たはYとすることにより静磁表面波(MSSW…Y方向)ま
たは体積後進波(MSBVW…X方向)を得ることも出来る
が,ここではZ方向に磁界を印加した場合の体積前進波
(MSFVW)のみを対象としている。FIG. 7 is a perspective view showing an example of a conventional magnetostatic wave delay element. In the figure, 1 is a first substrate made of, for example, GGG (gadolinium-gallium-garnet), and 2 is a YIG (yttrium-iron-garnet) thin film formed on the front surface (back surface in the figure) of this substrate. Reference numeral 3 is a second substrate made of, for example, alumina having a slightly larger area than the first substrate, and 4a and 4b are provided on one side of this substrate with a predetermined distance (shorter than the longitudinal direction of the first substrate). It is a microstrip transducer (hereinafter, simply referred to as a transducer) composed of a conductor (thin film or coil) formed separately. These two substrates are fixed by contacting the YIG thin film 2 and the side on which the transducers 4a, 4b are formed. In the figure, the arrow indicated by H 0 indicates the direction of the applied magnetic field, and the waveform arrow indicates the traveling direction of the magnetostatic wave. Reference numeral 5 is a ground film formed on the other surface of the second substrate. It is also possible to obtain a magnetostatic surface wave (MSSW ... Y direction) or volume backward wave (MSBVW ... X direction) by moving the position of the substrate and setting the direction of the magnetic field applied to the magnetostatic wave delay element to X or Y. However, here, only the volume forward wave (MSFVW) when a magnetic field is applied in the Z direction is targeted.
〈考案が解決しようとする課題〉 上記構成の静磁波遅延素子にZ(H0)方向から直流磁界
を印加し,入力トランスジューサにマイクロ波を印加す
ると体積前進波が2方向に向って進行する。即ち,矢印
のように入力トランスジューサから出力トランスジュ
ーサ側に進んでここで捕えられるもの。矢印の様に
とは逆方向に進行し端部で反射して出力トランスジュー
サで捕えられるもの。矢印の様に一度出力トランスジ
ューサを通り越して端部で反射して捕えられるもの等が
ある。<Problems to be Solved by the Invention> When a DC magnetic field is applied from the Z (H 0 ) direction to the magnetostatic wave delay element having the above configuration and a microwave is applied to the input transducer, the volume forward wave travels in two directions. That is, as shown by the arrow, it goes from the input transducer to the output transducer side and is captured here. It travels in the opposite direction as shown by the arrow, is reflected at the end, and is captured by the output transducer. As shown by the arrow, there is one that passes through the output transducer once and is reflected by the end and caught.
これらの体積前進波のうち信号として有効に取出せるの
はのみであり,このことは投入されたマイクロ波のエ
ネルギーの半分近くが無駄になってしまうという課題が
あった。Only the volume forward wave can be effectively extracted as a signal, which causes a problem that nearly half of the microwave energy input is wasted.
また,矢印,の前進波は伝搬特性にリップルを生じ
させる原因となる。In addition, the forward wave indicated by the arrow, causes ripples in the propagation characteristics.
第8図は本出願人が試作した前記従来の静磁波遅延素子
を用い,その入出力トランスジューサにネットワークア
ナライザ(図示せず)の入出力端子を接続して磁界印加
装置(図示せず)により磁界を印加して体積前進波を伝
搬させ,その伝搬特性をCRT上に表示したものである。FIG. 8 shows a magnetic field applied by a magnetic field applying device (not shown) by connecting the input / output terminals of a network analyzer (not shown) to the input / output transducer using the conventional magnetostatic wave delay element prototyped by the applicant. Is applied to propagate the volume forward wave, and its propagation characteristics are displayed on the CRT.
なお,試作した第1の基板の寸法(第7図参照)は幅l1
=6mm,長さl2=13mm,厚さ0.5mm程度であり,第2の基板
は幅L1=10mm長さL2=20mm,厚さ0.63mmとした。また,
入出力トランスジューサの幅(ストリップライン)はそ
れぞれ0.05mm,その間隔L3は10mmとし,トランスジュー
サおよび接地膜は金を蒸着して形成した。また,印加磁
界は2500(Oe)程度とした。The size of the first prototype board (see Fig. 7) is the width l 1
= 6 mm, length l 2 = 13 mm, and thickness 0.5 mm, and the second substrate had a width L 1 = 10 mm, a length L 2 = 20 mm, and a thickness 0.63 mm. Also,
The width of the input / output transducers (strip line) was 0.05 mm, the interval L 3 was 10 mm, and the transducers and the ground film were formed by vapor deposition of gold. The applied magnetic field was set to about 2500 (Oe).
図によれば1.95GHz近傍,2.05,2.15,2.25,2.33GHz近傍で
体積前進波を捕えているが,その波形はリップルの多い
ものとなっており(点線はリップルがない場合の理想的
な波形を示している),フィルタとしての役目を果せな
いという課題があった。更に,このような構成の静磁波
遅延素子ではその遅延時間を2倍にしようとした場合は
入力トランスジューサ間の距離も2倍にする必要がある
が,形状が大きくなると磁界印加の為の磁石も大きくし
なければならず,重量が増大するという課題もあった。According to the figure, the volume forward wave is captured near 1.95 GHz, 2.05, 2.15, 2.25, and 2.33 GHz, but its waveform has many ripples (the dotted line is the ideal waveform when there is no ripple). However, there is a problem that it cannot serve as a filter. Further, in the magnetostatic wave delay element having such a structure, if the delay time is to be doubled, the distance between the input transducers must be doubled, but if the shape is increased, a magnet for applying a magnetic field is also required. There was also the problem that the weight had to be increased because it had to be large.
本考案は上記従来技術の課題に鑑みて成されたもので,
挿入損失の低減とともにリップルの減少をはかり,遅延
量を大きくする場合にも形状が比較的に小さい静磁波遅
延素子を提供することを目的とする。The present invention has been made in view of the above problems of the prior art.
It is an object of the present invention to provide a magnetostatic wave delay element whose shape is relatively small even when the amount of delay is increased by reducing insertion loss and ripple.
〈問題点を解決するための手段〉 上記問題点を解決するための本考案の構成は,一方の面
にYIG薄膜が形成された第1の基板と,一方の面に入出
力トランスジューサが形成された第2の基板からなり,
前記入出力トランスジューサと前記YIG薄膜が接するよ
うに前記第1,第2の基板が固定され,前記第1,第2の基
板の表面に対して垂直な方向から磁界を与え静磁体積前
進波を得る様にした静磁波遅延素子において,前記第2
の基板に形成された入出力トランスジューサを個別にか
つ,直線状に形成するとともに,前記第1の基板を前記
入出力トランスジューサに跨がって配置し,前記入力ト
ランスジューサに入力されたマイクロ波が静磁波とな
り,その入力トランスジューサの左右から伝播する静磁
波が前記第1の基板の端部で反射して異なる経路を経て
前記出力トランスジューサに伝播する様に形成したこと
を特徴とするものである。<Means for Solving the Problems> The structure of the present invention for solving the above problems has a first substrate having a YIG thin film formed on one surface and an input / output transducer formed on one surface. Consisting of a second substrate,
The first and second substrates are fixed so that the input / output transducer and the YIG thin film are in contact with each other, and a magnetic field is applied from a direction perpendicular to the surfaces of the first and second substrates to generate a magnetostatic volume forward wave. In the magnetostatic wave delay element configured to obtain
The input / output transducers formed on the substrate are separately and linearly arranged, and the first substrate is arranged so as to straddle the input / output transducer so that the microwave input to the input transducer is It is characterized in that it is formed so as to become a magnetic wave, and a magnetostatic wave propagating from the left and right of the input transducer is reflected at the end of the first substrate and propagates to the output transducer through different paths.
〈実施例〉 以下,本考案を図面に基づいて説明する。第1図は本考
案の静磁波遅延素子の一実施例を示す斜視図である。図
において第7図と同一要素には同一符号を付して重複す
る説明は省略するが,本実施例においては第2の基板3
は略正方形に形成され,その対角方向に入出力トランス
ジューサ4a,4bが直列状に形成されている。4c,4dはそれ
らトランスジューサの一端に形成された端子接続部であ
る。10は第2の基板に形成された貫通孔であり,入出力
トランスジューサの他端はこの孔を介して裏面に形成さ
れた接地膜と接続されている。<Embodiment> The present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing an embodiment of a magnetostatic wave delay element of the present invention. In the drawing, the same elements as those in FIG. 7 are designated by the same reference numerals and their duplicate description will be omitted, but in the present embodiment, the second substrate 3
Is formed in a substantially square shape, and input / output transducers 4a, 4b are formed in series in a diagonal direction thereof. 4c and 4d are terminal connecting portions formed at one end of the transducers. Reference numeral 10 is a through hole formed in the second substrate, and the other end of the input / output transducer is connected to the ground film formed on the back surface through this hole.
1は第1の基板であり,この例では八角形に形成され,
イ,イ′で示す平行面が入出力トランスジューサに直角
に,ロ,ロ′で示す面がトランスジューサに平行に,
ハ,ハ′で示す平行面がトランスジューサに対して45°
になるように固定されている。1 is a first substrate, which is formed in an octagon in this example,
The parallel planes indicated by b and a'are perpendicular to the input / output transducer, and the planes indicated by b and b'are parallel to the transducer.
The parallel planes indicated by c and c ′ are 45 ° to the transducer.
It has been fixed to be.
上記構成において従来例と同様基板に垂直方向から磁界
を印加し,入力トランスジューサにマイクロ波を入力す
ると体積前進波は入力トランスジューサ4aの両側から第
1の基板の端部へ向かって進行しハ,ハ,およびハ′,
ハ′面で反射して出力トランスジューサに向かう。この
場合,従来例で示した前進波と同様出力トランスジュ
ーサを通り越すものもあるにしても,このトランスジュ
ーサでの補足率は向上する。また,前進波の行路はトラ
ンスジューサを平行に配置した場合に比較して長くな
る。In the above structure, when a magnetic field is applied vertically to the substrate and microwaves are input to the input transducer as in the conventional example, the volume forward wave travels from both sides of the input transducer 4a toward the end of the first substrate. , And Ha ',
It is reflected by the H'side and goes to the output transducer. In this case, even if some of the waves pass through the output transducer like the forward wave shown in the conventional example, the capture rate of this transducer is improved. In addition, the path of the forward wave is longer than when the transducers are arranged in parallel.
第2図(イ〜ホ)は上記構成の静磁波遅延素子を試作
し,従来と同様の磁界を印加してネットワークアナライ
ザのCRT上にその伝搬特性を表示したものである。な
お,試作した第1の基板の寸法(第1図参照)は幅l3=
7mm,厚さ0.5mm程度であり,第2の基板は幅L3=10mm,厚
さ0.63mmとした。また,入出力トランスジューサの幅
(ストリップライン)はそれぞれ0.05mm程度とした。FIG. 2 (a to e) shows a prototype of the magnetostatic wave delay element having the above-mentioned configuration, and the propagation characteristics are displayed on the CRT of the network analyzer by applying a magnetic field similar to the conventional one. The size of the first prototype board (see Fig. 1) is the width l 3 =
The second substrate had a width L 3 = 10 mm and a thickness of 0.63 mm. The width of the input / output transducers (strip line) was about 0.05 mm.
第2図(イ)は入出力トランスジューサの中心に第1の
基板の辺イ−イ′の中心を配置した場合の出力を示すも
ので,この図によれば起伏がなだらかでリップルはほと
んど認められない。(ロ)〜(ハ)は第1の基板を第3
図に示す様にトランスジューサに対する反射面を45°に
保った状態で矢印方向に少しずつ移動させて各位置での
特性を表示させたものである。これらの図は第1の基板
1の移動に従って伝搬特性の山の数が多くなっており,
フィルタ特性を任意に変えられることを示している。FIG. 2 (a) shows the output when the center of the side ii 'of the first substrate is placed at the center of the input / output transducer. According to this figure, the undulation is gentle and almost no ripple is observed. Absent. (B) to (c) show the first substrate in the third position.
As shown in the figure, the characteristic at each position is displayed by gradually moving in the direction of the arrow while keeping the reflection surface for the transducer at 45 °. In these figures, the number of peaks of the propagation characteristic increases as the first substrate 1 moves,
It shows that the filter characteristics can be changed arbitrarily.
第4図〜第6図は他の実施例を示すもので,第4図は入
出力トランスジューサをマルチラインとしたものであ
り,発生する波長をラインの間隔の幅にある程度特定す
ることが出来る。第5図は第1の基板をドーナツ状とし
たもの,第6図はトランスジューサに所望の角度を持た
せたものであり,伝搬特性を変化させることが出来る。4 to 6 show another embodiment. FIG. 4 shows a multi-line input / output transducer, and the generated wavelength can be specified to some extent by the width of the line interval. FIG. 5 shows a donut-shaped first substrate, and FIG. 6 shows a transducer having a desired angle so that the propagation characteristics can be changed.
なお,本実施例では第1の基板を八角形,第2の基板を
略正方形として図示したが,各基板の形状は図示の例に
限ることなく適宜変更可能である。Although the first substrate is illustrated as an octagon and the second substrate is illustrated as a substantially square in the present embodiment, the shape of each substrate is not limited to the illustrated example and can be changed as appropriate.
〈考案の効果〉 以上述べたように本考案によれば,第2の基板に形成さ
れた入出力トランスジューサを個別にかつ,直線状に形
成するとともに,第1の基板を入出力トランスジューサ
に跨がって配置し,入力トランスジューサに入力された
マイクロ波が静磁波となり,その入力トランスジューサ
の左右から伝播する静磁波が第1の基板の端部で反射し
て異なる経路を経て出力トランスジューサに伝搬する様
にしたので, (1) 同じ面積であれば従来に比較して伝搬行路を長
くすることが出来,大きな遅延量を得ることが出来る。<Effects of the Invention> As described above, according to the present invention, the input / output transducers formed on the second substrate are formed individually and linearly, and the first substrate is spread over the input / output transducers. The microwave input to the input transducer becomes a magnetostatic wave, and the magnetostatic waves propagating from the left and right sides of the input transducer are reflected at the ends of the first substrate and propagate to the output transducer through different paths. Therefore, (1) If the area is the same, the propagation path can be made longer than in the conventional case, and a large delay amount can be obtained.
(2) 第1,第2の固定位置を変化させることより干渉
パターンによるフィルター特性を素子の製作後でも任意
に変化させることが出来る。(2) By changing the first and second fixed positions, the filter characteristics according to the interference pattern can be arbitrarily changed even after the device is manufactured.
(3) 2方向に伝搬する前進波を捕えることが出来る
のでパワーの損失を少なくすることが出来る。(3) Since forward waves propagating in two directions can be captured, power loss can be reduced.
(4) 反射によるリップルを減少させることが出来
る。(4) Ripple due to reflection can be reduced.
などの効果がある。And so on.
第1図は本考案に係る静磁波遅延素子の一実施例を示す
斜視図,第2図は本考案の静磁波遅延素子による伝搬特
性を示す図,第3図は第1の基板と第2の基板の配置関
係を示す図,第4〜第6図は他の実施例を示す図,第7
図は従来の静磁波遅延素子の斜視図,第8図は従来の静
磁波遅延素子による伝搬特性を示す図である。 1……第1の基板,2……YIG薄膜,3……第2の基板,4a…
…入力トランスジューサ,4b……出力トランスジューサ,
10……貫通孔。FIG. 1 is a perspective view showing an embodiment of a magnetostatic wave delay element according to the present invention, FIG. 2 is a view showing propagation characteristics by the magnetostatic wave delay element of the present invention, and FIG. 3 is a first substrate and a second board. Showing the arrangement relationship of the substrates, FIGS. 4 to 6 are diagrams showing other embodiments, and FIG.
FIG. 8 is a perspective view of a conventional magnetostatic wave delay element, and FIG. 8 is a diagram showing propagation characteristics of the conventional magnetostatic wave delay element. 1 ... First substrate, 2 ... YIG thin film, 3 ... Second substrate, 4a ...
… Input transducer, 4b …… Output transducer,
10 ... Through hole.
Claims (1)
板と,一方の面に入出力トランスジューサが形成された
第2の基板からなり,前記入出力トランスジューサと前
記YIG薄膜が接するように前記第1,第2の基板が固定さ
れ,前記第1,第2の基板の表面に対して垂直な方向から
磁界を与え静磁体積前進波を得る様にした静磁波遅延素
子において,前記第2の基板に形成された入出力トラン
スジューサを個別にかつ,直線状に形成するとともに,
前記第1の基板を前記入出力トランスジューサに跨がっ
て配置し,前記入力トランスジューサに入力されたマイ
クロ波が静磁波となり,その入力トランスジューサの左
右から伝播する静磁波が前記第1の基板の端部で反射し
て異なる経路を経て前記出力トランスジューサに伝播す
る様に形成したことを特徴とする静磁波遅延素子。1. A first substrate having a YIG thin film formed on one surface thereof and a second substrate having an input / output transducer formed on one surface thereof, wherein the input / output transducer and the YIG thin film are in contact with each other. In the magnetostatic wave delay element in which the first and second substrates are fixed to and a magnetic field is applied from a direction perpendicular to the surfaces of the first and second substrates to obtain a magnetostatic volume forward wave, I / O transducers formed on the second substrate are formed individually and linearly, and
The first substrate is arranged so as to straddle the input / output transducer, the microwave input to the input transducer becomes a magnetostatic wave, and the magnetostatic wave propagating from the left and right of the input transducer is an edge of the first substrate. A magnetostatic wave delay element, characterized in that the magnetostatic wave delay element is formed so that it is reflected by a portion and propagates to the output transducer through different paths.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988051753U JPH0731607Y2 (en) | 1988-04-18 | 1988-04-18 | Magnetostatic wave delay element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1988051753U JPH0731607Y2 (en) | 1988-04-18 | 1988-04-18 | Magnetostatic wave delay element |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01153732U JPH01153732U (en) | 1989-10-23 |
JPH0731607Y2 true JPH0731607Y2 (en) | 1995-07-19 |
Family
ID=31277769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1988051753U Expired - Lifetime JPH0731607Y2 (en) | 1988-04-18 | 1988-04-18 | Magnetostatic wave delay element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0731607Y2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2480509A1 (en) * | 1980-04-14 | 1981-10-16 | Thomson Csf | MAGNETOSTATIC VOLUME WAVE DEVICE |
JPS57186818A (en) * | 1981-05-14 | 1982-11-17 | Nec Corp | Surface acoustic wave dispersion type delay line |
-
1988
- 1988-04-18 JP JP1988051753U patent/JPH0731607Y2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01153732U (en) | 1989-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100263642B1 (en) | Magnetostatic-wave device | |
JPH0731607Y2 (en) | Magnetostatic wave delay element | |
JP2570675B2 (en) | Magnetostatic wave device | |
JP2909363B2 (en) | Magnetostatic microwave device | |
KR100329369B1 (en) | Magnetostatic wave devices for high frequency signal processing | |
JP2619410B2 (en) | Magnetostatic wave variable resonator | |
JP2636580B2 (en) | Magnetostatic wave device | |
KR100192634B1 (en) | Magnetostatic wave device having disk shape | |
KR100396922B1 (en) | Magnetostatic Wave Filter | |
JPH10135709A (en) | Magnetostatic wave device | |
Sethares et al. | Magnetostatic wave oscillator frequencies | |
JPS62224101A (en) | Magnetostatic wave filter bank | |
JPH0465562B2 (en) | ||
JP2658306B2 (en) | Ferrimagnetic thin film filter | |
US5168254A (en) | Magnetostatic wave device with minimized higher order mode excitations | |
JP2004289352A (en) | Waveguide type dielectric filter | |
JPH02305014A (en) | Magnetostatic wave device | |
CA1163333A (en) | Magnetostatic-wave device comprising a conducting- strip exchange structure | |
JPH0760965B2 (en) | Magnetostatic wave device | |
JPH104301A (en) | Magnetostatic wave device | |
JP2595716B2 (en) | Magnetostatic device | |
JPH0722889Y2 (en) | Magnetostatic wave resonator | |
JPH0635523Y2 (en) | Non-reciprocal circuit device | |
JP3208967B2 (en) | LC filter | |
JPH0727683Y2 (en) | Magnetostatic wave device |