JPH07312365A - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device

Info

Publication number
JPH07312365A
JPH07312365A JP6101474A JP10147494A JPH07312365A JP H07312365 A JPH07312365 A JP H07312365A JP 6101474 A JP6101474 A JP 6101474A JP 10147494 A JP10147494 A JP 10147494A JP H07312365 A JPH07312365 A JP H07312365A
Authority
JP
Japan
Prior art keywords
semiconductor device
manufacturing
film
metal film
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6101474A
Other languages
Japanese (ja)
Inventor
Yuichi Matsui
裕一 松井
Hiroshi Miki
浩史 三木
Misuzu Hirayama
美鈴 平山
Masayuki Nakada
昌之 中田
Yoshitaka Nakamura
吉孝 中村
Masaru Izawa
勝 伊澤
Yuzuru Oji
譲 大路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6101474A priority Critical patent/JPH07312365A/en
Publication of JPH07312365A publication Critical patent/JPH07312365A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To uniformly accumulate an insulation film on a lower electrode of a material which is remarkably uneven on a surface without reducing specific inductive capacity by a method wherein other elements have beforehand been added in a metal film and are diffused up to an insulation film surface in an insulation film accumulation. CONSTITUTION:There exist a recess and a projection of about 20nm at max due to a crystal grain boundary on a W film surface. In the prior art (b), it is understood that a film thickness is thinned to about half in a corner part on the bottom of the recess and the projection on a surface of a W crystal grain 3. As a Ta2O5 film 2 is increased promptly leak current when the film thickness is thinned, a large leak current flows out from a portion where the film thickness is thin locally. However, in this embodiment (a), a curvature of the surface of Ta2O5 film 2 can be made the same as or higher than that of the corner part on the bottom of the recess and the projection of a W crystal grain 1 (to which Si is added), and the leak current can be reduced more than the prior art. By controlling the annexing amount of Si, absorption probability of the Ta2O5 film 2 can be reduced without decreasing specific inductive capacity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係り、特に、比誘電率の低下をもたらすことなく、表面
凹凸の大きい材料の下部電極上にも絶縁膜を均一に堆積
させ、低いリーク電流特性を示す絶縁膜を有する半導体
装置の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to depositing an insulating film evenly on a lower electrode made of a material having a large surface irregularity without lowering the relative dielectric constant and reducing the relative dielectric constant. The present invention relates to a method for manufacturing a semiconductor device having an insulating film exhibiting leakage current characteristics.

【0002】[0002]

【従来の技術】従来の半導体装置容量素子製造の代表的
な工程を図2の模式断面図を用いて説明する。すなわ
ち、まず、Si 基板4上に、一部領域を除いて、SiO2
5を形成する。次に、バリアメタルとして全面に TiN
膜6を形成した後、SiO2膜5上の部分のみ除去する。図
の(a)は、上記試料上に容量素子の下部電極として W 膜
7をスパッタ法によって形成し、SiO2膜5上で加工した
状態を示したものである。その後、下部電極 W 膜7上
に容量絶縁膜として Ta2O5 膜2を形成した状態を(b)に
示す。最後に、Ta2 O5膜2上に上部電極として TiN 膜
8を形成することによって、容量素子を完成する
((c))。
2. Description of the Related Art A typical process for manufacturing a conventional semiconductor device capacitive element will be described with reference to the schematic sectional view of FIG. That is, first, the SiO 2 film 5 is formed on the Si substrate 4 except for a partial region. Next, TiN is used as a barrier metal on the entire surface.
After forming the film 6, only the portion on the SiO 2 film 5 is removed. In the figure, (a) shows a state in which the W film 7 is formed as the lower electrode of the capacitive element on the sample by a sputtering method and is processed on the SiO 2 film 5. After that, a state in which the Ta 2 O 5 film 2 is formed as a capacitive insulating film on the lower electrode W film 7 is shown in (b). Finally, a TiN film 8 is formed as an upper electrode on the Ta 2 O 5 film 2 to complete the capacitive element.
((c)).

【0003】[0003]

【発明が解決しようとする課題】近年、容量素子の微細
化に伴って、絶縁膜として SiO2 の約6倍の比誘電率を
有する Ta2O5 膜を用いることが検討されている。Ta2O5
膜形成の際、立体的に加工された下部電極上への堆積法
として、一般に、Ta の有機化合物を原料とする化学的
気相成長(CVD)法が用いられる。また、下部電極材料と
しては Si を用いるのが一般的であるが、Ta2O5の堆積
中または堆積後の熱処理によって Ta2O5/Si界面に低誘
電率の SiO2層が形成されるため、絶縁膜全体としての
比誘電率が低下するという問題点があった。このため、
下部電極材料として酸化されにくい金属、例えば W 、
が用いられるようになったが、W 表面には結晶粒界によ
って最大20nm程度の凹凸が存在する。さらに、Ta 有機
化合物の吸着確率が大きいため、段差被覆性が悪く、表
面凹凸の底面コーナー部において Ta2O5膜厚が局所的に
薄くなる部分が生じ、リーク電流が増加するという問題
点のあることがわかった。例えば、DRAM の容量素子に
おいて、絶縁膜のリーク電流が大きいとリフレッシュタ
イムを短くしなければならず、使用電力が大きくなって
しまう。そこで、絶縁膜厚を表面凹凸底面コーナー部で
も均一なものとして、リーク電流を低減させる必要があ
った。
In recent years, with the miniaturization of capacitive elements, the use of a Ta 2 O 5 film having a relative dielectric constant about 6 times that of SiO 2 has been studied as an insulating film. Ta 2 O 5
When forming a film, a chemical vapor deposition (CVD) method using an organic compound of Ta 2 as a raw material is generally used as a deposition method on a three-dimensionally processed lower electrode. Although as the lower electrode material is generally used Si, SiO 2 layer of low dielectric constant is formed on the Ta 2 O 5 / Si interface by heat treatment after deposition during or deposition of Ta 2 O 5 Therefore, there is a problem that the relative dielectric constant of the entire insulating film is lowered. For this reason,
A metal that is not easily oxidized as the lower electrode material, such as W,
However, the W surface has irregularities of up to about 20 nm due to the grain boundaries. Furthermore, since the adsorption probability of the Ta organic compound is high, the step coverage is poor, and the Ta 2 O 5 film thickness is locally thinned at the bottom corners of the surface irregularities, increasing the leakage current. I knew it was. For example, in a DRAM capacitive element, if the leak current of the insulating film is large, the refresh time must be shortened, and the power consumption becomes large. Therefore, it is necessary to reduce the leak current by making the insulating film thickness uniform even on the surface irregularity bottom corner portion.

【0004】本発明の目的は、上記従来技術の有してい
た課題を解決して、比誘電率の低下をもたらすことな
く、表面凹凸の大きい材料の下部電極上に絶縁膜を一様
に堆積させ、低いリーク電流特性を示す絶縁膜を有する
半導体装置の製造方法を提供することにある。
An object of the present invention is to solve the problems of the prior art described above, and to uniformly deposit an insulating film on a lower electrode of a material having large surface irregularities without lowering the relative dielectric constant. Another object of the present invention is to provide a method for manufacturing a semiconductor device having an insulating film exhibiting low leakage current characteristics.

【0005】[0005]

【課題を解決するための手段】上記目的は、化学的気相
成長(CVD)法によって金属膜上に絶縁膜を堆積・形成する
半導体装置の製造工程において、金属膜中にあらかじめ
他元素を添加しておき、上記絶縁膜堆積中に上記他元素
を絶縁膜表面まで拡散させることによって CVD原料の吸
着確率を低減させ、絶縁膜の被覆性を向上させることを
特徴とする半導体装置の製造方法とすることによって達
成することができる。すなわち、絶縁膜堆積原料の吸着
確率を低減させることができる元素、例えば Si 、を下
部電極中に微量添加し、絶縁膜堆積中に膜表面まで拡散
させることによって、絶縁膜の被覆性を改善し、リーク
電流を低減させようとするものである。
[Means for Solving the Problems] The above object is to add other elements to the metal film in advance in the manufacturing process of a semiconductor device in which an insulating film is deposited / formed on the metal film by a chemical vapor deposition (CVD) method. In addition, by diffusing the other element to the surface of the insulating film during the deposition of the insulating film, the probability of adsorption of the CVD raw material is reduced, and the coverage of the insulating film is improved. Can be achieved by That is, a small amount of an element capable of reducing the adsorption probability of the insulating film deposition raw material, such as Si, is added to the lower electrode and diffused to the film surface during the insulating film deposition to improve the coverage of the insulating film. The leak current is to be reduced.

【0006】CVD 原料の吸着確率が低減できれば段差部
の被覆性が向上することは、例えばJournal of Vacuum
Science Technology B pp.618‐624記載のように、シミ
ュレーションによって知られている。また、基板が Si
の場合、CVD ‐ Ta2O5膜堆積中に Si が膜表面まで拡散
することが知られている(例えば、1992年秋応用物理学
会講演予稿集 No.2、18a‐ZQ‐1、694頁 記載)。また、
Ta2O5膜中に Si を含有させることによりリーク電流を
低減させる方法として、特公平5‐53069号、特開平4‐6
833号記載のように Ta2O5膜の結晶化を妨げることによ
るもの、また、特開昭64‐50428号、Journal of Electr
ochemical Society ,pp.320‐328記載のように Ta2O5
中の欠陥が Si によって救済されることによるものが知
られているが、本発明のような CVD 原料の膜表面での
吸着確率低減による被覆性向上を目的としたものではな
い。
If the adsorption probability of the CVD raw material can be reduced, the coverage of the step portion can be improved by, for example, the Journal of Vacuum.
Known by simulation, as described in Science Technology B pp.618-624. Also, the substrate is Si
, It is known that Si diffuses to the film surface during the deposition of CVD-Ta 2 O 5 film (for example, written in Autumn Proceedings of the Applied Physics Society of Japan, No. 2, 18a-ZQ-1, p. 694). ). Also,
As a method of reducing the leak current by including Si in the Ta 2 O 5 film, Japanese Patent Publication No. 5-53069 and Japanese Patent Laid-Open No. 4-6
By preventing crystallization of Ta 2 O 5 film as described in Japanese Patent No. 833, and Japanese Patent Laid-Open No. 64-50428, Journal of Electr.
It is known that defects in the Ta 2 O 5 film are repaired by Si as described in Ochemical Society, pp.320-328, but the adsorption probability of the CVD raw material on the film surface as in the present invention is known. It is not intended to improve the coverage by reducing.

【0007】[0007]

【作用】本発明者等は、下部電極の W に対する Si の
含有量を増すと、CVD ‐ Ta2O5膜堆積速度が低下すると
いう実験結果を得、本発明の Si による吸着確率低減効
果の考えを持つに至った。ただし、シリサイドのように
Si が過剰に含有されている電極では、Ta2O5の界面に
低誘電率の SiO2層が形成され、絶縁膜全体としての比
誘電率が低下してしまう。本発明によれば、添加量を制
御することによって、比誘電率の低下をもたらすことな
く吸着確率を低減することができ、被覆性に起因するリ
ーク電流増加の問題を解決することができる。本発明に
よって、表面凹凸の大きい金属材料上にも CVD 法によ
り絶縁膜を均一に形成することができる。
The present inventors obtained experimental results that the deposition rate of the CVD-Ta 2 O 5 film decreases when the content of Si with respect to W of the lower electrode is increased. I came to have an idea. However, like silicide
In the electrode containing excessive Si, a low dielectric constant SiO 2 layer is formed at the interface of Ta 2 O 5 , and the relative dielectric constant of the entire insulating film is reduced. According to the present invention, by controlling the addition amount, it is possible to reduce the adsorption probability without lowering the relative dielectric constant, and it is possible to solve the problem of an increase in leak current due to the covering property. According to the present invention, it is possible to uniformly form an insulating film on a metal material having large surface irregularities by the CVD method.

【0008】[0008]

【実施例】以下、本発明の方法について、実施例によっ
て具体的に説明する。本発明方法による代表的容量素子
製造の手順を図3の模式断面図によって説明する。ま
ず、Si 基板4上に、一部領域を残して、SiO2膜5を形
成する。次に、バリアメタルとして、TiN 膜6を RF ス
パッタ法によって50nm形成する。スパッタ条件は、純度
99.99%の Ti ターゲットを用い、N2/Ar= 40%(全圧5
mTorr)雰囲気中、RF 出力2.5kWとし、SiO2膜5上で加工
してバリアメタルを形成した。次に、下部電極として、
WF6を SiH4で還元する CVD 法を用いて、Si を2%添加
した膜厚100nmの W 膜9を形成した。ここで、Si 微量
添加 W の CVD 条件は、基板温度280℃、SiH4/WF6流量
比50%とした。なお、W 膜中の Si 濃度はSiH4/WF6流量
比や基板温度を変えることによって変化させることがで
きる。その後、SiO2膜5上で加工して下部電極を形成し
た状態が図の(a)である。
EXAMPLES The method of the present invention will be specifically described below with reference to examples. A typical procedure for manufacturing a capacitive element by the method of the present invention will be described with reference to the schematic sectional view of FIG. First, the SiO 2 film 5 is formed on the Si substrate 4, leaving a partial region. Next, as a barrier metal, a TiN film 6 is formed to a thickness of 50 nm by the RF sputtering method. Sputtering conditions are purity
Using 99.99% Ti target, N 2 / Ar = 40% (total pressure 5
In a mTorr) atmosphere, the RF output was set to 2.5 kW, and the barrier metal was formed by processing on the SiO 2 film 5. Next, as the lower electrode,
A CVD method of reducing WF 6 with SiH 4 was used to form a W film 9 with a film thickness of 100 nm containing 2% of Si. Here, the CVD conditions for the trace amount of Si added W were a substrate temperature of 280 ° C. and a SiH 4 / WF 6 flow rate ratio of 50%. The Si concentration in the W film can be changed by changing the SiH 4 / WF 6 flow rate ratio and the substrate temperature. After that, the state in which the lower electrode is formed by processing on the SiO 2 film 5 is shown in FIG.

【0009】図の(b)は、上記下部電極 W 膜9上に容量
絶縁膜として Ta2O5膜2を形成した状態を示す図であ
る。この Ta2O5膜2は、ペンタエトキシルタンタル(原
料容器を125℃に加熱、キャリアガスは N2: 50sccm)と
酸素(600sccm)とを原料ガスとし、成膜室圧力0.2Torr、
基板温度400℃とした CVD 法によって膜厚10nmに形成し
た。この Ta2O5膜堆積中に、Si が下部電極から膜表面
まで拡散し、原料の吸着確率を低減させる。なお、Ta2O
5膜堆積温度が300℃以下では拡散が充分行われず、効果
が確認できなかった。上部電極として RF スパッタ法に
より TiN 膜8を形成することによってキャパシタが完
成する((c))。なお、スパッタ条件は、上記バリアメタ
ル形成時と同一条件とした。
FIG. 3B is a view showing a state in which the Ta 2 O 5 film 2 is formed as a capacitive insulating film on the lower electrode W film 9. This Ta 2 O 5 film 2 is pentaethoxyl tantalum (heating the raw material container to 125 ° C., carrier gas is N 2 : 50 sccm) and oxygen (600 sccm) as the raw material gas, and the film forming chamber pressure is 0.2 Torr,
A film thickness of 10 nm was formed by a CVD method with a substrate temperature of 400 ° C. During the deposition of this Ta 2 O 5 film, Si diffuses from the lower electrode to the film surface, reducing the probability of raw material adsorption. In addition, Ta 2 O
5 When the film deposition temperature was 300 ° C or lower, the diffusion was not sufficiently performed and the effect could not be confirmed. A capacitor is completed by forming a TiN film 8 by RF sputtering as an upper electrode ((c)). The sputtering conditions were the same as those for forming the barrier metal.

【0010】W 膜表面には結晶粒界に起因する最大20nm
程度の凹凸が存在する。本実施例の場合の W 膜上の Ta
2O5膜被覆形状の断面図と従来技術による場合のそれと
の比較を図1の(a)、(b)に示す。従来技術によるもの
(b)では、W 表面凹凸の底面コーナー部で、膜厚が半分
程度に薄くなっていることがわかった。Ta2O5は、膜厚
が薄くなるとリーク電流が急増するため、局所的に膜厚
が薄い部分から大きなリーク電流が流れてしまう。しか
し、本実施例の場合(a)には、Ta2O5膜表面の曲率を W
の凹凸の底面コーナー部の曲率と同じもしくはより大き
くすることができ、リーク電流を従来技術の場合に比べ
て低減することができる。本構造による容量素子の電流
‐電圧特性を、本発明によるものと従来技術によるもの
とを比較して図4に示す。ここで、被覆性改善によるリ
ーク電流低減効果を際立たせるために、何れの試料につ
いても、上部電極形成前にオゾンを含む雰囲気中で水銀
ランプを照射しながら280℃ 30分の熱処理を行った。こ
れは、上記処理によって Ta2O5膜中の欠陥が低減するこ
とが知られていること(例えば、特開平2‐283022 記載)
による。図の結果から、従来技術による試料の場合、電
圧0.75Vの時のリーク電流密度が10~7A/cm2台であるのに
対して、本実施例の方法による試料の場合10~8A/cm~8A/
cm2以下に低減できていることがわかる。
A maximum of 20 nm due to grain boundaries on the W film surface
There are some irregularities. Ta on the W film in this embodiment
A cross-sectional view of the 2 O 5 film-covered shape and a comparison with the case of the conventional technique are shown in FIGS. According to conventional technology
In (b), it was found that the film thickness was reduced to about half at the bottom corners of the W surface irregularities. The leak current of Ta 2 O 5 rapidly increases as the film thickness becomes thin, and thus a large leak current locally flows from the thin film portion. However, in the case of this example (a), the curvature of the Ta 2 O 5 film surface is set to W
The curvature of the bottom corner portion of the unevenness can be made equal to or larger than that, and the leak current can be reduced as compared with the case of the conventional technique. The current-voltage characteristics of the capacitive element according to this structure are shown in FIG. 4 in comparison with those according to the present invention and those according to the prior art. Here, in order to enhance the effect of reducing the leak current by improving the coating property, each sample was subjected to heat treatment at 280 ° C. for 30 minutes while irradiating a mercury lamp in an atmosphere containing ozone before forming the upper electrode. It is known that the above treatment reduces defects in the Ta 2 O 5 film (for example, described in JP-A-2-283022).
by. From the results shown in the figure, in the case of the sample according to the conventional technique, the leakage current density at a voltage of 0.75 V is 10 to 7 A / cm 2 , whereas in the case of the sample according to the present example, it is 10 to 8 A. / cm ~ 8 A /
It can be seen that it has been reduced to cm 2 or less.

【0011】また、本実施例の容量素子完成後の Ta2O5
膜中の深さ方向の Si の分布を図5に示す。図の結果か
ら、Ta2O5絶縁膜内部の Si 濃度に比べて膜表面に10倍
程度大きく拡散していることがわかる。ただし、下部電
極に Si を添加させることによる比誘電率の低下は確認
されなかった。また、Ta2O5と下部電極 W との界面にも
SiO2の成長は認められなかった。
Further, Ta 2 O 5 after completion of the capacitive element of this embodiment
Figure 5 shows the Si distribution in the depth direction in the film. From the results in the figure, it can be seen that the diffusion is about 10 times larger than the Si concentration inside the Ta 2 O 5 insulating film. However, no decrease in relative permittivity was confirmed by adding Si to the lower electrode. Also, at the interface between Ta 2 O 5 and the lower electrode W,
No growth of SiO 2 was observed.

【0012】下部電極の W 膜に Si を添加する手段と
しては、CVD 法により W 膜を形成する場合に、SiH4
他に SiH2F2を用いても同様の効果の得られることが確
認された。また、SiH4に代えてあるいは SiH4に加え
て、Si2H6、Si3H8を用いてもよい。また、WF6の代り
に、WCl6、W(CO)6、(C5H5)2WH2(ビスシクロペンタジエ
ニルタングステン)、W2〔N(CH3)26(ヘキサキスジメチ
ルアミドジタングステン)などの W を含む有機金属を用
いることもできる。スパッタ法によって W 膜を形成す
る場合には、W のターゲット中に予め所望の量だけ Si
を添加させておく方法や、W と Si の二つのターゲット
を用いて、同時にまたは交互にスパッタさせる方法でも
効果が確認された。また、予めスパッタ法または CVD
法によって形成した W 膜中に、不純物注入により Si
を所望の量だけ添加させる方法や、CVD法またはスパッ
タ法によって Si を W 膜表面に必要な厚さだけ形成
し、その後熱処理によって Si を膜中に拡散させる方法
でも効果が確認されている。逆に、予めSi 膜を形成し
ておき、その後スパッタ法または CVD 法によって W を
形成し、400℃以上の熱処理によって Si を添加させる
方法でも効果が確認された。この場合、絶縁膜堆積時の
基板温度が400℃以上ならば、上記熱処理を省略しても
効果の得られることが確認できた。ただし、この手法で
は、W の膜厚が100nm以上では、Si の絶縁膜までの拡散
が充分でないため、W 膜厚は50nm以上であることが望ま
しい。
As a means for adding Si to the W film of the lower electrode, it has been confirmed that similar effects can be obtained by using SiH 2 F 2 in addition to SiH 4 when the W film is formed by the CVD method. Was done. In addition to or SiH 4 instead of SiH 4, it may be used Si 2 H 6, Si 3 H 8. Further, instead of WF 6 , WCl 6 , W (CO) 6 , (C 5 H 5 ) 2 WH 2 (biscyclopentadienyltungsten), W 2 [N (CH 3 ) 2 ] 6 (hexakisdimethyl) It is also possible to use an organic metal containing W such as amidoditungsten). When forming a W film by the sputtering method, a desired amount of Si should be previously prepared in the W target.
The effect was also confirmed by the method of adding the target and the method of using two targets of W and Si to perform sputtering simultaneously or alternately. In addition, the sputtering method or CVD
Of Si by the impurity implantation in the W film formed by the
Effects have also been confirmed by the method of adding a desired amount of Si, or the method of forming Si to a required thickness on the W film surface by the CVD method or the sputtering method and then diffusing Si into the film by heat treatment. On the contrary, the effect was also confirmed by forming a Si film in advance, then forming W by a sputtering method or a CVD method and then adding Si by a heat treatment at 400 ° C or higher. In this case, it was confirmed that the effect can be obtained even if the above heat treatment is omitted if the substrate temperature at the time of depositing the insulating film is 400 ° C. or higher. However, in this method, when the film thickness of W 2 is 100 nm or more, the diffusion of Si into the insulating film is not sufficient, so the W film thickness is preferably 50 nm or more.

【0013】また、予め Si を形成し、300℃に加熱し
ておいて WF6を流入させると(WF6/N2=20/2000sccm、圧
力700mTorr)、Si が W によって置換されることが知ら
れている(例えば、Materials Research Society 1989 p
p.143‐149 記載)。この手法によっても W 中に Si が
数%含有されるため、同様の効果が確認できた。
It is also known that Si is replaced by W when Si is formed in advance and WF 6 is introduced after being heated to 300 ° C. (WF 6 / N 2 = 20/2000 sccm, pressure 700 mTorr). (E.g., Materials Research Society 1989 p
p.143-149). Even with this method, the same effect could be confirmed because Si contains several% in W.

【0014】また、添加量を再現性良く制御するため
に、予め W 原料と Si 原料とを一定の比率で混合した
原料を用意し、CVD 法によって下部電極形成を行った結
果、WF6とSiH4、Si2H6、Si3H8、SiH2F2を混合したもの
や、W の有機化合物と Si の有機化合物とを混合したも
の、W と Si とを同時に含む有機化合物原料を用いても
同様な効果が確認された。以上すべての場合において、
W 膜中の Si 濃度は0.1〜30原子%の範囲内で本発明の
効果が確認された。ここで、Ta2O5膜成長速度と比誘電
率との W 膜中 Si 添加率依存性を図6に示す。Si 添加
率が0.1%よりも少ないと、シリコンの拡散による吸着
確率低減効果が充分でないため、堆積速度の減少が認め
られず、30%よりも多くなると SiO2膜形成による比誘
電率の低下が著しくなる。また、Si の拡散量が多くな
ると、Ta2O5膜中リークの原因となる欠陥となるため、
リーク電流低減は、5原子%の場合が最も効果的であ
る。
In order to control the addition amount with good reproducibility, a raw material prepared by mixing W raw material and Si raw material in a predetermined ratio was prepared in advance, and the lower electrode was formed by the CVD method. As a result, WF 6 and SiH 4 , using a mixture of Si 2 H 6 , Si 3 H 8 , and SiH 2 F 2 , a mixture of an organic compound of W and an organic compound of Si, and an organic compound raw material containing W and Si at the same time A similar effect was confirmed. In all of the above cases,
The effect of the present invention was confirmed when the Si concentration in the W film was within the range of 0.1 to 30 atomic%. FIG. 6 shows the dependency of the Ta 2 O 5 film growth rate and the relative dielectric constant on the Si addition ratio in the W film. If the Si addition ratio is less than 0.1%, the effect of reducing the adsorption probability due to the diffusion of silicon is not sufficient, so no decrease in the deposition rate is observed, and if it is more than 30%, the relative dielectric constant decreases due to the SiO 2 film formation. It will be noticeable. In addition, if the diffusion amount of Si increases, it becomes a defect that causes leakage in the Ta 2 O 5 film.
The reduction of the leak current is most effective when it is 5 atomic%.

【0015】上記実施例においては添加元素として Si
を用いた場合について説明したが、他に、同様の手段で
下部電極中に Ge、Ti を含有させた場合にも、0.1〜50
原子%の範囲で同様の効果が確認された。また、添加元
素の Ta2O5膜中深さ方向分布は、前記 Si の場合と同様
に、膜表面付近に多く存在していた。
In the above embodiment, Si is used as an additional element.
Although the case where Ge and Ti are contained in the lower electrode by the same means is also described in the case of using
A similar effect was confirmed in the atomic% range. In addition, the distribution of additive elements in the Ta 2 O 5 film in the depth direction was mostly present near the film surface, as in the case of Si.

【0016】その他、電極材料として Ta、TaN、Ti、Ti
N、WN、Mo、MoN を用い、Si、Ge を添加した場合、およ
び、電極材料として Ta、TaN、WN、Mo、MoN を用い、Ti
を添加した場合にも同様の結果が得られた。また、本
実施例においては、容量絶縁膜としてペンタエトキシタ
ンタルと酸素とを原料ガスとした CVD 法による Ta2O5
膜を用いた例について説明したが、Taの原料ガスとして
は TaCl5やTa(OCH3)5、Ta(N(CH3)2)5など他の Ta 有機
物ソースを用いて CVD 法によって形成した場合でも同
様な効果が確認された。
In addition, Ta, TaN, Ti, Ti are used as electrode materials.
When N, WN, Mo, MoN is used and Si, Ge are added, and Ta, TaN, WN, Mo, MoN are used as electrode materials, Ti,
Similar results were obtained when was added. In addition, in this embodiment, Ta 2 O 5 is formed by the CVD method using pentaethoxytantalum and oxygen as source gases for the capacitive insulating film.
Although an example using a film was explained, the Ta source gas was formed by the CVD method using other Ta organic material sources such as TaCl 5 , Ta (OCH 3 ) 5 and Ta (N (CH 3 ) 2 ) 5 . Even in the case, the same effect was confirmed.

【0017】また、本実施例においては絶縁膜として T
a2O5膜を用いたが、Ti、Zr、Hf、Y、Nb の酸化膜や PbT
iO3、Pb(ZrXTi1-X)O3、SrTiO3、BaXSr1-XTiO3等の酸化
物の混合膜でも効果が確認された。これらの酸化膜は、
該当金属の有機化合物を原料ガスとする CVD 法によっ
て形成することができる。また、下部電極材料として
は、Pt、Ru、Ru 酸化物を用い、添加元素としては、T
a、Ti、Si、Ge を用いた。ただし、絶縁膜として PbTiO
3膜、 Pb(ZrXTi1-X)O3膜を用いる場合、下部電極中に添
加する元素の濃度は10%以下に限定される。これよりも
多いと、絶縁膜の結晶性を阻害してしまい、比誘電率の
低下が著しくなる。
In this embodiment, the insulating film T
The a 2 O 5 film was used, but Ti, Zr, Hf, Y, Nb oxide film and PbT
The effect was also confirmed in a mixed film of oxides such as iO 3 , Pb (Zr X Ti 1-X ) O 3 , SrTiO 3 , and Ba X Sr 1-X TiO 3 . These oxide films are
It can be formed by a CVD method using an organic compound of the corresponding metal as a source gas. Further, Pt, Ru, and Ru oxide were used as the lower electrode material, and T was used as the additive element.
a, Ti, Si and Ge were used. However, as an insulating film, PbTiO
In the case of using the three film and the Pb (Zr X Ti 1-X ) O 3 film, the concentration of the element added to the lower electrode is limited to 10% or less. If the amount is larger than this, the crystallinity of the insulating film is obstructed and the relative dielectric constant is significantly lowered.

【0018】また、容量素子の製造装置としては、下部
電極形成後大気に曝すことなく絶縁膜形成装置に搬送で
きるものを用いた。これは、下部電極 W 形成後大気中
1週間放置した場合、表面に自然酸化膜が2nm程度成長
して、添加元素の拡散を阻害し、効果を確認できなくな
ったためである。
As the manufacturing device of the capacitive element, one that can be transferred to the insulating film forming device without being exposed to the atmosphere after forming the lower electrode was used. This is because when the lower electrode W was formed and left in the atmosphere for 1 week, a natural oxide film grew to a thickness of about 2 nm on the surface, which hindered the diffusion of the additive element and the effect could not be confirmed.

【0019】さらに、本発明による容量素子を用いてダ
イナミック ランダム アクセス メモリ(DRAM)を作製し
た。該 DRAM セルの断面図を図7に示す。ここで、容量
素子SiO2換算膜厚1.5nm(Ta2O5膜厚9nm)で、耐圧0.75V
以上(判定電流密度10~8A/cm2)を満足しており、さらに
DRAM としての動作が確認された。
Further, a dynamic random access memory (DRAM) was manufactured using the capacitive element according to the present invention. A sectional view of the DRAM cell is shown in FIG. Here, the capacitance element has a SiO 2 equivalent film thickness of 1.5 nm (Ta 2 O 5 film thickness of 9 nm) and a withstand voltage of 0.75 V.
The above (judgment current density 10 to 8 A / cm 2 ) is satisfied, and
Operation as DRAM was confirmed.

【0020】また、本発明は、容量素子だけではなく、
半導体装置の中の層間絶縁膜など、金属膜の凹凸上に絶
縁膜を均一に形成する必要がある場合にも適用すること
ができる。この場合の金属膜としては、W の他に、WN、
Ti、TiN、Ta、TaN、Mo、MoN、TiW、Al、Ni、Cr、Co、A
g、Cu、Pb、Pd、Sn、V、Mn、Fe、Zr、Nb、Rh、Hf、Ir、
Pt、Au、Ru、Ru 酸化物やこれらの合金を挙げることが
できる。添加元素としては、Si、Ge、Ta、Ti の中から
上記金属膜材料中に含まれていない元素を選択すれば良
い。
The present invention is not limited to the capacitive element,
It can also be applied to the case where it is necessary to uniformly form an insulating film on the unevenness of a metal film such as an interlayer insulating film in a semiconductor device. As the metal film in this case, in addition to W, WN,
Ti, TiN, Ta, TaN, Mo, MoN, TiW, Al, Ni, Cr, Co, A
g, Cu, Pb, Pd, Sn, V, Mn, Fe, Zr, Nb, Rh, Hf, Ir,
Pt, Au, Ru, Ru oxides and alloys thereof can be mentioned. As the additive element, an element not contained in the metal film material may be selected from Si, Ge, Ta and Ti.

【0021】また、本発明によって、同一材料の金属の
平面部と側面部との吸着確率を大きく変えることができ
るので、絶縁膜を自己整合的に堆積することができる。
例えば、不純物注入法またはスパッタ法によって金属中
に Si を選択的に含有させ、金属平面部の吸着確率を低
減させれば、絶縁膜は金属側面部に選択的に堆積する。
これによって、エッチングバック工程などを省略するこ
とができる。具体的には、図8(a)のような W ゲートの
サイドウォール、(b)のようなトレンチの側壁保護膜に
適用することができる。また、(c)のような形状にして
その上に電極材料を形成すれば、単純なスタック型の容
量素子になり、下部電極側壁部のサイドウォールを形成
する工程を省略することができる。
Further, according to the present invention, since the adsorption probability between the flat surface portion and the side surface portion of the metal of the same material can be largely changed, the insulating film can be deposited in a self-aligned manner.
For example, if Si is selectively contained in the metal by the impurity implantation method or the sputtering method to reduce the adsorption probability of the flat metal portion, the insulating film is selectively deposited on the side surface portion of the metal.
As a result, the etching back process and the like can be omitted. Specifically, it can be applied to a W gate sidewall as shown in FIG. 8A and a trench sidewall protective film as shown in FIG. 8B. Further, when the electrode material is formed on the shape as shown in (c), a simple stack type capacitive element is obtained, and the step of forming the sidewall of the lower electrode side wall portion can be omitted.

【0022】[0022]

【発明の効果】以上述べてきたように、半導体装置及び
その製造方法を本発明構成の装置及び製造方法とするこ
とによって、従来技術の有していた課題を解決して、比
誘電率の低下をもたらすことなく、表面凹凸の大きい材
料の下部電極上にも絶縁膜を均一に堆積することがで
き、低いリーク電流特性を示す絶縁膜を有する半導体装
置及びその製造方法を提供することができた。
As described above, by using the semiconductor device and the method of manufacturing the same as the apparatus and the method of manufacturing the present invention, the problems of the prior art can be solved and the relative permittivity can be lowered. It was possible to provide a semiconductor device having an insulating film exhibiting low leakage current characteristics, and a method for manufacturing the same, by which an insulating film can be uniformly deposited on a lower electrode made of a material having large surface irregularities without causing .

【図面の簡単な説明】[Brief description of drawings]

【図1】W 表面の結晶粒による凹凸上に形成した、本発
明による Ta2O5膜被覆形状(a)と従来技術による被覆形
状(b)とを比較して示した断面図。
FIG. 1 is a cross-sectional view showing a Ta 2 O 5 film coating shape (a) according to the present invention and a coating shape (b) according to a conventional technique, which are formed on the unevenness due to crystal grains on the W surface, in comparison.

【図2】従来技術による容量素子作製の工程を説明する
ための断面図。
FIG. 2 is a cross-sectional view for explaining a process of manufacturing a capacitive element according to a conventional technique.

【図3】本発明による容量素子作製の工程を説明するた
めの断面図。
FIG. 3 is a cross-sectional view for explaining a process of manufacturing a capacitive element according to the present invention.

【図4】本発明による容量素子と従来技術による容量素
子のリーク電流‐電圧特性を比較して示した図。
FIG. 4 is a diagram showing a comparison of leakage current-voltage characteristics of a capacitor according to the present invention and a capacitor according to a conventional technique.

【図5】本発明による Ta2O5膜中の Si 原子濃度の深さ
方向分布を示す図。
FIG. 5 is a diagram showing the distribution of Si atom concentration in the Ta 2 O 5 film according to the present invention in the depth direction.

【図6】Ta2O5膜の堆積速度と比誘電率の、下部電極 W
中 Si 添加率依存性を示す図。
FIG. 6 Lower electrode W of deposition rate and relative permittivity of Ta 2 O 5 film
FIG. 6 is a graph showing the dependence of the medium Si content on the additive rate.

【図7】本発明による容量素子を用いて作製した DRAM
の要部断面図。
FIG. 7: DRAM manufactured by using the capacitor according to the present invention
FIG.

【図8】本発明による絶縁膜の自己整合的堆積効果の具
体的な応用例を示した図。
FIG. 8 is a diagram showing a specific application example of the self-aligned deposition effect of an insulating film according to the present invention.

【符号の説明】[Explanation of symbols]

1… W 結晶粒(Si 添加)、2… Ta2O5膜、3… W 結晶
粒、4… Si 基板、5、12、17… SiO2膜、6、8、15
… TiN 膜、7… W 膜、9… W(Si添加)膜、10…n+
Si (ソース・ドレイン領域)、11…多結晶 Si (ワード
線)、13… PSG/SOG/PSG(層間絶縁膜)、14… WSi2(ビッ
ト線)、16… BPSG/HLD(層間絶縁膜)。
1 ... W crystal grain (Si added), 2 ... Ta 2 O 5 film, 3 ... W crystal grain, 4 ... Si substrate, 5, 12, 17 ... SiO 2 film, 6, 8, 15
... TiN film, 7 ... W film, 9 ... W (Si added) film, 10 ... n + -
Si (source / drain region), 11 ... Polycrystalline Si (word line), 13 ... PSG / SOG / PSG (interlayer insulating film), 14 ... WSi 2 (bit line), 16 ... BPSG / HLD (interlayer insulating film) .

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/822 21/8242 27/108 (72)発明者 中田 昌之 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 中村 吉孝 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 伊澤 勝 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 (72)発明者 大路 譲 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内Continuation of front page (51) Int.Cl. 6 Identification number Office internal reference number FI Technical indication location H01L 21/822 21/8242 27/108 (72) Inventor Masayuki Nakata 1-280 Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Laboratory (72) Inventor Yoshitaka Nakamura 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Central Research Laboratory (72) Inventor Masaru Izawa 1-280, Higashi Koikeku, Kokubunji, Tokyo Hitachi Research Center Co., Ltd. In-house (72) Inventor, Yuzuru Ooji 1-280, Higashi-Kengokubo, Kokubunji-shi, Tokyo Inside Hitachi Central Research Laboratory

Claims (32)

【特許請求の範囲】[Claims] 【請求項1】化学的気相成長(CVD)法によって金属膜上
に絶縁膜を堆積・形成する半導体装置の製造工程におい
て、金属膜中にあらかじめ他元素を添加しておき、上記
絶縁膜堆積中に上記他元素を絶縁膜表面まで拡散させる
ことによって CVD 原料の吸着確率を低減させ、絶縁膜
の被覆性を向上させることを特徴とする半導体装置の製
造方法。
1. In the process of manufacturing a semiconductor device in which an insulating film is deposited / formed on a metal film by a chemical vapor deposition (CVD) method, another element is added to the metal film in advance to deposit the insulating film. A method for manufacturing a semiconductor device, characterized in that the probability of adsorption of a CVD raw material is reduced by diffusing the above-mentioned other elements into the surface of the insulating film, and the coverage of the insulating film is improved.
【請求項2】上記金属膜が W であり、上記添加元素が
Si であることを特徴とする請求項1記載の半導体装置
の製造方法。
2. The metal film is W, and the additive element is
The method of manufacturing a semiconductor device according to claim 1, wherein the method is Si.
【請求項3】上記 Si の添加量が W に対して0.1〜30原
子%であることを特徴とする請求項2記載の半導体装置
の製造方法。
3. The method of manufacturing a semiconductor device according to claim 2, wherein the amount of Si added is 0.1 to 30 atomic% with respect to W.
【請求項4】上記 Si の添加方法が、WF6 と SiH4とを
原料とする CVD による方法であることを特徴とする請
求項2記載の半導体装置の製造方法。
4. The method of manufacturing a semiconductor device according to claim 2, wherein the method of adding Si is a method of CVD using WF 6 and SiH 4 as raw materials.
【請求項5】上記 Si の添加方法が、あらかじめ Si 膜
を形成しておき、これを WF6によって W に置換する方
法であることを特徴とする請求項2記載の半導体装置の
製造方法。
5. The method of manufacturing a semiconductor device according to claim 2, wherein the method of adding Si is a method of previously forming a Si film and replacing it with W by WF 6 .
【請求項6】上記金属膜中への他元素添加の方法が、添
加元素の膜上に金属膜を形成し、絶縁膜の堆積前または
堆積中の熱処理によって、添加元素を金属膜中に拡散さ
せる方法であることを特徴とする請求項1記載の半導体
装置の製造方法。
6. A method of adding another element to the metal film, wherein a metal film is formed on the film of the addition element, and the addition element is diffused into the metal film by heat treatment before or during the deposition of the insulating film. 2. The method for manufacturing a semiconductor device according to claim 1, wherein the method is a method of manufacturing the semiconductor device.
【請求項7】上記 W 膜形成の原料として、WF6、WCl6
W(CO)6、(C5H5)2WH2(ビスシクロペンタジエニルタング
ステン)、W2〔N(CH3)26(ヘキサキスジメチルアミドジ
タングステン)の中の少なくとも1種類以上を用いるこ
とを特徴とする請求項2記載の半導体装置の製造方法。
7. The raw material for forming the W film is WF 6 , WCl 6 ,
At least one or more of W (CO) 6 , (C 5 H 5 ) 2 WH 2 (biscyclopentadienyl tungsten), W 2 [N (CH 3 ) 2 ] 6 (hexakisdimethylamide ditungsten) 3. The method for manufacturing a semiconductor device according to claim 2, wherein:
【請求項8】上記添加元素 Si の原料としてSiH4、SiH2
F2、Si2H6、Si3H8の中の少なくとも1種類以上を用いる
ことを特徴とする請求項2記載の半導体装置の製造方
法。
8. SiH 4 and SiH 2 as raw materials for the additive element Si
3. The method of manufacturing a semiconductor device according to claim 2, wherein at least one kind selected from F 2 , Si 2 H 6 and Si 3 H 8 is used.
【請求項9】上記絶縁膜がタンタル酸化膜であり、その
形成原料としてタンタル(Ta)の有機化合物または塩化物
を用いることを特徴とする請求項1記載の半導体装置の
製造方法。
9. The method of manufacturing a semiconductor device according to claim 1, wherein the insulating film is a tantalum oxide film, and an organic compound of tantalum (Ta) or a chloride is used as a forming material thereof.
【請求項10】上記添加元素が、素子完成後も上記金属
膜中に残存し、絶縁膜中では特に膜表面に多く存在して
いることを特徴とする請求項1記載の半導体装置の製造
方法。
10. The method of manufacturing a semiconductor device according to claim 1, wherein the additive element remains in the metal film even after the element is completed, and a large amount thereof is present particularly in the film surface in the insulating film. .
【請求項11】上記金属膜の凹凸による上記絶縁膜の被
覆形状において、絶縁膜表面の曲率を、金属膜段差底面
コーナー部の曲率と同じかもしくはより大きくなるよう
に堆積することを特徴とする請求項1記載の半導体装置
の製造方法。
11. In the covering shape of the insulating film by the concavity and convexity of the metal film, the curvature of the insulating film surface is deposited so as to be equal to or larger than the curvature of the bottom corner of the metal film step bottom. The method for manufacturing a semiconductor device according to claim 1.
【請求項12】上記金属膜が Si を添加した W 、上記
絶縁膜が Ta 酸化膜であることを特徴とする請求項1記
載の半導体装置の製造方法。
12. The method of manufacturing a semiconductor device according to claim 1, wherein the metal film is W to which Si is added, and the insulating film is a Ta oxide film.
【請求項13】上記 Si 添加 W 膜と Ta 酸化膜との界
面には、シリコン酸化膜を1nm以下の膜厚しか形成させ
ないことを特徴とする請求項12記載の半導体装置の製造
方法。
13. The method of manufacturing a semiconductor device according to claim 12, wherein a silicon oxide film having a thickness of 1 nm or less is formed at the interface between the Si-added W film and the Ta oxide film.
【請求項14】上記金属膜中への他元素添加の手段とし
て、スパッタ法を用いることを特徴とする請求項1記載
の半導体装置の製造方法。
14. The method of manufacturing a semiconductor device according to claim 1, wherein a sputtering method is used as a means for adding another element into the metal film.
【請求項15】上記金属膜中への他元素添加の手段とし
て、CVD 法を用いることを特徴とする請求項1記載の半
導体装置の製造方法。
15. The method of manufacturing a semiconductor device according to claim 1, wherein a CVD method is used as a means for adding another element into the metal film.
【請求項16】上記金属膜中への他元素添加の手段とし
て、上記他元素を金属膜中に注入する不純物注入法を用
いることを特徴とする請求項1記載の半導体装置の製造
方法。
16. The method of manufacturing a semiconductor device according to claim 1, wherein an impurity implantation method of implanting the other element into the metal film is used as a means for adding the other element into the metal film.
【請求項17】上記金属膜中への他元素添加の手段とし
て、該他元素を金属膜表面に堆積しておき、その後熱処
理する方法を用いることを特徴とする請求項1記載の半
導体装置の製造方法。
17. The semiconductor device according to claim 1, wherein a method of depositing the other element on the surface of the metal film and then performing a heat treatment is used as a means for adding the other element into the metal film. Production method.
【請求項18】上記 W 膜への Si の添加の手段とし
て、W を含む物質と Si を含む物質とを混合した原料を
用いた CVD 法を用いることを特徴とする請求項2記載
の半導体装置の製造方法。
18. The semiconductor device according to claim 2, wherein a CVD method using a raw material in which a substance containing W and a substance containing Si are mixed is used as a means for adding Si to the W film. Manufacturing method.
【請求項19】上記 CVD の原料が、少なくとも、WF6
SiXH2X+2で表わされる物質とを混合した原料であるこ
とを特徴とする請求項18記載の半導体装置の製造方法。
19. The raw material for CVD is at least WF 6
19. The method for manufacturing a semiconductor device according to claim 18, which is a raw material mixed with a substance represented by Si X H 2X + 2 .
【請求項20】上記 CVD の原料が、少なくとも、WF6
SiHXF4-Xで表わされる物質とを混合した原料であるこ
とを特徴とする請求項18記載の半導体装置の製造方法。
20. The raw material for CVD is at least WF 6 .
19. The method for manufacturing a semiconductor device according to claim 18, which is a raw material mixed with a substance represented by SiH X F 4-X .
【請求項21】上記 CVD の原料が、W の有機化合物と
Si の有機化合物との混合物であることを特徴とする請
求項18記載の半導体装置の製造方法。
21. The CVD raw material is an organic compound of W 2.
19. The method for manufacturing a semiconductor device according to claim 18, which is a mixture of Si and an organic compound.
【請求項22】上記 CVD の原料が、W と Si とを同時
に含む有機化合物であることを特徴とする請求項18記載
の半導体装置の製造方法。
22. The method of manufacturing a semiconductor device according to claim 18, wherein the raw material of the CVD is an organic compound containing W and Si at the same time.
【請求項23】上記金属膜の材料が、W、WN、Ti、TiN、
Ta、TaN、Mo、MoN、Al、Ni、Cr、Co、Ag、Cu、Pb、Pd、
Sn、V、Mn、Fe、Zr、Nb、Rh、Hf、Ir、Pt、Au、Ru、RuO
Xの中の少なくとも1種類以上を含んだ材料であること
を特徴とする請求項1記載の半導体装置の製造方法。
23. The material of the metal film is W, WN, Ti, TiN,
Ta, TaN, Mo, MoN, Al, Ni, Cr, Co, Ag, Cu, Pb, Pd,
Sn, V, Mn, Fe, Zr, Nb, Rh, Hf, Ir, Pt, Au, Ru, RuO
2. The method for manufacturing a semiconductor device according to claim 1, wherein the material is a material containing at least one kind of X.
【請求項24】上記絶縁膜の材料が、Si、Ta、Ti、Zr、
Hf、Y、Pb、Nb、Sr、Ba、La の酸化物もしくはこれらの
酸化物の混合体であることを特徴とする請求項1記載の
半導体装置の製造方法。
24. The material of the insulating film is Si, Ta, Ti, Zr,
2. The method of manufacturing a semiconductor device according to claim 1, wherein the method is an oxide of Hf, Y, Pb, Nb, Sr, Ba, La or a mixture of these oxides.
【請求項25】上記金属膜中に添加する元素が、Si、G
e、Ta、Ti の中の少なくとも1種類以上であることを特
徴とする請求項1記載の半導体装置の製造方法。
25. The elements added to the metal film are Si and G
2. The method of manufacturing a semiconductor device according to claim 1, wherein at least one of e, Ta and Ti is selected.
【請求項26】上記金属膜の材料が W であり、上記添
加元素が Ti であることを特徴とする請求項1記載の半
導体装置の製造方法。
26. The method of manufacturing a semiconductor device according to claim 1, wherein the material of the metal film is W and the additive element is Ti.
【請求項27】上記 Ti の添加量が、W に対して0.1〜5
0原子%であることを特徴とする請求項26記載の半導体
装置の製造方法。
27. The amount of Ti added is 0.1 to 5 relative to W.
27. The method for manufacturing a semiconductor device according to claim 26, wherein the content is 0 atomic%.
【請求項28】上記半導体装置の下部電極材料が W か
らなり、添加元素が Ge であることを特徴とする請求項
1記載の半導体装置の製造方法。
28. The method of manufacturing a semiconductor device according to claim 1, wherein the lower electrode material of the semiconductor device is made of W and the additive element is Ge.
【請求項29】上記 Ge の添加量が、W に対して0.1〜5
0原子%であることを特徴とする請求項28記載の半導体
装置の製造方法。
29. The amount of Ge added is 0.1 to 5 relative to W.
29. The method for manufacturing a semiconductor device according to claim 28, wherein the content is 0 atomic%.
【請求項30】金属膜形成後、試料を大気に曝すことな
く絶縁膜形成装置搬送することのできる半導体製造装置
を用いることを特徴とする請求項1記載の半導体装置の
製造方法。
30. The method of manufacturing a semiconductor device according to claim 1, wherein after the metal film is formed, a semiconductor manufacturing apparatus is used which can transport the sample without exposing the sample to the atmosphere.
【請求項31】請求項1に記載の製造方法によって作製
した容量素子を用いたことを特徴とする半導体装置。
31. A semiconductor device using the capacitive element manufactured by the manufacturing method according to claim 1.
【請求項32】CVD 法によって金属膜上に絶縁膜を堆積
・形成する半導体装置の製造方法において、金属の平面
部に選択的に他元素を添加しておき、平面部の原料吸着
確率を側面部よりも小さくすることによって、絶縁膜を
金属膜側面部に自己整合的に堆積させることを特徴とす
る半導体装置の製造方法。
32. In a method of manufacturing a semiconductor device in which an insulating film is deposited / formed on a metal film by a CVD method, another element is selectively added to the flat surface of the metal, and the raw material adsorption probability of the flat surface is controlled by the side surface. The method for manufacturing a semiconductor device is characterized in that the insulating film is deposited on the side surface of the metal film in a self-aligned manner by making the insulating film smaller than the metal part.
JP6101474A 1994-05-17 1994-05-17 Method of manufacturing semiconductor device Pending JPH07312365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6101474A JPH07312365A (en) 1994-05-17 1994-05-17 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6101474A JPH07312365A (en) 1994-05-17 1994-05-17 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JPH07312365A true JPH07312365A (en) 1995-11-28

Family

ID=14301737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6101474A Pending JPH07312365A (en) 1994-05-17 1994-05-17 Method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH07312365A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507342A (en) * 1994-10-04 1997-07-22 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Semiconductor device having a ferroelectric memory element having a lower electrode provided with an oxygen barrier
JP2006097099A (en) * 2004-09-30 2006-04-13 Tri Chemical Laboratory Inc Film deposition material, film deposition method and element
JP2006097101A (en) * 2004-09-30 2006-04-13 Tri Chemical Laboratory Inc Film deposition material, film deposition method and element
JP2006128611A (en) * 2004-09-30 2006-05-18 Tri Chemical Laboratory Inc Film forming material and method, and element
CN104103613A (en) * 2013-04-12 2014-10-15 索尼公司 Integrated circuit system with non-volatile memory and method of manufacture thereof
JP2016128606A (en) * 2015-12-24 2016-07-14 株式会社日立国際電気 Method of manufacturing semiconductor device, and substrate processing apparatus, program and program

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507342A (en) * 1994-10-04 1997-07-22 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Semiconductor device having a ferroelectric memory element having a lower electrode provided with an oxygen barrier
JP2006097099A (en) * 2004-09-30 2006-04-13 Tri Chemical Laboratory Inc Film deposition material, film deposition method and element
JP2006097101A (en) * 2004-09-30 2006-04-13 Tri Chemical Laboratory Inc Film deposition material, film deposition method and element
JP2006128611A (en) * 2004-09-30 2006-05-18 Tri Chemical Laboratory Inc Film forming material and method, and element
JP4591917B2 (en) * 2004-09-30 2010-12-01 株式会社トリケミカル研究所 Method for forming conductive molybdenum nitride film
CN104103613A (en) * 2013-04-12 2014-10-15 索尼公司 Integrated circuit system with non-volatile memory and method of manufacture thereof
JP2014207451A (en) * 2013-04-12 2014-10-30 ソニー株式会社 Integrated circuit system equipped with nonvolatile memory and process of manufacturing the same
JP2016128606A (en) * 2015-12-24 2016-07-14 株式会社日立国際電気 Method of manufacturing semiconductor device, and substrate processing apparatus, program and program

Similar Documents

Publication Publication Date Title
US7585725B2 (en) Use of dilute steam ambient for improvement of flash devices
Ezhilvalavan et al. Preparation and properties of tantalum pentoxide (Ta 2 O 5) thin films for ultra large scale integrated circuits (ULSIs) application–a review
US6187631B1 (en) Hemispherical grained silicon on conductive nitride
US6633062B2 (en) Semiconductor device incorporated therein high K capacitor dielectric and method for the manufacture thereof
US6930039B2 (en) Method of fabricating a contact structure having a composite barrier layer between a platinum layer and a polysilicon plug
US6455372B1 (en) Nucleation for improved flash erase characteristics
JP2636755B2 (en) Semiconductor device and method of manufacturing semiconductor device
US6893922B2 (en) Non-volatile memory device and manufacturing method thereof
US20030185980A1 (en) Thin film forming method and a semiconductor device manufacturing method
US6930013B2 (en) Method of forming a capacitor of an integrated circuit device
JPH05206473A (en) Improved dielectric formed on deposited semiconductor
US6287910B2 (en) Method for forming a capacitor using tantalum nitride as a capacitor dielectric
US20020102826A1 (en) Fabricating method of semiconductor integrated circuits
JP4140214B2 (en) Capacitor manufacturing method for nonvolatile semiconductor memory device
US6417042B2 (en) Method of manufacturing a capacitor in a semiconductor device
JP2001053253A (en) Capacitor of semiconductor memory element and its manufacture
JPH08335682A (en) Electron device manufacture
JPH07312365A (en) Method of manufacturing semiconductor device
US6403441B1 (en) Method for fabricating storage capacitor using high dielectric constant material
US7812452B2 (en) Semiconductor device having barrier layer comprised of dissimilar materials, and method for fabricating the same
US20010036703A1 (en) Method of manufacturing capacitor of semiconductor device
JP4347479B2 (en) Field effect transistor
US6797560B2 (en) Method of manufacturing a capacitor having tantalum oxide film as an insulating film
JPH07161934A (en) Semiconductor device and its manufacture
KR100297722B1 (en) Capacitor Manufacturing Method for Semiconductor Devices