JPH0731156A - Controller for three-phase inverter - Google Patents

Controller for three-phase inverter

Info

Publication number
JPH0731156A
JPH0731156A JP5168827A JP16882793A JPH0731156A JP H0731156 A JPH0731156 A JP H0731156A JP 5168827 A JP5168827 A JP 5168827A JP 16882793 A JP16882793 A JP 16882793A JP H0731156 A JPH0731156 A JP H0731156A
Authority
JP
Japan
Prior art keywords
voltage
phase
signal
control
phase inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5168827A
Other languages
Japanese (ja)
Inventor
Chihiro Okatsuchi
千尋 岡土
Yoshishi Nomura
芳士 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba FA Systems Engineering Corp
Original Assignee
Toshiba Corp
Toshiba FA Systems Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba FA Systems Engineering Corp filed Critical Toshiba Corp
Priority to JP5168827A priority Critical patent/JPH0731156A/en
Publication of JPH0731156A publication Critical patent/JPH0731156A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)

Abstract

PURPOSE:To allow high response sine wave voltage control by providing a voltage control means for subjecting the three phase voltages of a three-phase inverter to simultaneous average value control and a phase voltage control means for controlling each phase voltage of the three-phase inverter that the line voltage becomes sinusoidal. CONSTITUTION:Since the DC power supply voltage VDC fluctuates significantly in the case of a vehicle power supply a divider 37 produces a signal 1/VDC which is fed, as a feedforward signal, to the output of an amplifier 13 through an adder 35. The signal 1/VDC is multiplied by a phase reference voltage Vu at a multiplier 15 and the output voltage of the inverter is controlled constant regardless of the fluctuation of the VDC In order to compensate for voltage drop or the like, an output V40 from a voltage reference generator 40 is compared with a signal V14 obtained by subjecting the three phase voltages detected by a voltage detector 11A to full-wave rectification through a rectifier 14. The error of voltage waveform is then amplified through an amplifier 13 and added through an adder 35 thus correcting the average value of the voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、直流電源から3相交流
電圧を出力する3相インバータに係り、特に高速応答の
電圧制御を行う3相出力インバータの制御回路に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase inverter that outputs a three-phase AC voltage from a DC power supply, and more particularly to a control circuit for a three-phase output inverter that performs voltage control with high-speed response.

【0002】[0002]

【従来の技術】電圧制御を行う3相インバータは種々の
用途があるが、車輌用定電圧電源に用いられる従来の3
相インバータの代表的制御回路を図8に示す。図8にお
いて、パンタグラフ1は図示しない架線から直流電力を
受け、リアクトル2とコンデンサ3,コンデンサ4によ
り高調波を架線に送出しないようフィルタ効果を持た
せ、レール5の回線に電流を流す。コンデンサ3の電圧
をインバータブリッジ6によりPWM制御を行い3相交
流に変換し、L−Cフィルタ8を介して変圧器の巻線10
aに入力する。
2. Description of the Related Art A three-phase inverter for controlling voltage has various uses, but a conventional three-phase inverter used for a constant voltage power supply for a vehicle is used.
A typical control circuit of the phase inverter is shown in FIG. In FIG. 8, the pantograph 1 receives DC power from an overhead wire (not shown), has a filter effect by the reactor 2, the capacitor 3 and the capacitor 4 so as not to send out harmonics to the overhead wire, and causes a current to flow in the rail 5 line. The voltage of the capacitor 3 is PWM-controlled by the inverter bridge 6 to be converted into a three-phase alternating current, and the winding 10 of the transformer is passed through the LC filter 8.
Enter in a.

【0003】同様にコンデンサ4の電圧をインバータブ
リッジ7によりPWM制御を行い、3相交流に変換し、
L−Cフィルタ9を介して変圧器の巻線10bに入力す
る。変換器の巻線10cからUVW端子に正弦波の交流出
力電圧を得る。
Similarly, the voltage of the capacitor 4 is PWM-controlled by the inverter bridge 7 to be converted into a three-phase alternating current,
Input to the winding 10b of the transformer through the LC filter 9. A sinusoidal AC output voltage is obtained at the UVW terminal from the winding 10c of the converter.

【0004】コンデンサ3、4で直流電源を分圧する理
由はインバータブリッジに使用する素子の電圧定格が低
いためで、高耐圧の素子を用いインバータブリッジを1
ケで行う場合もある。
The reason why the DC power supply is divided by the capacitors 3 and 4 is that the voltage rating of the element used for the inverter bridge is low.
In some cases, it is done with a ke.

【0005】インバータブリッジ6,7を制御する制御
回路は、電圧基準(直流)12と交流出力U,V,W間電
圧を変圧器11で検出し整流回路14で3相全波整流した出
力電圧の平均値とを比較し、その偏差を増幅器13で増幅
し信号V13を出力する。発振器を内蔵した位相信号発振
器16から出力される位相データに従って相基準信号発生
器17から台形波vtu,vtv,vtwを出力し掛算器15によ
り信号V13と掛算した出力VTU,VTV,VTWを得る。こ
の信号と三角波発生器18による搬送波とをコンパレータ
19,20,21によりそれぞれ比較してPWM信号とし駆動
回路22を介してインバータブリッジ6,7を駆動し、3
相交流の出力電圧を一定に制御する。
The control circuit for controlling the inverter bridges 6, 7 detects the voltage between the voltage reference (DC) 12 and the AC outputs U, V, W by the transformer 11 and rectifies the three-phase full-wave output voltage by the rectifier circuit 14. The average value is compared with the average value, and the deviation is amplified by the amplifier 13 to output the signal V 13 . The trapezoidal waves v tu , v tv , and v tw are output from the phase reference signal generator 17 according to the phase data output from the phase signal oscillator 16 having a built-in oscillator, and the output V TU , V multiplied by the signal V 13 is multiplied by the multiplier 15. Get TV , V TW . Comparing this signal and the carrier wave from the triangular wave generator 18
19, 20 and 21 are compared with each other to form a PWM signal, and the inverter bridges 6 and 7 are driven through the drive circuit 22.
The output voltage of the phase alternating current is controlled to be constant.

【0006】相基準信号発生器17の出力VTU,VTVは図
10(a)に示した様な台形波とした場合PWM制御した
インバータブリッジの相出力はVTU,VTVと比例した波
形となる。よって線間電圧VUVはVTVからVTVを引算し
た波形で正弦波となるよう制御される。
The outputs V TU and V TV of the phase reference signal generator 17 are
When the trapezoidal wave as shown in 10 (a) is used, the phase output of the PWM-controlled inverter bridge has a waveform proportional to V TU and V TV . Therefore, the line voltage V UV is controlled to be a sine wave with a waveform obtained by subtracting V TV from V TV .

【0007】ところが、このような出力電圧の平均値を
制御する方法では、フィルタ8,9がL−Cの共振回路
を構成しているのでこの共振周波数の部分のゲインを低
くして振動を抑制させる必要上、電圧制御の応答が遅く
波形歪が大であった。
However, in such a method of controlling the average value of the output voltage, since the filters 8 and 9 form an LC resonance circuit, the gain at the resonance frequency portion is lowered to suppress the vibration. In addition, the voltage control response was slow and the waveform distortion was large.

【0008】特に車輌用電源ではブレーキ用コンプレッ
サと蛍光灯が同一電源に接続されコンプレッサのトルク
変動によりインバータ出力電圧値や波形が変動すること
による蛍光灯のフリッカーが問題となっている。
Particularly in a vehicle power source, a flicker of the fluorescent lamp is a problem because the brake compressor and the fluorescent lamp are connected to the same power source and the inverter output voltage value and the waveform fluctuate due to the torque fluctuation of the compressor.

【0009】それを解決する方法として図9に示すよう
に交流電圧の瞬時値制御を追加した方式が一部で採用さ
れている。なお、図9は1つのインバータブリッジを用
いる場合の例を示したものである。
As a method for solving the problem, a method in which the instantaneous value control of the AC voltage is added as shown in FIG. 9 is partially adopted. It should be noted that FIG. 9 shows an example in which one inverter bridge is used.

【0010】即ち、相基準信号発生器17の出力信号
tu,vtv,vtwを加算器23,24によりそれぞれvtu
tvとvtw−vtvを求め線間電圧基準vuv,vwvを出力
し変圧器11で検出した線間電圧との偏差を増幅してそれ
ぞれv25,v26とする。この電圧を相の位相に変換する
ためv25と係数器28を介したv26/2から、加算器29によ
りv25+v26/2を求めu相補正分として加算器32でVTU
と加算してコンパレータ19でPWM信号化する。
That is, the output signals v tu , v tv , v tw of the phase reference signal generator 17 are respectively added by adders 23, 24 to v tu −.
V tv and v tw −v tv are obtained, the line voltage references v uv and v wv are output, and the deviations from the line voltage detected by the transformer 11 are amplified to obtain v 25 and v 26 , respectively. In order to convert this voltage into the phase of the phase, from v 25 and v 26/2 through the coefficient unit 28, v 25 + v 26/2 is obtained by the adder 29 and V TU is added by the adder 32 as the u phase correction amount.
Is added and converted into a PWM signal by the comparator 19.

【0011】同様にv26と係数器27を介したv25/2から
加算器31によりv26+v25/2をW相補正分として求め加
算器34でVTWに加算する。また−(v25/2+v26/2)を
加算器30で求めV相補正分を加算器33でVTVに加算す
る。
Similarly, from v 26 and v 25/2 via the coefficient unit 27, v 26 + v 25/2 is obtained by the adder 31 as a W-phase correction component and added to V TW by the adder 34. The - (v 25/2 + v 26/2) is added to V TV by the adder 33 a V-phase correction amount determined by the adder 30.

【0012】これらの加算ベクトル図は図10(b)に示
すようにVU-V とVW-V は60°の位相差があることから
U ,VV ,VW の相電圧に変換するための関係を示し
たもので図9の加算器29,30,31と係数器27,28はこの
関係を実現するものである。なお、図10(c)は線間電
圧と相電圧のベクトル図である。この方法によれば平均
電圧の制御は図8の方法を加え、線間電圧の瞬時値の偏
差分を検出した各相の補正を行うので、高速応答とする
ことができる。
Since these addition vector diagrams have a phase difference of 60 ° between V UV and V WV as shown in FIG. 10 (b), the relationship for converting into phase voltages of V U , V V , and V W. The adders 29, 30, 31 and the coefficient units 27, 28 in FIG. 9 realize this relationship. Note that FIG. 10C is a vector diagram of the line voltage and the phase voltage. According to this method, the method of FIG. 8 is added to the control of the average voltage, and the correction of each phase is performed by detecting the deviation of the instantaneous value of the line voltage, so that a high-speed response can be achieved.

【0013】[0013]

【発明が解決しようとする課題】上述したように、従来
の平均値制御方式はインバータ出力を整流し、この整流
リップルを増幅しない程度にPI制御するので応答が遅
く、これをカバーするため提案されているような線間電
圧を瞬時値制御するため線間基準正弦波電圧を線間電圧
の偏差を増幅し相補正電圧を行う方法がある。しかしこ
の方法はL−Cフィルタを含む共振系の制御となり、フ
ィルタの共振周波数と交流出力の周波数のレシオが5〜
10倍のことが多いので制御ゲインを上げることが困難で
ある。
As described above, the conventional average value control system rectifies the inverter output and performs PI control to the extent that this rectified ripple is not amplified, so that the response is slow and it is proposed to cover this. In order to instantaneously control the line voltage as described above, there is a method of amplifying the deviation of the line voltage by using the line reference sine wave voltage and performing the phase correction voltage. However, this method controls the resonance system including the LC filter, and the ratio between the resonance frequency of the filter and the frequency of the AC output is 5 to 5.
Since it is often 10 times, it is difficult to increase the control gain.

【0014】このため平均値制御のループをできるだけ
高速にして、交流瞬時値制御は補助的に使う必要が生じ
る。平均値制御ループのゲインを上げると整流波形のリ
ップルのためインバータ出力波形が歪むことになり、瞬
時値制御による波形改善効果が低下することになる。ま
た、線間電圧を制御する方法は、線間基準電圧を合成
し、線間電圧との偏差を増幅して相補正電圧を合成す
る。2度の変換のためそのベクトルに誤差が生じ波形改
善効果や応答改善効果が悪化することが多い。特に計算
器を使って波形変換する場合は変換時間だけ制御が遅れ
ることになり応答が悪化する。本発明は、上記問題点を
解決し、波形歪の少ない正弦波の電圧で、安定で制御応
答の早い3相出力インバータの制御回路を提供すること
を目的とする。
For this reason, it is necessary to make the average value control loop as fast as possible and use the AC instantaneous value control as a supplement. If the gain of the average value control loop is increased, the ripple of the rectified waveform will distort the inverter output waveform, and the effect of improving the waveform by the instantaneous value control will be reduced. As a method of controlling the line voltage, the line reference voltage is combined, the deviation from the line voltage is amplified, and the phase correction voltage is combined. Since the conversion is performed twice, an error occurs in the vector, and the waveform improving effect and the response improving effect are often deteriorated. In particular, when a waveform is converted using a calculator, the control is delayed by the conversion time and the response deteriorates. An object of the present invention is to solve the above problems and to provide a control circuit for a three-phase output inverter that is stable and has a fast control response with a sinusoidal voltage with less waveform distortion.

【0015】[0015]

【課題を解決するための手段】請求項1に対応する発明
として、直流電源から3相交流電圧を得る3相インバー
タの制御装置において、一定振幅の3相の相電圧基準を
出力する信号発生手段と、前記3相交流電圧を直流レベ
ルの信号に変換し直流レベルの基準電圧との電圧偏差を
得る電圧制御手段と、前記電圧偏差を前記相電圧基準に
乗じて電圧制御信号を得る乗算手段と、前記3相インバ
ータの出力電圧の相電圧と前記電圧制御信号との相電圧
偏差を得る相電圧制御手段と、前記電圧制御信号と前記
相電圧偏差の加算値により前記3相インバータをパルス
幅変調制御するPWM制御手段を設ける。
According to a first aspect of the present invention, in a controller for a three-phase inverter that obtains a three-phase AC voltage from a DC power supply, a signal generating means for outputting a phase voltage reference of three phases having a constant amplitude. Voltage control means for converting the three-phase AC voltage into a DC level signal to obtain a voltage deviation from a DC level reference voltage; and multiplication means for multiplying the voltage deviation by the phase voltage reference to obtain a voltage control signal. , Phase voltage control means for obtaining a phase voltage deviation between the phase voltage of the output voltage of the three-phase inverter and the voltage control signal, and pulse width modulation of the three-phase inverter by the added value of the voltage control signal and the phase voltage deviation. PWM control means for controlling is provided.

【0016】また、前記相電圧制御手段は2相分を備
え、残りの相は前記2相分の相電圧制御手段の出力信号
の和で行う。また、前記信号発生手段は一定周期の位相
信号に応じて前記一定振幅の3相の相電圧基準を出力
し、前記位相信号に応じて3相全波整流波形を前記直流
レベルの電圧基準として出力する第2の信号発生手段を
設ける。
Further, the phase voltage control means is provided with two phases, and the remaining phase is performed by the sum of the output signals of the phase voltage control means for the two phases. Further, the signal generating means outputs the three-phase phase voltage reference of the constant amplitude according to the phase signal of a constant cycle, and outputs the three-phase full-wave rectified waveform as the voltage reference of the DC level according to the phase signal. A second signal generating means is provided.

【0017】また、前記第2の信号発生手段の出力信号
の微分値を該出力信号に加える微分手段を設ける。請求
項5に対応する発明として、直流電源から3相交流電圧
を得る3相インバータの制御装置において、一定振幅の
3相の相電圧基準を出力する信号発生手段と、前記3相
交流電圧を直流レベルの信号に変換し直流レベルの基準
電圧との電圧偏差を得る電圧制御手段と、前記電圧偏差
を前記相電圧基準に乗じて電圧制御信号を得る乗算手段
と、前記3相インバータが出力する相電圧の微分値と前
記相電圧基準の微分値との相電圧微分値偏差を得る相電
圧微分値制御手段と、前記電圧制御信号と前記相電圧微
分値偏差の加算値により前記3相インバータをパルス幅
変調制御するPWM制御手段を設ける。
Further, there is provided a differentiating means for adding the differential value of the output signal of the second signal generating means to the output signal. According to a fifth aspect of the present invention, in a control device for a three-phase inverter that obtains a three-phase AC voltage from a DC power supply, a signal generating unit that outputs a phase voltage reference of three phases having a constant amplitude and the three-phase AC voltage are DC. Voltage control means for converting to a level signal to obtain a voltage deviation from a DC level reference voltage, multiplication means for multiplying the voltage deviation by the phase voltage reference to obtain a voltage control signal, and a phase output by the three-phase inverter Phase voltage differential value control means for obtaining a phase voltage differential value deviation between the differential value of the voltage and the differential value of the phase voltage reference, and pulse the three-phase inverter with the added value of the voltage control signal and the phase voltage differential value deviation. PWM control means for width modulation control is provided.

【0018】請求項6に対応する発明として、直流電源
から3相交流電圧を得る3相インバータの制御装置にお
いて、一定振幅の3相の相電圧基準を出力する信号発生
手段と、前記3相交流電圧を直流レベルの信号に変換し
直流レベルの基準電圧との電圧偏差を得る電圧制御手段
と、前記電圧偏差を前記相電圧基準に乗じて電圧制御信
号を得る乗算手段と、前記電圧制御信号と前記3相イン
バータが出力する相電圧の微分値の加算値により前記3
相インバータをパルス幅変調制御するPWM制御手段を
設ける。
According to a sixth aspect of the present invention, in a control device for a three-phase inverter that obtains a three-phase AC voltage from a DC power supply, a signal generating means for outputting a phase voltage reference of three phases of constant amplitude, and the three-phase AC. Voltage control means for converting a voltage into a signal of DC level to obtain a voltage deviation from a DC level reference voltage; multiplication means for multiplying the voltage deviation by the phase voltage reference to obtain a voltage control signal; and the voltage control signal, According to the added value of the differential value of the phase voltage output by the three-phase inverter,
PWM control means for controlling pulse width modulation of the phase inverter is provided.

【0019】いずれの発明においても、前記3相交流電
圧を直流レベルの信号に変換する手段として極座標変換
手段を用いることができる。また、前記直流電源の電圧
の逆数値を得る演算手段を設け、前記乗算手段は前記電
圧偏差と前記逆数値の和を前記相電圧基準に乗じて電圧
制御信号を得る構成とする。また、前記信号発生手段は
一定周期の位相信号に応じて第3次高調波成分を含む一
定振幅の3相の相電圧基準を出力する構成とする。
In any of the inventions, polar coordinate conversion means can be used as means for converting the three-phase AC voltage into a DC level signal. Further, arithmetic means for obtaining the reciprocal value of the voltage of the DC power source is provided, and the multiplying means is configured to obtain the voltage control signal by multiplying the phase voltage reference by the sum of the voltage deviation and the reciprocal value. Further, the signal generating means is configured to output a phase voltage reference of three phases having a constant amplitude and containing a third harmonic component in accordance with a phase signal having a constant cycle.

【0020】[0020]

【作用】請求項1に対応する発明は、電圧制御手段によ
り3相インバータの3相の相電圧を一括して平均値制御
すると同時に、相電圧制御手段により3相インバータの
各相電圧を線間電圧が正弦波となるように制御する。ま
た、電圧制御手段で用いる直流レベルの電圧基準を3相
全波整流波形とすることでリップル成分を抑制し高いゲ
インで安定した平均値制御を行う。この場合電圧基準の
微分値を加えることで更に安定した平均値制御を行う。
According to the invention of claim 1, the voltage control means collectively controls the average value of the phase voltages of the three phases of the three-phase inverter, and at the same time, the phase voltage control means controls the phase voltage of each of the three-phase inverters between the lines. The voltage is controlled to be a sine wave. Further, the DC level voltage reference used in the voltage control means is a three-phase full-wave rectified waveform to suppress ripple components and perform stable average value control with high gain. In this case, a more stable average value control is performed by adding a voltage-based differential value.

【0021】請求項5に対応する発明は、電圧制御手段
により3相インバータの3相の相電圧を一括して平均値
制御すると同時に、相電圧微分値制御手段により3相イ
ンバータの各相電圧が線間電圧が正弦波となるように制
御する。
In the invention corresponding to claim 5, the voltage control means collectively controls the average value of the phase voltages of the three phases of the three-phase inverter, and at the same time, the phase voltage differential value control means controls each phase voltage of the three-phase inverter. The line voltage is controlled to be a sine wave.

【0022】請求項6に対応する発明は、電圧制御手段
により3相インバータの3相の相電圧を一括して平均値
制御すると同時に3相インバータが出力する相電圧の微
分値を電圧制御信号に加算することにより安定した電圧
制御を行う。
In the invention corresponding to claim 6, the voltage control means collectively controls the average value of the phase voltages of the three phases of the three-phase inverter, and at the same time, the differential value of the phase voltage output by the three-phase inverter is used as the voltage control signal. Stable voltage control is performed by adding.

【0023】いずれの発明においても、直流電源の電圧
の逆数値を前記電圧偏差に加えることにより直流電源の
電圧変動による3相インバータの出力電圧の変動をフィ
ードフォワード制御で抑制することができる。すなわ
ち、直流電源の電圧をVDC、PWM変調率をM、3相イ
ンバータの出力電圧をVACとすると、VDC・M=VAC
関係から上記逆数値K/VDC(但しKは定数)をフィー
ドフォワードで加えることによりVACはVDCの影響を受
けないようにすることができる。また、前記信号発生手
段の出力する相電圧基準に第3次高調波成分を含ませる
ことにより3相インバータの出力の最大線間電圧を大き
くすることができる。
In any of the inventions, by adding the reciprocal value of the voltage of the DC power supply to the voltage deviation, the fluctuation of the output voltage of the three-phase inverter due to the voltage fluctuation of the DC power supply can be suppressed by the feedforward control. That is, voltage V DC of the DC power supply, when the PWM modulation rate for the output voltage of M, 3-phase inverter and V AC, the inverse value from the relationship V DC · M = V AC K / V DC ( where K is a constant ) Can be made feed-forward to prevent V AC from being influenced by V DC . Further, the maximum line voltage of the output of the three-phase inverter can be increased by including the third harmonic component in the phase voltage reference output by the signal generating means.

【0024】[0024]

【実施例】本発明の実施例を図1に示す。図9と同一部
分は同一番号を記して説明は省略する。図1において、
11Aは3相交流の相電圧を検出する電圧検出器であり、
インバータ7の3相出力の相電圧に位相を合せるための
変圧器を有している。
FIG. 1 shows an embodiment of the present invention. The same parts as those in FIG. 9 are denoted by the same reference numerals and the description thereof will be omitted. In FIG.
11A is a voltage detector for detecting the phase voltage of three-phase AC,
It has a transformer for matching the phase with the phase voltage of the three-phase output of the inverter 7.

【0025】36はコンデンサ4(直流電源)の電圧を検
出する電圧検出器37は検出した電圧の逆数を発生する割
算器、35は割算器37の出力と増幅器13の出力を加算する
加算器である。38,40は位相信号発生器16から出力され
る位相データに従って、それぞれ定められた波形の信号
を出力する信号発生器でメモリ(ROM)が内蔵されて
いる。
36 is a voltage detector 37 for detecting the voltage of the capacitor 4 (DC power supply), 37 is a divider for generating the reciprocal of the detected voltage, and 35 is an adder for adding the output of the divider 37 and the output of the amplifier 13. It is a vessel. 38 and 40 are signal generators that output signals of predetermined waveforms according to the phase data output from the phase signal generator 16, and have a built-in memory (ROM).

【0026】信号発生器40は、3相全波整流波形の信号
40を出力し電圧基準発生器として機能する。相基準信
号発生器17は正弦波の相電圧基準vu ,vv ,vw を発
生し、信号発生器38は3倍の高調波成分v3 を発生させ
る。
The signal generator 40 outputs a signal v 40 having a three-phase full-wave rectified waveform and functions as a voltage reference generator. The phase reference signal generator 17 generates sinusoidal phase voltage references v u , v v , v w , and the signal generator 38 generates a triple harmonic component v 3 .

【0027】掛算器15は加算器35の出力v35と信号発生
器17,38の出力vu ,vv ,vw ,v3 をそれぞれ掛算
して出力し、加算回路32,33,34はそれぞれ第3次高調
波を含む電圧制御信号vTu,vTv,vTwとしてv35(v
u +v3 ),v35(vv +v3 ),v35(vw +v3
を出力する。
The multiplier 15 multiplies the output v 35 of the adder 35 and the outputs v u , v v , v w and v 3 of the signal generators 17 and 38, respectively, and outputs them. The adder circuits 32, 33 and 34 The voltage control signals v Tu , v Tv , and v Tw each containing the third harmonic are v 35 (v
u + v 3 ), v 35 (v v + v 3 ), v 35 (v w + v 3 ).
Is output.

【0028】増幅器25,26,39は信号発生器17から出力
される相電圧基準vu ,vv ,vwと電圧検出器11Aで
検出する相電圧VU ,VV ,VW を比較しその偏差を補
正信号として出力する。
The amplifiers 25, 26, 39 compare the phase voltage references v u , v v , v w output from the signal generator 17 with the phase voltages V U , V V , V W detected by the voltage detector 11A. The deviation is output as a correction signal.

【0029】インバータ7の出力側に設ける変圧器10は
3n次(n=1,2…)高調波を除去するため一次側は
Δに接続されている。二次側をYに接続する場合、電圧
検出器11Aの変圧器をΔYとし二次側の中性点をコモン
電位として、図3に示すようにインバータ7の出力の相
電圧を検出することができる。インバータ出力の相電圧
u と電圧検出器11Aの変圧器の二次VU は同相として
検出することができる。
The transformer 10 provided on the output side of the inverter 7 has its primary side connected to Δ in order to remove the 3n-th (n = 1, 2 ...) Harmonics. When the secondary side is connected to Y, it is possible to detect the phase voltage of the output of the inverter 7 as shown in FIG. 3 by setting the transformer of the voltage detector 11A as ΔY and the neutral point of the secondary side as the common potential. it can. The phase voltage v u of the inverter output and the secondary V U of the transformer of the voltage detector 11A can be detected as the same phase.

【0030】次に図1のインバータブリッジのパルス幅
変調制御(PWM制御)について説明する。三角波比較
PWMでは変調率Mと直流電源の電圧をVDC、インバー
タ相出力電圧VACの間には先に説明したように、M=V
AC/VDCの関係が成立する。従って、変調率MをM×1
/VDCの関係で制御すればVACはVDCの変動の影響を受
けることなく安定に制御することができる。車輌の電源
のような場合はVDCの変化が大きくしかも急激に変化す
るので、1/VDCなる信号を割算器37で求めフィードフ
ォワード信号として加算器35を介して増幅器13の出力に
加算する構成とする。この信号1/VDCが加算器15で相
基準電圧vu と掛算され、VDCが変化してもインバータ
の出力電圧はほぼ一定になるよう前向きに制御される。
Next, pulse width modulation control (PWM control) of the inverter bridge of FIG. 1 will be described. In the triangular wave comparison PWM, between the modulation factor M and the voltage of the DC power supply is V DC , and between the inverter phase output voltage V AC , as described above, M = V
The relationship of AC / V DC is established. Therefore, the modulation factor M is M × 1
If controlled in the relationship of / V DC , V AC can be controlled stably without being affected by the fluctuation of V DC . In the case of a power source of a vehicle, since the change in V DC is large and changes abruptly, a signal of 1 / V DC is obtained by the divider 37 and added as a feedforward signal to the output of the amplifier 13 via the adder 35. The configuration is This signal 1 / V DC is multiplied by the phase reference voltage v u in the adder 15, and the output voltage of the inverter is controlled forward so as to be substantially constant even if V DC changes.

【0031】制御の誤差やフィルタや変圧器の電圧降下
などを補償するため電圧基準発生器40の出力v40と電圧
検出器11Aで検出した3相の相電圧を整流器14で全波整
流した信号v14と比較し電圧波形の誤差を増幅器13で増
幅して加算器35に加算する。これにより電圧の平均値を
修正する。
A signal obtained by full-wave rectifying the output v 40 of the voltage reference generator 40 and the phase voltage of the three phases detected by the voltage detector 11A by the rectifier 14 in order to compensate the control error and the voltage drop of the filter and the transformer. The error of the voltage waveform is amplified by the amplifier 13 as compared with v 14 and added to the adder 35. This corrects the average value of the voltage.

【0032】図2に示すように整流器14の出力v14は3
相全波整流波形となりリップル分を含んでいる。図1で
は電圧基準v40もこの3相全波整流波形と同じ波形を信
号発生器40から出力されているので、理想的な正弦波出
力がU,V,W端子に出力されてバランスしている場合
は増幅器13の出力には直流分のみで交流分は出力され
ず、掛算器15の出力v15u ,v15v ,v15w は正弦波と
なり、v15-3にも3次高調波以外の成分が含まれないの
でインバータ出力には歪のない電圧を出力することが可
能となる。
As shown in FIG. 2, the output v 14 of the rectifier 14 is 3
It becomes a full-phase rectified waveform and contains ripples. In FIG. 1, the voltage reference v 40 also outputs the same waveform as this three-phase full-wave rectified waveform from the signal generator 40, so ideal sine wave outputs are output to the U, V, and W terminals and balanced. AC component only DC component in the output of the amplifier 13 if it is is not output, the output of the multiplier 15 v15 u, v15 v, v15 w is a sine wave, to v 15-3 other than the third harmonic Since no component is included, it is possible to output a voltage without distortion at the inverter output.

【0033】この様子を図2に示して詳細に説明する。
相電圧基準vu ,vv は 120°位相のずれた波形、v3
は第3高調波出力であり、加算器32,33の出力vTu,v
Tvは(vu +v3 )v35,(vv +v3 )v35となる。
This state will be described in detail with reference to FIG.
The phase voltage references v u and v v are 120 ° phase-shifted waveforms, v 3
Is the third harmonic output, and the outputs v Tu , v of the adders 32, 33
Tv becomes (v u + v 3 ) v 35 and (v v + v 3 ) v 35 .

【0034】このように相電圧基準に第3高調波v3
加算することにより最大線間電圧を大きくすることがで
きる。この手法は一般に採用されているもので、線間電
圧Vu-v は(vu +v3 )から(vv +v3 )を引算し
た波形となる。
As described above, the maximum line voltage can be increased by adding the third harmonic wave v 3 to the phase voltage reference. This method is generally adopted, and the line voltage V uv has a waveform obtained by subtracting (v v + v 3 ) from (v u + v 3 ).

【0035】更に正弦波の波形改善のため相電圧基準v
u と検出電圧VU とを比較しその誤差を増幅器25で増幅
してvTuに加算してu相の電圧波形制御を行っているの
で極めて良好な電圧波形が得られる。v相、w相につい
ても同様である。
To further improve the waveform of the sine wave, the phase voltage reference v
Since u is compared with the detected voltage V U and the error is amplified by the amplifier 25 and added to v Tu to control the u-phase voltage waveform, an extremely good voltage waveform can be obtained. The same applies to the v phase and the w phase.

【0036】この電圧波形制御により検出電圧v14と基
準電圧v40の誤差も減少して波形の良い高速応答の電圧
制御を行うことができる。以上説明したように本実施例
によれば直流電源の変動分はフィードフォワードにより
高速に制御し、その他の変動分を整流波形と相似な電圧
基準を用いて平均値と瞬時値の中間的制御を行うことに
より制御ゲインを高めても波形歪の少ない制御を高速に
行うことができ、高精度の電圧制御を行うと同時に相電
圧基準と相電圧を直接比較して補正することにより誤差
の少ない波形率の良い電圧制御を行うことができる。こ
れによりフリッカーの発生しない3相インバータの制御
回路が得られる。
By this voltage waveform control, the error between the detected voltage v 14 and the reference voltage v 40 is also reduced, and the voltage control of a fast response with a good waveform can be performed. As described above, according to the present embodiment, the fluctuation of the DC power supply is controlled at high speed by feedforward, and the other fluctuations are subjected to the intermediate control between the average value and the instantaneous value by using the voltage reference similar to the rectified waveform. Even if the control gain is increased by doing so, control with less waveform distortion can be performed at high speed, and high-accuracy voltage control is performed, and at the same time, the phase voltage reference and the phase voltage are directly compared and corrected to correct the waveform with less error. It is possible to perform voltage control with good efficiency. As a result, a control circuit for a three-phase inverter without flicker is obtained.

【0037】本発明の他の実施例を図4に示す。この実
施例のように、フィルタ9の出力側に変圧器を用いない
で直接出力する場合は、電圧検出器11Aとして1次と2
次の巻線をYY結線とし、Δ結線の3次(短絡)巻線を
設けた変圧器を用いて相電圧を検出することができる。
Another embodiment of the present invention is shown in FIG. In the case of directly outputting without using a transformer on the output side of the filter 9 as in this embodiment, the voltage detector 11A has primary and secondary outputs.
It is possible to detect the phase voltage by using a transformer provided with a third (short-circuit) winding of Δ connection and the next winding as YY connection.

【0038】また、図4の整流器14の出力側に微分回路
41を設け負荷変動に対して高速性や安定度を増すことが
行われるが、その場合電圧基準出力側にも微分回路42を
設け3相全波整流波形の微分による交流分を打ち消すこ
とが波形改善上有効である。
Also, a differentiation circuit is provided on the output side of the rectifier 14 of FIG.
41 is provided to increase the speed and stability against load fluctuations, but in that case a differential circuit 42 is also provided on the voltage reference output side to cancel the AC component due to the differentiation of the three-phase full-wave rectified waveform. It is effective for improvement.

【0039】また、相電圧基準に3次高調波成分を加算
せず図7(a)に示すように正弦波の線間電圧となる台
形波を直接出力するようにしても同様に行なうことがで
きる。
The same operation can be performed by directly outputting a trapezoidal wave which is a line voltage of a sine wave as shown in FIG. 7A without adding the third harmonic component to the phase voltage reference. it can.

【0040】また、波形制御の部分は、増幅器25の出力
がu相の補正分、増幅器39の出力がw相の補正分であ
り、3相のベクトル和がゼロとなることからこの2相の
補正分を加算器43で加算し信号反転した電圧をv相の補
正分とすることができる。
In the waveform control part, the output of the amplifier 25 is the correction amount of the u phase, the output of the amplifier 39 is the correction amount of the w phase, and the vector sum of the three phases is zero. The correction amount can be added by the adder 43 and the signal-inverted voltage can be used as the v-phase correction amount.

【0041】なお、電圧検出器11Aは図7(b)に示す
ように、変圧器11の出力電圧をリップル分を含まない直
流電圧に変換する極座標変換器55に置き替えて、直流電
圧基準12と比較する構成とすることも可能である。
As shown in FIG. 7B, the voltage detector 11A is replaced with a polar coordinate converter 55 for converting the output voltage of the transformer 11 into a DC voltage that does not include ripples, and the DC voltage reference 12 It is also possible to adopt a configuration for comparing with.

【0042】本発明の他の実施例を図5に示す。この実
施例に示すように、相基準信号発生器17の出力vu ,v
v ,vw をそれぞれ微分回路44,46,46を介して増幅器
25,26,39の入力とし、フィルタコンデンサ9bの回路
の相電流基準とする。フィルタコンデンサ9bの、相電
流は変換器49a,49b,49cで検出し増幅器25,26,39
にフィードバックし各増幅器の出力をコンパレータ19,
20,21にそれぞれ加算することによりコンデンサの相電
流が正弦波になるよう制御する。
Another embodiment of the present invention is shown in FIG. As shown in this embodiment, the outputs v u , v of the phase reference signal generator 17
Amplifiers v and v w via differentiating circuits 44, 46 and 46, respectively.
Inputs 25, 26 and 39 are used as the phase current reference of the circuit of the filter capacitor 9b. The phase current of the filter capacitor 9b is detected by the converters 49a, 49b, 49c and the amplifiers 25, 26, 39 are detected.
To the comparator 19,
By adding to 20 and 21, respectively, the phase current of the capacitor is controlled to be a sine wave.

【0043】コンデンサ電流の制御ループは一次遅れ回
路となるので、二次遅れ回路の電圧制御ループに比較し
て非常に安定しており、コンデンサの相電流制御ループ
のゲインを大きくすることが可能である。
Since the control loop of the capacitor current is a first-order lag circuit, it is very stable as compared with the voltage control loop of the second-order lag circuit, and the gain of the phase current control loop of the capacitor can be increased. is there.

【0044】このコンデンサの相電流を制御することに
より平均値電圧の制御ループの応答を遅くすることがで
きるので電圧基準12は一定の直流電圧とすることができ
る。また、微分回路44,45,46の信号はvu ,vv ,v
w なる相電圧基準を90°進めた信号で増幅器25,25,39
を介してコンパレータ19,20,21に加算する例を示した
が、微分回路44,45,46の信号は極性を考えて加算回路
32,33,34に加算してもよい。この信号の加算は正弦波
の加算であるので、電圧v15u ,v15v ,v15w の位相
を少し進める作用を行うものであり、この微分回路44,
45,46を省略し、コンデンサの相電流を安定のためのフ
ィードバック信号とすると出力電圧の位相が少し遅れる
だけであり実用上支障なく実施することができ、微分回
路44,45,46を省略することが可能である。
By controlling the phase current of this capacitor, the response of the control loop for the average value voltage can be delayed, so that the voltage reference 12 can be a constant DC voltage. The signals of the differentiating circuits 44, 45, 46 are v u , v v , v
Amplifiers 25, 25, 39 with a signal that advances the phase voltage reference of w by 90 °
Although the example of adding to the comparators 19, 20, and 21 via the above is shown, the signals of the differentiating circuits 44, 45, and 46 consider the polarity and adder circuits
May be added to 32, 33, 34. Since the addition of this signal is the addition of a sine wave, it has the effect of slightly advancing the phases of the voltages v15 u , v15 v , and v15 w .
If 45 and 46 are omitted and the phase current of the capacitor is used as a feedback signal for stabilization, the phase of the output voltage will be slightly delayed and can be implemented without any practical problems, and the differentiation circuits 44, 45 and 46 are omitted. It is possible.

【0045】さらに、フィルタコンデンサ9bの相電流
のフィードバックは出力相電圧の微分と等価であること
から図6に示すように相電圧を変圧器11で検出し、微分
回路50,51,52を介してコンパレータ19,20,21にフィ
ードバックすることも可能である。
Further, since the feedback of the phase current of the filter capacitor 9b is equivalent to the differentiation of the output phase voltage, the phase voltage is detected by the transformer 11 as shown in FIG. It is also possible to feed back to the comparators 19, 20, 21.

【0046】なお図6では相電圧基準vu は図7(a)
に示すような台形波や図2に示す3次高調波を含んだ信
号波形を直接出力することも可能である。また、前述し
たように、相電圧基準の微分回路を省略することは可能
であるが、直流平均値制御のループゲインを比較的高く
とる場合、電圧基準出力v40の位相を、微分回路を省略
した分、補正して出力すること、又、制御及びフィルタ
ーによる出力波形の位相遅れ分を更に加味すると早い応
答が得られる。なお以上説明した本発明はコンピュータ
を使用して実現することが可能であり、種々の組み合せ
を用いて実施することができる。
In FIG. 6, the phase voltage reference v u is shown in FIG.
It is also possible to directly output a signal waveform including a trapezoidal wave as shown in FIG. 2 and a third harmonic wave shown in FIG. Further, as described above, it is possible to omit the phase voltage reference differentiating circuit, but when the loop gain of the DC average value control is set relatively high, the phase of the voltage reference output v 40 can be omitted. A faster response can be obtained by correcting the output and then adding the phase delay of the output waveform by the control and filter. The present invention described above can be implemented using a computer, and can be implemented using various combinations.

【0047】[0047]

【発明の効果】請求項1に記載の発明によれば、3相イ
ンバータの3相の相電圧を一括して平均値制御すると同
時に各相電圧を正弦波となるように相毎に制御すること
ができ応答の速い正弦波電圧制御を行なうことが可能と
なる。また、リップル成分の影響を抑制し高いゲインで
安定した平均値制御を行うことが可能となり制御性能の
良い3相インバータの制御装置が得られる。
According to the first aspect of the present invention, the average value of the phase voltages of the three phases of the three-phase inverter is collectively controlled, and at the same time, each phase voltage is controlled for each phase so as to be a sine wave. Therefore, it is possible to perform sine wave voltage control with fast response. In addition, the influence of the ripple component can be suppressed and stable average value control can be performed with a high gain, so that a control device for a three-phase inverter with good control performance can be obtained.

【0048】請求項5に記載の発明によれば、3相イン
バータの3相の相電圧を一括して平均値制御すると同時
に各相電圧が正弦波となるように相毎に変化率を制御す
ることができ応答の速い正弦波電圧制御を行うことが可
能となり、制御性能の良い3相インバータの制御装置が
得られる。
According to the fifth aspect of the invention, the average value of the phase voltages of the three phases of the three-phase inverter is collectively controlled, and at the same time, the rate of change is controlled for each phase so that each phase voltage becomes a sine wave. This makes it possible to perform sinusoidal voltage control with a fast response, and a control device for a three-phase inverter with good control performance can be obtained.

【0049】請求項6に記載の発明によれば、3相イン
バータの3相の相電圧を一括して平均値制御すると同時
に各相電圧の微分値を電圧制御信号に加算することによ
り安定した平均値制御を行うことが可能となり簡潔な構
成の3相インバータの制御装置が得られる。
According to the sixth aspect of the present invention, the average value of the phase voltages of the three phases of the three-phase inverter is collectively controlled, and at the same time, the differential value of each phase voltage is added to the voltage control signal to obtain a stable average. Value control can be performed, and a control device for a three-phase inverter having a simple structure can be obtained.

【0050】また、いずれの発明においても、直流電源
の電圧変動による3相インバータの出力電圧の変動を抑
制するようにフィードフォワード制御を行うことがで
き、また、相電圧基準に第3次高調波成分を含ませて3
相インバータの出力の最大線間電圧を大きくすると共に
変換効率の良い3相インバータの制御装置を提供するこ
とができる。
Further, in any of the inventions, the feedforward control can be performed so as to suppress the fluctuation of the output voltage of the three-phase inverter due to the voltage fluctuation of the DC power supply, and the third harmonic wave is used as the phase voltage reference. Including ingredients 3
It is possible to provide a control device for a three-phase inverter that increases the maximum line voltage of the output of the phase inverter and has good conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の請求項1,3,9,10に対応する実施
例の構成図
FIG. 1 is a configuration diagram of an embodiment corresponding to claims 1, 3, 9, and 10 of the present invention.

【図2】図1の要部を説明するための波形図FIG. 2 is a waveform diagram for explaining a main part of FIG.

【図3】図1の電圧検出器11Aを説明するためのベクト
ル図
FIG. 3 is a vector diagram for explaining the voltage detector 11A of FIG.

【図4】本発明の請求項2,4に対応する実施例の構成
FIG. 4 is a configuration diagram of an embodiment corresponding to claims 2 and 4 of the present invention.

【図5】本発明の請求項5,7,10に対応する実施例の
構成図
FIG. 5 is a configuration diagram of an embodiment corresponding to claims 5, 7, and 10 of the present invention.

【図6】本発明の請求項6に対応する実施例の構成図FIG. 6 is a configuration diagram of an embodiment corresponding to claim 6 of the present invention.

【図7】(a)本発明で用いる相基準信号発生器17の作
用を説明するための波形図と、(b)本発明の請求項8
に対応する実施例の要部構成図
7 (a) is a waveform diagram for explaining the operation of the phase reference signal generator 17 used in the present invention, and (b) is a claim 8 of the present invention.
Configuration diagram of the main part of the embodiment corresponding to

【図8】従来装置の構成図FIG. 8 is a block diagram of a conventional device

【図9】従来装置の別の構成図FIG. 9 is another configuration diagram of a conventional device.

【図10】従来装置の作用を説明するための図FIG. 10 is a diagram for explaining the operation of the conventional device.

【符号の説明】[Explanation of symbols]

4…コンデンサ、7…インバータブリッジ、9…フィル
タ、10…変圧器、11A…電圧検出器、12…電圧基準、13
…増幅器、14…整流回路、15…掛算器、16…位相信号発
生器、17…相基準信号発生器、18…三相波発生器、19,
20,21…コンパレータ、22…駆動回路、31,32,33,3
4,35,43…加算器、25,26,39…増幅器、36…電圧検
出器、37…割算器、38…3倍周波発生器、40…信号発生
器、41,42,44,45,46,50,51,52…微分器、49…変
流器、55…極座標変換器。
4 ... Capacitor, 7 ... Inverter bridge, 9 ... Filter, 10 ... Transformer, 11A ... Voltage detector, 12 ... Voltage reference, 13
... Amplifier, 14 ... Rectifier circuit, 15 ... Multiplier, 16 ... Phase signal generator, 17 ... Phase reference signal generator, 18 ... Three-phase wave generator, 19,
20, 21 ... Comparator, 22 ... Driving circuit, 31, 32, 33, 3
4, 35, 43 ... Adder, 25, 26, 39 ... Amplifier, 36 ... Voltage detector, 37 ... Divider, 38 ... Triple frequency generator, 40 ... Signal generator, 41, 42, 44, 45 , 46, 50, 51, 52 ... Differentiator, 49 ... Current transformer, 55 ... Polar coordinate converter.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 芳士 東京都府中市東芝町1番地 株式会社東芝 府中工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoshishi Nomura No. 1 Toshiba-cho, Fuchu-shi, Tokyo Toshiba Corporation Fuchu factory

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 直流電源から3相交流電圧を得る3相イ
ンバータの制御装置において、一定振幅の3相の相電圧
基準を出力する信号発生手段と、前記3相交流電圧を直
流レベルの信号に変換し直流レベルの基準電圧との電圧
偏差を得る電圧制御手段と、前記電圧偏差を前記相電圧
基準に乗じて電圧制御信号を得る乗算手段と、前記3相
インバータの出力電圧の相電圧と前記電圧制御信号との
相電圧偏差を得る相電圧制御手段と、前記電圧制御信号
と前記相電圧偏差の加算値により前記3相インバータを
パルス幅変調制御するPWM制御手段を設けたことを特
徴とする3相インバータの制御装置。
1. A controller for a three-phase inverter that obtains a three-phase AC voltage from a DC power supply, a signal generating means for outputting a three-phase phase voltage reference of a constant amplitude, and the three-phase AC voltage into a DC level signal. Voltage control means for converting and obtaining a voltage deviation from a DC level reference voltage, multiplication means for obtaining the voltage control signal by multiplying the voltage deviation by the phase voltage reference, phase voltage of the output voltage of the three-phase inverter and A phase voltage control means for obtaining a phase voltage deviation from the voltage control signal and a PWM control means for performing pulse width modulation control of the three-phase inverter on the basis of a sum of the voltage control signal and the phase voltage deviation are provided. Three-phase inverter control device.
【請求項2】 請求項1に記載の3相インバータの制御
装置において、前記相電圧制御手段は2相分を備え、残
りの相は前記2相分の相電圧制御手段の出力信号の和で
行うことを特徴とする3相インバータの制御装置。
2. The control device for a three-phase inverter according to claim 1, wherein the phase voltage control means includes two phases, and the remaining phases are sums of output signals of the phase voltage control means for the two phases. A control device for a three-phase inverter, which is characterized by performing.
【請求項3】 請求項1に記載の3相インバータの制御
装置において、前記信号発生手段は一定周期の位相信号
に応じて前記一定振幅の3相の相電圧基準を出力し、前
記位相信号に応じて3相全波整流波形を前記直流レベル
の電圧基準として出力する第2の信号発生手段を設けた
ことを特徴とする3相インバータの制御装置。
3. The control device for a three-phase inverter according to claim 1, wherein the signal generating means outputs a phase voltage reference of the three phases having the constant amplitude in accordance with a phase signal having a constant cycle, and outputs the phase signal to the phase signal. Accordingly, the control device for the three-phase inverter is provided with the second signal generating means for outputting the three-phase full-wave rectified waveform as the voltage reference of the DC level.
【請求項4】 請求項3に記載の3相インバータの制御
装置において、前記第2の信号発生手段の出力信号の微
分値を該出力信号に加える微分手段を備えたことを特徴
とする3相インバータの制御装置。
4. The three-phase inverter control device according to claim 3, further comprising: differentiating means for adding a differential value of the output signal of the second signal generating means to the output signal. Inverter control device.
【請求項5】 直流電源から3相交流電圧を得る3相イ
ンバータの制御装置において、一定振幅の3相の相電圧
基準を出力する信号発生手段と、前記3相交流電圧を直
流レベルの信号に変換し直流レベルの基準電圧との電圧
偏差を得る電圧制御手段と、前記電圧偏差を前記相電圧
基準に乗じて電圧制御信号を得る乗算手段と、前記3相
インバータが出力する相電圧の微分値と前記相電圧基準
の微分値との相電圧微分値偏差を得る相電圧微分値制御
手段と、前記電圧制御信号と前記相電圧微分値偏差の加
算値により前記3相インバータをパルス幅変調制御する
PWM制御手段を設けたことを特徴とする3相インバー
タの制御装置。
5. A control device of a three-phase inverter for obtaining a three-phase AC voltage from a DC power supply, a signal generating means for outputting a three-phase phase voltage reference of constant amplitude, and the three-phase AC voltage into a DC level signal. Voltage control means for converting and obtaining a voltage deviation from the DC level reference voltage, multiplication means for multiplying the voltage deviation by the phase voltage reference to obtain a voltage control signal, and differential value of the phase voltage output by the three-phase inverter. And a phase voltage differential value control means for obtaining a phase voltage differential value deviation between the differential value of the phase voltage reference and the phase voltage reference differential value, and pulse width modulation control of the three-phase inverter by the added value of the voltage control signal and the phase voltage differential value deviation. A control device for a three-phase inverter, which is provided with PWM control means.
【請求項6】 直流電源から3相交流電圧を得る3相イ
ンバータの制御装置において、一定振幅の3相の相電圧
基準を出力する信号発生手段と、前記3相交流電圧を直
流レベルの信号に変換し直流レベルの基準電圧との電圧
偏差を得る電圧制御手段と、前記電圧偏差を前記相電圧
基準に乗じて電圧制御信号を得る乗算手段と、前記電圧
制御信号と前記3相インバータが出力する相電圧の微分
値の加算値により前記3相インバータをパルス幅変調制
御するPWM制御手段を設けたことを特徴とする3相イ
ンバータの制御装置。
6. A controller for a three-phase inverter for obtaining a three-phase AC voltage from a DC power supply, a signal generating means for outputting a three-phase phase voltage reference of constant amplitude, and the three-phase AC voltage into a DC level signal. The voltage control means for converting and obtaining the voltage deviation from the DC level reference voltage, the multiplication means for multiplying the voltage deviation by the phase voltage reference to obtain the voltage control signal, the voltage control signal and the three-phase inverter output. A control device for a three-phase inverter, comprising PWM control means for performing pulse width modulation control on the three-phase inverter according to an added value of differential values of the phase voltage.
【請求項7】 請求項5及び請求項6のいずれかに記載
の3相インバータの制御装置において、前記3相インバ
ータの出力電圧の相電圧の微分値として、前記3相イン
バータの出力側に備えたフィルタ用コンデンサに流れる
電流の検出信号を用いることを特徴とする3相インバー
タの制御装置。
7. The control device for a three-phase inverter according to claim 5, wherein the output side of the three-phase inverter is provided as a differential value of a phase voltage of an output voltage of the three-phase inverter. A control device for a three-phase inverter, which uses a detection signal of a current flowing through the filter capacitor.
【請求項8】 請求項1,請求項5及び請求項6のいず
れかに記載の3相インバータの制御装置において、前記
3相交流電圧を直流レベルの信号に変換する手段として
極座標変換手段を用いることを特徴とする3相インバー
タの制御装置。
8. The control device for a three-phase inverter according to any one of claims 1, 5, and 6, wherein polar coordinate conversion means is used as means for converting the three-phase AC voltage into a DC level signal. A control device for a three-phase inverter, characterized in that
【請求項9】 請求項1,請求項5及び請求項6のいず
れかに記載の3相インバータの制御装置において、前記
直流電源の電圧の逆数値を得る演算手段を設け、前記乗
算手段は前記電圧偏差と前記逆数値の和を前記相電圧基
準に乗じて電圧制御信号を得ることを特徴とする3相イ
ンバータの制御装置。
9. The control device for a three-phase inverter according to claim 1, claim 5, or claim 6, wherein arithmetic means for obtaining an inverse value of the voltage of the DC power supply is provided, and the multiplier means A control device for a three-phase inverter, wherein a voltage control signal is obtained by multiplying a sum of a voltage deviation and the reciprocal value with the phase voltage reference.
【請求項10】 請求項1,請求項5及び請求項6のい
ずれかに記載の3相インバータの制御装置において、前
記信号発生手段は一定周期の位相信号に応じて第3次高
調波成分を含む一定振幅の3相の相電圧基準を出力する
ことを特徴とする3相インバータの制御装置。
10. The control device for a three-phase inverter according to any one of claims 1, 5 and 6, wherein the signal generating means generates a third harmonic component in accordance with a phase signal having a constant cycle. A control device for a three-phase inverter, which outputs a phase voltage reference of three phases having a constant amplitude including.
JP5168827A 1993-07-08 1993-07-08 Controller for three-phase inverter Pending JPH0731156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5168827A JPH0731156A (en) 1993-07-08 1993-07-08 Controller for three-phase inverter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5168827A JPH0731156A (en) 1993-07-08 1993-07-08 Controller for three-phase inverter

Publications (1)

Publication Number Publication Date
JPH0731156A true JPH0731156A (en) 1995-01-31

Family

ID=15875258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5168827A Pending JPH0731156A (en) 1993-07-08 1993-07-08 Controller for three-phase inverter

Country Status (1)

Country Link
JP (1) JPH0731156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504386A (en) * 2008-09-26 2012-02-16 エクスレント エナジー テクノロジーズ リミテッド ライアビリティ カンパニー Adaptive generation and control of arbitrary electrical waveforms in a grid-coupled power conversion system
JP2012085482A (en) * 2010-10-14 2012-04-26 Fuji Electric Co Ltd Distributed power supply system
US8693228B2 (en) 2009-02-19 2014-04-08 Stefan Matan Power transfer management for local power sources of a grid-tied load

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504386A (en) * 2008-09-26 2012-02-16 エクスレント エナジー テクノロジーズ リミテッド ライアビリティ カンパニー Adaptive generation and control of arbitrary electrical waveforms in a grid-coupled power conversion system
US8693228B2 (en) 2009-02-19 2014-04-08 Stefan Matan Power transfer management for local power sources of a grid-tied load
US9690313B2 (en) 2009-02-19 2017-06-27 Xslent Energy Technologies, Llc Power transfer management for local power sources of a grid-tied load
US10185346B2 (en) 2009-02-19 2019-01-22 Xslent Energy Technologies, Llc Power transfer management for local power sources of a grid-tied load
JP2012085482A (en) * 2010-10-14 2012-04-26 Fuji Electric Co Ltd Distributed power supply system
CN102457204A (en) * 2010-10-14 2012-05-16 富士电机株式会社 Distributed power supply system

Similar Documents

Publication Publication Date Title
US9257931B2 (en) Power conversion apparatus
US7403404B2 (en) Power inverter system and method of correcting supply voltage of the same
EP1921740B1 (en) Power converter control
EP3109993B1 (en) Power conversion device control method
JP2014068498A (en) Control method for power conversion device
US11218079B2 (en) Power conversion device
EP3522363B1 (en) Control device for power converter
EP2763301B1 (en) Power converter control method
JPH0274192A (en) Power conversion device
JP2011239564A (en) Neutral point clamp type power conversion equipment
JPH11285260A (en) Method and device for controlling inverter device
JP3236985B2 (en) Control device for PWM converter
JPH02261063A (en) Inverter device and driving system for ac motor
JPH0731156A (en) Controller for three-phase inverter
JP3323759B2 (en) Pulse width modulation converter device
JP2005110335A (en) Power converter
JP2702936B2 (en) Method and apparatus for controlling voltage source inverter
JP2968027B2 (en) Control device for current source inverter
JPH05176553A (en) Inverter control method of non-interruption power supply apparatus and non-interruption power supply apparatus
JP2002252984A (en) Method and apparatus for controlling power converter
JPH01298959A (en) Pwm converter
EP4362308A1 (en) High harmonic suppression device
JP5026821B2 (en) Power converter
JP6340970B2 (en) Control device
JP3249307B2 (en) NPC inverter