JPH0731165B2 - Compressive strength measuring device for waste - Google Patents

Compressive strength measuring device for waste

Info

Publication number
JPH0731165B2
JPH0731165B2 JP1111989A JP11198989A JPH0731165B2 JP H0731165 B2 JPH0731165 B2 JP H0731165B2 JP 1111989 A JP1111989 A JP 1111989A JP 11198989 A JP11198989 A JP 11198989A JP H0731165 B2 JPH0731165 B2 JP H0731165B2
Authority
JP
Japan
Prior art keywords
waste
receiver
transmitter
compressive strength
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1111989A
Other languages
Japanese (ja)
Other versions
JPH02291962A (en
Inventor
範雄 黒坂
寿男 門満
卓朗 八木
博司 藤沢
琢治 氏原
勲 小田
宜顕 ▲榊▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Tokyo Electric Power Environmental Engineering Co Inc
Original Assignee
JGC Corp
Tokyo Electric Power Environmental Engineering Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp, Tokyo Electric Power Environmental Engineering Co Inc filed Critical JGC Corp
Priority to JP1111989A priority Critical patent/JPH0731165B2/en
Publication of JPH02291962A publication Critical patent/JPH02291962A/en
Publication of JPH0731165B2 publication Critical patent/JPH0731165B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はドラム缶等の容器に原子力発電所等で発生する
放射性廃棄物をセメント等により固化して収容した廃棄
体を所外の処理・処分場へ搬出する際の品質管理に必要
な固化体の圧縮強度を、固化体における超音波伝播速度
を算定して推定する、廃棄体の圧縮強度測定装置に関
し、特に、発信子および受信子の固化体に対する密着
性、形状、押圧方法、受信波検出方法などを改善して正
確かつ迅速な測定が行なえるようにした、廃棄体の圧縮
強度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] The present invention is for the external treatment / disposal of a waste containing a radioactive waste generated in a nuclear power plant or the like in a container such as a drum can after being solidified with cement or the like. Regarding the compressive strength measuring device for waste, which estimates the compressive strength of the solidified body required for quality control when it is carried out to the site by calculating the ultrasonic wave propagation velocity in the solidified body, especially the solidification of the transmitter and receiver The present invention relates to an apparatus for measuring the compressive strength of a waste body by improving the adhesion to the body, the shape, the pressing method, the received wave detection method and the like so that accurate and rapid measurement can be performed.

[従来の技術] 従来、超音波伝播速度からセメント固化された廃棄体の
圧縮強度を推定する装置としては、特公昭60−37440号
公報に開示されているように、セメント固化体を収納し
たドラム缶(すなわち廃棄体)を挟んで対向する位置に
設けた発信子および受信子を利用して固化体内の超音波
伝播速度を算定するようにした装置がある。また、特公
昭63−48305号公報に記載されているように、固化体を
収納した容器の表面をシューで加圧して容器を固化体に
密着させることにより表面波が伝わりにくくするとも
に、発信子や受信子の先端で容器壁を加圧し発信子や受
信子と固化体との密着性を高めて直接波が透過しやすく
なるようにし、そして発信子から超音波を発信し、これ
と対面する受信子で超音波を受信して固化体内を通過す
る超音波伝播速度を算定するようにした装置も知られて
いる。さらに、特開昭63−45556号公報に開示されてい
るように、回転する円筒状容器に超音波発信子と超音波
受信子とを所定時間の間固着させて、ともに回転させな
がらより少ない時間で超音波を測定するようにした装置
も提案されている。
[Prior Art] Conventionally, as an apparatus for estimating the compressive strength of a cement-solidified waste body from an ultrasonic wave propagation velocity, as disclosed in Japanese Patent Publication No. 60-37440, a drum can containing the cement-solidified body is disclosed. There is a device that calculates an ultrasonic wave propagation velocity in a solidified body by using a transmitter and a receiver provided at positions facing each other (that is, a waste body). In addition, as described in JP-B-63-48305, by pressing the surface of the container containing the solidified body with a shoe to bring the container into close contact with the solidified body, it is difficult for the surface wave to propagate and the oscillator Press the container wall with the tip of the receiver or the receiver to increase the adhesion between the transmitter and the receiver and the solidified body so that direct waves can easily pass through, and the ultrasonic wave is transmitted from the transmitter to face this. An apparatus is also known in which an ultrasonic wave is received by a receiver and the ultrasonic wave propagation velocity passing through the solidified body is calculated. Further, as disclosed in Japanese Patent Laid-Open No. 63-45556, the ultrasonic transmitter and the ultrasonic receiver are fixed to a rotating cylindrical container for a predetermined time, and the ultrasonic wave and the ultrasonic receiver are rotated together for a shorter time. There is also proposed a device for measuring ultrasonic waves.

[発明が解決しようとする課題] しかしながら、このような従来技術によれば、固化体容
器を伝播するいわゆる表面波と固化体内部を伝播する透
過波との判別が困難であるため、表面波による誤測定を
生ずるという問題がある。特公昭63−48305号記載の発
明においては、測定精度を高めるために容器を外側から
加圧しかつ発信子や受信子でも加圧して固化体との密着
性をよくしているが、それでも満足のいく結果が得られ
ておらず、また測定操作が煩雑でもある。
[Problems to be Solved by the Invention] However, according to such a conventional technique, it is difficult to distinguish between a so-called surface wave propagating in the solidified body container and a transmitted wave propagating in the solidified body. There is a problem that erroneous measurement occurs. In the invention described in Japanese Examined Patent Publication No. 63-48305, the container is pressed from the outside in order to improve the measurement accuracy and the transmitter and the receiver are also pressed to improve the adhesion to the solidified body, but it is still satisfactory. No results have been obtained, and the measurement operation is complicated.

本発明の目的はこのような従来技術の問題点に鑑み、超
音波伝播速度を測定して廃棄体の圧縮強度を算定する装
置において、より正確かつ迅速に廃棄体内の広い領域の
測定が行なえるようにすることにある。特に本発明では
いわゆる表面波の影響による誤測定防止策の具体化を眼
目としている。
In view of the above problems of the conventional art, the object of the present invention is to measure the ultrasonic wave velocity and to calculate the compressive strength of the waste, so that a large area in the waste can be measured more accurately and quickly. To do so. In particular, the present invention aims at embodying a measure for preventing erroneous measurement due to the influence of so-called surface waves.

[課題を解決するための手段] 上記目的を達成するため本発明では、超音波を発信する
発信子および超音波を受信する受信子と、この発信子お
よび受信子を、固化した廃棄物を容器に収容した廃棄体
の表面に押圧する発信子・受信子押圧手段とを備え、発
信子および受信子間を伝播する超音波の伝播時間を測定
して、その測定結果に基づき廃棄体の圧縮強度を得る廃
棄体の圧縮強度測定装置において、1つの発信子による
発信に対し異なる複数位置での受信子による受信を行な
って伝播時間を測定するとともに、各受信子により測定
される、前記容器を伝播する表面波による伝播時間と前
記廃棄物内を直進する直接波による伝播時間とを、各受
信子までの表面波または直接波の伝播経路の距離の比と
比較して区別し、直接波についての伝播時間に基づき廃
棄体の圧縮強度を得ることを特徴とする。
[Means for Solving the Problems] In order to achieve the above-mentioned object, according to the present invention, a transmitter for transmitting an ultrasonic wave and a receiver for receiving the ultrasonic wave, and a waste container in which the transmitter and the receiver are solidified is contained. Equipped with a transmitter / receiver pressing means for pressing against the surface of the waste stored in, the propagation time of the ultrasonic wave propagating between the transmitter and the receiver is measured, and the compressive strength of the waste is based on the measurement result. In the device for measuring the compressive strength of a waste body, the propagation time is measured by receiving by the receivers at a plurality of different positions with respect to the transmission by one transmitter, and the container is propagated through the container measured by each receiver. The propagation time due to the surface wave and the propagation time due to the direct wave traveling straight in the waste are distinguished by comparing with the ratio of the distances of the propagation paths of the surface wave or the direct wave to each receiver. During propagation It is characterized in that the compressive strength of the waste is obtained based on the interval.

あるいは、発信子および受信子をそれぞれの近傍におい
て囲繞したほぼ連続した線もしくは面において廃棄体表
面を押圧する囲繞押圧手段を備え、受信子により受信さ
れる、前記容器を伝播する表面波と前記廃棄物内を直進
する直接波を、それらの振幅の差異により区別し、直接
波に基づいて伝播時間を測定し、廃棄体の圧縮強度を得
ることを特徴とする。
Alternatively, a surrounding wave pressing means for pressing the surface of the waste body at substantially continuous lines or surfaces surrounding the transmitter and the receiver in the vicinity thereof is provided, and the surface wave propagating through the container and the waste received by the receiver. It is characterized in that the direct wave traveling straight in the object is distinguished by the difference in their amplitudes, the propagation time is measured based on the direct wave, and the compressive strength of the waste is obtained.

[作用] この構成において、1つの発信子による発信に対し異な
る複数の受信子による受信を行なって伝播時間を測定す
ると、各受信子により、表面波による伝播時間と直接波
による伝播時間とが測定される。各受信子で測定される
表面波による伝播時間の比は、各受信子までの表面波の
伝播経路の距離の比に一致する。また、直接波による伝
播時間の比は、各受信子までの直接波の伝播経路の距離
の比に一致する。したがって、測定された表面波による
伝播時間と直接波による伝播時間とは、各受信子までの
表面波または直接波の伝播経路の距離の比と比較するこ
とにより区別される。したがって、表面波による伝播時
間を排除し、直接波についての伝播時間に基づき廃棄体
の圧縮強度が得られる。ただし、直接波の伝播経路の距
離の比に一致する比を有する直接波による伝播時間の組
が存在しない場合は、廃棄物の固化体内部に問題がある
ことを示す。
[Operation] In this configuration, when a plurality of different receivers perform transmission for one transmitter to measure the propagation time, the propagation time due to the surface wave and the propagation time due to the direct wave are measured by each receiver. To be done. The ratio of the propagation time of the surface wave measured by each receiver coincides with the ratio of the distances of the propagation paths of the surface waves to each receiver. Further, the ratio of the propagation time of the direct wave matches the ratio of the distances of the propagation paths of the direct wave to each receiver. Therefore, the measured propagation time by the surface wave and the propagation time by the direct wave are distinguished by comparing with the ratio of the distances of the propagation paths of the surface wave or the direct wave to each receiver. Therefore, the propagation time due to surface waves is eliminated and the compressive strength of the waste body is obtained based on the propagation time for direct waves. However, if there is no set of propagation time due to the direct wave having a ratio matching the distance ratio of the propagation path of the direct wave, it indicates that there is a problem inside the solidified waste material.

また、囲繞押圧手段を備える場合は、囲繞押圧手段によ
り表面波が減衰されるため、表面波と直接波との間で、
振幅に大きな開きが生じる。したがって、例えば、受信
される表面波の振幅と直接波の振幅の中間のゲート電圧
を設定して表面波の信号成分を遮断することにより、表
面波と直接波とは容易に区別される。
Further, when the surrounding pressing means is provided, since the surface wave is attenuated by the surrounding pressing means, between the surface wave and the direct wave,
A large difference occurs in the amplitude. Therefore, for example, by setting a gate voltage intermediate between the amplitude of the received surface wave and the amplitude of the direct wave to block the signal component of the surface wave, the surface wave and the direct wave can be easily distinguished.

容器がスチール製等の場合、表面波が直接波より先に受
信されることが生じる場合があるが、本発明によれば、
上述のように、表面波と直接波とが区別されるため、直
接波に基づく、正確な圧縮強度が得られる。
When the container is made of steel or the like, the surface wave may be received before the direct wave, but according to the present invention,
As described above, since the surface wave and the direct wave are distinguished from each other, accurate compression strength based on the direct wave can be obtained.

なお、超音波伝播速度は、発信子が超音波を発信してか
ら受信子がそれを受信するまでに要する時間および発信
地点と受信地点間の距離に基づいて求められる。その
際、発信子が発信する超音波は表面波および透過波とな
って伝播されるが、囲繞押圧手段は容器表面を伝播する
この表面波を発信子および受信子近傍の囲繞押圧部位に
おいて減衰する。また、これと同時に囲繞押圧手段は発
信子および受信子周辺の容器部分の固化体に対する密着
性を高め、さらに発信子・受信子押圧手段が発信子およ
び受信子を廃棄体に押圧して発信子および受信子の固化
体に対する密着性を高めている。したがって、表面波は
極力排除され、固化体の圧縮強度を正しく反映する透過
波のみが固化体に良好に伝えられ検出される。
The ultrasonic wave propagation velocity is obtained based on the time required for the receiver to receive the ultrasonic wave after the transmitter transmits the ultrasonic wave and the distance between the transmitting point and the receiving point. At that time, the ultrasonic wave transmitted by the transmitter propagates as a surface wave and a transmitted wave, but the surrounding pressing means attenuates this surface wave propagating on the container surface at the surrounding pressing portion near the transmitter and the receiver. . At the same time, the surrounding pressing means enhances the adhesion of the container portion around the transmitter and the receiver to the solidified body, and the transmitter / receiver pressing means presses the transmitter and the receiver against the waste material to transmit the transmitter. Also, the adhesion of the receiver to the solidified body is improved. Therefore, the surface wave is eliminated as much as possible, and only the transmitted wave that correctly reflects the compressive strength of the solidified body is satisfactorily transmitted to the solidified body and detected.

発信子および受信子の先端のアダプタ構造が細ければ廃
棄体との密着性はさらによくなり、効率的に透過波伝播
が行なわれる。また、ネオプレンゴムの装着により、表
面波成分は減衰される。表面波をせん断波と仮定すれ
ば、その伝播速度Vsは Vs=(G/ρ)1/2 であるから、G≒0またはρ≒∞の媒体は表面波を伝達
しないからである。
If the adapter structures at the tips of the transmitter and the receiver are thin, the close contact with the waste is further improved, and the transmitted wave is propagated efficiently. Further, the surface wave component is attenuated by mounting the neoprene rubber. This is because, assuming that the surface wave is a shear wave, its propagation velocity V s is V s = (G / ρ) 1/2 , and therefore a medium with G≈0 or ρ≈∞ does not transmit the surface wave.

また、同一水平平面上の円周上において3個以上の発信
子および受信子を同時に押圧し、同時または順次に複数
位置の超音波伝播時間を測定したり、あるいは同一水平
平面以外において発信子および受信子を同時に押圧し、
異なる高さの発信位置と受信位置の間の測定を行なうこ
とにより、廃棄体の回転や発信子および受信子の移動を
要することなく種々の方向や部分の超音波伝播速度が短
時間で得られる。さらに、発信子と受信子とを兼ねた超
音波振動子の発信・受信を順次切り換えることにより、
少ない数の超音波振動子でより広い領域の測定が行なわ
れる。
Further, three or more transmitters and receivers are simultaneously pressed on the circumference on the same horizontal plane to measure the ultrasonic wave propagation time at a plurality of positions simultaneously or sequentially, or the transmitters and receivers on other than the same horizontal plane are measured. Press the receiver at the same time,
By measuring between transmitting position and receiving position at different heights, ultrasonic wave propagation speeds in various directions and parts can be obtained in a short time without the need to rotate the waste and move the transmitter and receiver. . Furthermore, by sequentially switching the transmission and reception of the ultrasonic transducer that doubles as a transmitter and receiver,
A wider area is measured with a smaller number of ultrasonic transducers.

[実施例] 以下、図面を用いて本発明の実施例を説明する。Embodiments Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例に係る装置の斜視図である。
同図に示すようにこの装置は、超音波を発信しあるいは
受信する複数の超音波振動子1と、各超音波振動子1を
廃棄体3表面に押圧する発信子・受信子押圧手段4とを
備え、また、第2図に部分的に示すように、超音波振動
子1をそれぞれの近傍において囲繞したほぼ連続した線
もしくは面において廃棄体3表面を押圧する囲繞押圧部
材5を備える。さらに、発信子・受信子押圧手段4は超
音波振動子1を廃棄体3に押圧するためのピストン・シ
リンダ機構を有しており、超音波振動子1とともに一体
化してフレーム8に固定されている。フレーム8は上下
方向に移動しうるようにフレーム9に取り付けられてい
る。
FIG. 1 is a perspective view of an apparatus according to an embodiment of the present invention.
As shown in the figure, this device includes a plurality of ultrasonic transducers 1 for transmitting or receiving ultrasonic waves, and transmitter / receiver pressing means 4 for pressing each ultrasonic transducer 1 against the surface of the waste body 3. Further, as partially shown in FIG. 2, a surrounding pressing member 5 is provided which presses the surface of the waste 3 at substantially continuous lines or surfaces surrounding the ultrasonic transducers 1 in the vicinity thereof. Further, the transmitter / receiver pressing means 4 has a piston / cylinder mechanism for pressing the ultrasonic vibrator 1 against the waste body 3, and is integrally fixed to the frame 8 together with the ultrasonic vibrator 1. There is. The frame 8 is attached to the frame 9 so as to be vertically movable.

超音波振動子1は同一高さに4個90°ピッチで配置さ
れ、これを1組として異なる高さに2組設けられてい
る。なお、例えば第3図に示すように、異なる高さに3
組設けうるようにしてもよい。
Four ultrasonic transducers 1 are arranged at the same height at a 90 ° pitch, and two ultrasonic transducers 1 are provided at different heights. It should be noted that, for example, as shown in FIG.
You may make it possible to provide a group.

また、超音波振動子1の先端は、第2図に示すように、
アダプタ構造2を備え、そのアダプタ構造は先端が細く
かつネオプレンゴム6を装着しており、例えば直径10mm
程度の面で廃棄体3に接触する。
Further, as shown in FIG. 2, the tip of the ultrasonic transducer 1 is
The adapter structure 2 is provided, and the adapter structure has a thin tip and is fitted with neoprene rubber 6, for example, a diameter of 10 mm.
The waste 3 is contacted in terms of degree.

廃棄体3は、ドラム缶と、そこに収容された廃棄物のセ
メント固化体とからなり、測定に際しては台車10上に載
置してから測定位置に搬送される。
The waste body 3 is composed of a drum and a cement-solidified body of the waste housed therein, and is placed on the carriage 10 for measurement and then conveyed to the measurement position.

発信子・受信子押圧手段4はその先端において超音波振
動子1を保持し、超音波振動子1をそれぞれ均一な押圧
力で廃棄体3に押し付けるように構成される。
The transmitter / receiver pressing means 4 is configured to hold the ultrasonic vibrator 1 at its tip and press the ultrasonic vibrator 1 against the waste 3 with a uniform pressing force.

囲繞押圧部材5はSUS等の硬質の物質で構成され、その
先端にはネオプレンゴム等の軟質物質7が取り付けられ
ている。また第2図に示すように、超音波振動子1の周
囲において四角状や円状の接触部分で廃棄体1を押圧す
るような形状を有し、そして発信子・受信子押圧手段4
とは異なる不図示の押圧手段によって支持され押圧され
る。囲繞押圧部材5は超音波振動子1の押圧と同時に廃
棄体3に押圧される。
The surrounding pressing member 5 is made of a hard substance such as SUS, and a soft substance 7 such as neoprene rubber is attached to the tip thereof. Further, as shown in FIG. 2, it has a shape such that the waste body 1 is pressed by a square or circular contact portion around the ultrasonic transducer 1, and the transmitter / receiver pressing means 4 is provided.
It is supported and pressed by pressing means (not shown) different from. The surrounding pressing member 5 is pressed against the waste 3 at the same time as the ultrasonic vibrator 1 is pressed.

この構成において、測定に際しては、廃棄体3はフレー
ム8を上昇させた状態で装置に設置し、その後、フレー
ム8を下降させて廃棄体3に対し位置決めする。そし
て、廃棄体3に対して超音波振動子1および囲繞押圧部
材5を同時にかつ同一圧力で押圧し、1つの超音波振動
子1から超音波を出力すると、超音波は廃棄体3中の固
化体を透過するとともに一部は廃棄体3表面の容器を伝
わって同じ組の他の超音波振動子1へ到達し、これらに
よって検出される。ただし、表面波成分は軟質物質7を
取り付けた囲繞押圧部材5によって減衰され、さらにネ
オプレンゴム6によって減衰されるので、検出される表
面波成分は微量なものとなる。これに対し透過波成分の
方は、各超音波振動子が狭い接触部分面積を介して廃棄
体3と接触しておりかつ囲繞押圧部材5による押圧力も
加わることにより各超音波振動子と固化体との密着性が
高いため、非常に効率良く超音波振動子間を伝播する。
In this configuration, when measuring, the waste 3 is installed in the apparatus with the frame 8 being raised, and then the frame 8 is lowered and positioned with respect to the waste 3. Then, when the ultrasonic transducer 1 and the surrounding pressing member 5 are pressed against the waste 3 at the same time and with the same pressure, and ultrasonic waves are output from one ultrasonic transducer 1, the ultrasonic waves solidify in the waste 3. While passing through the body, a part of it travels through the container on the surface of the waste 3 and reaches another ultrasonic transducer 1 of the same set, and is detected by these. However, the surface wave component is attenuated by the surrounding pressing member 5 to which the soft substance 7 is attached, and further attenuated by the neoprene rubber 6, so that the detected surface wave component is a very small amount. On the other hand, the transmitted wave component is solidified with each ultrasonic transducer because each ultrasonic transducer is in contact with the waste 3 through the narrow contact portion area and the pressing force by the surrounding pressing member 5 is also applied. Since it has high adhesion to the body, it propagates between ultrasonic transducers very efficiently.

ここで、第4図に示すように、超音波を発する超音波振
動子1aからこれと対向して超音波を受信する超音波振動
子1bまでの距離をlとすれば、他の超音波を受信する超
音波振動子1cまでの距離は同一高さ、90°ピッチで配置
してあるから となり、超音波振動子1aおよび超音波振動子1b間を伝わ
る時間と超音波振動子1aおよび超音波振動子1c間を伝わ
る時間との比は、透過波の場合 であり、表面波の場合は2:1となる。したがって、これ
により検出信号が透過波のものであるか、または表面波
のものであるかが判別される。
Here, as shown in FIG. 4, if the distance from the ultrasonic transducer 1a that emits ultrasonic waves to the ultrasonic transducer 1b that faces the ultrasonic transducer 1b and receives ultrasonic waves is l, other ultrasonic waves are generated. The distance to the ultrasonic transducer 1c to receive is the same height, because it is arranged at 90 ° pitch Therefore, the ratio of the time to travel between the ultrasonic transducers 1a and 1b and the time to travel between the ultrasonic transducers 1a and 1c is And 2: 1 for surface waves. Therefore, this determines whether the detection signal is a transmitted wave or a surface wave.

第5図はこのようにして検出され超音波振動子1bまたは
1cが出力する検出信号を示すグラフである。
Fig. 5 shows the ultrasonic transducer 1b or
It is a graph which shows the detection signal which 1c outputs.

この検出信号は、同図に示すような表面波成分Sと透過
波成分Pを含んでいるが、超音波振動子1aが超音波を発
信した時刻t1と超音波振動子1bまたは1cが透過波成分P
を受信した時刻t2および超音波振動子1aと超音波振動子
1bまたは1cとの距離に基づき超音波の伝播速度が求めら
れる。
This detection signal includes a surface wave component S and a transmitted wave component P as shown in the figure, but the time t 1 when the ultrasonic transducer 1a transmits ultrasonic waves and the ultrasonic transducer 1b or 1c is transmitted. Wave component P
At time t 2 and when ultrasonic transducer 1a and ultrasonic transducer
The propagation velocity of the ultrasonic wave is obtained based on the distance from 1b or 1c.

そして、超音波の発信および受信は、すべての超音波振
動子が廃棄体に押し付けられた状態のままで各超音波振
動子1によって順次交代して行ない、第6図に示すよう
に、同一平面上の経路P1あるいは異なる高さ間の経路P2
の各方向の伝播速度が求められ、固化体の圧縮強度の推
定に供される。これによれば、従来は第7図(a)に示
すように発信子11と受信子12がはっきりと役割分担され
分離して配置していたため領域A1,A2について測定する
ためには廃棄体3の回転あるいは発信子11や受信子12の
移動が必要であったのに対し、同図(b)に示すように
廃棄体等を固定したままで同数の素子で多くの領域の測
定を行なうことができる。
Then, the transmission and reception of ultrasonic waves are sequentially performed by the ultrasonic vibrators 1 while all the ultrasonic vibrators are pressed against the waste body, and as shown in FIG. Path P 1 above or path P 2 between different heights
The propagation velocity in each direction is calculated and used to estimate the compressive strength of the solidified body. According to this, as shown in FIG. 7 (a), the transmitter 11 and the receiver 12 have been clearly divided and arranged separately so that they are discarded in order to measure the areas A 1 and A 2. While the rotation of the body 3 or the movement of the transmitter 11 and the receiver 12 was required, as shown in the figure (b), measurement of many areas with the same number of elements with the waste body etc. fixed. Can be done.

なお、上述においては、超音波振動子間の距離の違いを
利用して表面波成分Sと透過波成分Pとを判別している
が、第5図に示すような表面波成分Sと透過波成分Pと
の中間の所定のゲート電圧値を用いて透過波成分Pのみ
を抽出し、これに基づいて伝播時間を測定して伝播速度
を算定するようにしてもよい。
Although the surface wave component S and the transmitted wave component P are discriminated by utilizing the difference in the distance between the ultrasonic transducers in the above description, the surface wave component S and the transmitted wave component as shown in FIG. It is also possible to extract only the transmitted wave component P using a predetermined gate voltage value intermediate to the component P, and measure the propagation time based on this to calculate the propagation velocity.

[発明の効果] 以上説明したように本発明によれば、直接波と表面波あ
るいはそれらの伝播時間を区別できるようにしたため、
直接波の伝播時間による正確な圧縮強度を得ることがで
きる。
As described above, according to the present invention, the direct wave and the surface wave or their propagation times can be distinguished from each other.
It is possible to obtain an accurate compressive strength due to the propagation time of the direct wave.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例に係る装置の斜視図、 第2図は、第1図の装置の送・受信子近傍の拡大図、 第3図は、超音波振動子の配置の様子を示す模式図、 第4図は、第1図の装置において透過波を判別する方法
を示す説明図、 第5図は、第1図の装置の超音波振動子の出力信号を示
すグラフ、そして 第6図は、第1図の装置による測定領域を側面から見た
場合の様子を示す模式図、そして 第7図(a)および(b)は、第1図の装置による測定
領域を上面から見た場合の様子を従来と比較して示す模
式図である。 1:超音波振動子、2:アダプタ、3:廃棄体、4:発信子・受
信子押圧手段、5:囲繞押圧部材、6:ネオプレンゴム、7:
軟質物質、8,9:フレーム。
1 is a perspective view of an apparatus according to an embodiment of the present invention, FIG. 2 is an enlarged view of the vicinity of the transmitter / receiver of the apparatus of FIG. 1, and FIG. 3 is an arrangement of ultrasonic transducers. FIG. 4 is a schematic diagram showing a state, FIG. 4 is an explanatory view showing a method of discriminating a transmitted wave in the device of FIG. 1, FIG. 5 is a graph showing an output signal of an ultrasonic transducer of the device of FIG. 1, FIG. 6 is a schematic diagram showing a state in which the measurement region of the apparatus of FIG. 1 is viewed from the side, and FIGS. 7A and 7B are top views of the measurement region of the apparatus of FIG. It is a schematic diagram which shows a mode when it sees from compared with the past. 1: Ultrasonic transducer, 2: Adapter, 3: Waste, 4: Transmitter / receiver pressing means, 5: Envelope pressing member, 6: Neoprene rubber, 7:
Soft material, 8,9: frame.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 八木 卓朗 神奈川県横浜市南区別所1―14―1 日揮 株式会社内 (72)発明者 藤沢 博司 神奈川県横浜市南区別所1―14―1 日揮 株式会社内 (72)発明者 氏原 琢治 東京都世田谷区新町3―28―17 (72)発明者 小田 勲 茨城県竜ケ崎市若芝町3276―2 (72)発明者 ▲榊▼ 宜顕 神奈川県横浜市瀬谷区橋戸2―6―4 瀬 谷寮 (56)参考文献 特開 昭59−651(JP,A) 特開 昭60−39557(JP,A) 実開 昭62−34360(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Takuro Yagi 1-14-1 Minami-Differential Office, Yokohama City, Kanagawa Pref. JGC Co., Ltd. (72) Hiroshi Fujisawa 1-1-14-1 Minami-Differential Office, Yokohama City, Kanagawa Prefecture (72) Inventor Takuji Ujihara 3-28-17 Shinmachi, Setagaya-ku, Tokyo (72) Inventor Isao Oda 3276-2 Wakashiba-cho, Ryugasaki-shi, Ibaraki Prefecture (72) Inventor ▲ Sakaki ▼ Yokohama, Kanagawa Prefecture 2-6-4 Hashido, Seya-ku, Iwate Seiya Dormitory (56) References JP 59-651 (JP, A) JP 60-39557 (JP, A) JP 62-34360 (JP, U)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】超音波を発信する発信子および超音波を受
信する受信子と、この発信子および受信子を、固化した
廃棄物を容器に収容した廃棄体の表面に押圧する発信子
・受信子押圧手段とを備え、発信子および受信子間を伝
播する超音波の伝播時間を測定して、その測定結果に基
づき廃棄体の圧縮強度を得る廃棄体の圧縮強度測定装置
において、1つの発信子による発信に対し異なる複数位
置での受信子による受信を行なって伝播時間を測定する
とともに、各受信子により測定される、前記容器を伝播
する表面波による伝播時間と前記廃棄物内を直進する直
接波による伝播時間とを、各受信子までの表面波または
直接波の伝播経路の距離の比と比較して区別し、直接波
についての伝播時間に基づき廃棄体の圧縮強度を得るこ
とを特徴とする廃棄体の圧縮強度測定装置。
1. A transmitter for transmitting ultrasonic waves and a receiver for receiving ultrasonic waves, and a transmitter / receiver for pressing the transmitter and receiver against the surface of a waste containing a solidified waste in a container. In the compressive strength measuring device for waste, which is provided with a slave pressing means, measures the propagation time of ultrasonic waves propagating between the transmitter and the receiver, and obtains the compressive strength of the waste based on the measurement result. The propagation time is measured by performing reception by receivers at a plurality of different positions with respect to the transmission by the child, and the propagation time by the surface wave propagating in the container measured by each receiver and traveling straight through the waste. Characterized by comparing the propagation time of the direct wave with the ratio of the distances of the propagation paths of the surface wave or the direct wave to each receiver, and obtaining the compressive strength of the waste based on the propagation time of the direct wave. Abolition Body of compressive strength measurement device.
【請求項2】超音波を発信する発信子と、超音波を受信
する受信子と、発信子および受信子を、固化した廃棄物
を容器に収容した廃棄体の表面に押圧する発信子・受信
子押圧手段とを備え、発信子および受信子間を伝播する
超音波の伝播時間を測定し、この測定結果に基づき廃棄
体の圧縮強度を得る廃棄体の圧縮強度測定装置におい
て、発信子および受信子をそれぞれの近傍において囲繞
したほぼ連続した線もしくは面において廃棄体表面を押
圧する囲繞押圧手段を備え、受信子により受信される、
前記容器を伝播する表面波の信号と前記廃棄物内を直進
する直接波の信号を、それらの振幅の差異により区別
し、直接波の信号に基づいて伝播時間を測定し、廃棄体
の圧縮強度を得ることを特徴とする廃棄体の圧縮強度測
定装置。
2. A transmitter for receiving ultrasonic waves, a receiver for receiving ultrasonic waves, and a transmitter / receiver for pressing the transmitter and the receiver against the surface of the waste containing the solidified waste in a container. In a device for measuring the compressive strength of waste, which measures the propagation time of ultrasonic waves propagating between the transmitter and the receiver and obtains the compressive strength of the waste based on the measurement result, Receiving by the receiver, the surrounding child pressing means is provided to press the surface of the waste body at a substantially continuous line or surface surrounding the child in each vicinity.
The surface wave signal propagating through the container and the direct wave signal traveling straight through the waste are distinguished by their amplitude differences, and the propagation time is measured based on the direct wave signal to determine the compressive strength of the waste. An apparatus for measuring the compressive strength of waste, which is characterized in that
JP1111989A 1989-05-02 1989-05-02 Compressive strength measuring device for waste Expired - Lifetime JPH0731165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111989A JPH0731165B2 (en) 1989-05-02 1989-05-02 Compressive strength measuring device for waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111989A JPH0731165B2 (en) 1989-05-02 1989-05-02 Compressive strength measuring device for waste

Publications (2)

Publication Number Publication Date
JPH02291962A JPH02291962A (en) 1990-12-03
JPH0731165B2 true JPH0731165B2 (en) 1995-04-10

Family

ID=14575158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111989A Expired - Lifetime JPH0731165B2 (en) 1989-05-02 1989-05-02 Compressive strength measuring device for waste

Country Status (1)

Country Link
JP (1) JPH0731165B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59651A (en) * 1982-06-28 1984-01-05 Fuji Bussan Kk Ultrasonic inspection apparatus of article enclosed in vessel
JPS6039557A (en) * 1983-08-13 1985-03-01 Nippon Telegr & Teleph Corp <Ntt> Ultrasonic diagnostic device
JPS6234360U (en) * 1985-08-16 1987-02-28

Also Published As

Publication number Publication date
JPH02291962A (en) 1990-12-03

Similar Documents

Publication Publication Date Title
US6655213B1 (en) Method for examining a solidified and/or hardening material using ultrasound, receptacle and ultrasound sensor for carrying out the method
EP1892525A1 (en) Hand-held ultrasonic inspection device with wireless communication means
EP0341969A3 (en) Ultrasonic densitometer device and method
JP2613654B2 (en) Ultrasonic testing
US6164135A (en) Method and device for the structure analysis and/or for detecting the position of layered objects
KR100345351B1 (en) A Method of Determining Angle and Length of Inclined Surface Opening Cracks in Concrete
US4020679A (en) Sled for ultrasonic NDT system
US3380293A (en) Ultrasonic inspection apparatus
EP1680667B1 (en) Method and apparatus for ultrasonic testing of an object
JPH0731165B2 (en) Compressive strength measuring device for waste
JP2000241397A (en) Method and apparatus for detecting surface defect
JP3905978B2 (en) Ultrasonic flaw detector
JP2002214205A (en) Ultrasonic flaw detector
JP2534159Y2 (en) Ultrasonic probe
JPS61245055A (en) Ultrasonic flaw inspecting device
JPH068728B2 (en) Measuring method of ultrasonic wave propagation distance
JPH0466865A (en) Ultrasonic flaw detector
SU1250939A1 (en) Method and ultrasonic transducer for shadow testing of articles
JP2005345217A (en) Ultrasonic flaw detecting method and device
JP3542173B2 (en) Ultrasonic flaw detection method
JPH0458151A (en) Rotary probe
CN117288832A (en) Residual stress detection method and system based on air coupling ultrasound
CA2231248A1 (en) Method and apparatus for structural analysis and/or for detecting the position of stratified objects
JPH08128994A (en) Array probe in array type flaw detector, and incident angle control device therefor
JPH1123543A (en) Ultrasonic flaw detection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees